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Abstract
Complex heterogeneous hardware platform are increasingly used for implementing critical real-time
application like ADAS and autonomous driving. To better support real-time workloads, GPUs have
evolved to allow preemption for computationally intensive tasks and for graphical tasks. However
for certain tasks the cost of preemption can be very high, and must be accounted in the design and
in the scheduling analysis.

In this paper, we address the problem of allocating a set of real-time tasks, modeled by conditional
directed acyclic graphs, onto multiprocessor platforms under partitioned preemptive Earliest Deadline
First scheduling, assuming a non-negligible cost of preemption. We propose methods for assigning
intermediate deadlines and offsets to real-time C-DAGs, so to remove unnecessary preemptions and
reduce the total preemption overhead.

The effectiveness of the proposed technique is evaluated using a large set of synthetic tasks sets.
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1 Introduction

Recent embedded platforms combine several computing cores with different instruction-set
architectures and computation capacities. An example of such architecture is the NVIDIA
Xavier-based board, which comprises different accelerators, like GPUs, DLAs, etc., together
with a set of classical ARM cores onto the same System On Chip (SoC). These platforms are
the preferred choice for modern time-critical applications, like Advanced Driving Assistance
Systems (ADAS), which need an ever-increasing amount of computational power for executing
complex time-critical tasks.

These applications are typically structured as a set of concurrent tasks, each one modeled
by a Directed Acyclic Graph (DAG) of sub-tasks. Moreover, they may exhibit dynamic
behavior. For example, when an ADAS detects an obstacle, it may run effective algorithms
to precisely detect and avoid the obstacle, otherwise it may continue running less-precise but
less time-consuming sub-tasks. The Conditional DAG (C-DAG) [?] has been proposed to
efficiently model and analyze such dynamic behavior.
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Several difficult challenges are encountered when scheduling real-time applications modeled
by C-DAGs on such architectures: the choice of the scheduling algorithm, and how to allocate
(sub-)tasks to computational resources. Global scheduling may not always be available on
heterogeneous architectures, and task migration may produce a high overhead. Therefore, in
this paper we focus on partitioned scheduling. Preemptive EDF is known to be an optimal
algorithm for single processors, therefore our strategy consists in allocating sub-tasks to
computational resources, and then use preemptive EDF on each resource.

In most of the literature on real-time scheduling, the cost of preempting a task is considered
to be negligible when doing the schedulability analysis. Indeed, this is the case in classical
general purpose processors. However, preemption can be a very costly operation on some
computing unit, e.g. GPUs. In some extreme cases, the cost of saving and restoring the
context may exceed the worst-case execution time of the executing task (see Section 2.1 for
a description of how preemption works on modern GPUs). Clearly, in such extreme cases,
it is more effective to use a non-preemptive scheduling algorithm. However, in other cases,
preemption is necessary to ensure schedulability; the ideal situation would be to perform a
preemption only if strictly necessary.

Many techniques for limiting preemption have been proposed in the literature (see Section
7 for an overview of related work). In this paper we will use a novel technique that takes
advantage of a property of the EDF scheduler. We will now briefly describe our main idea.

First of all, to correctly schedule the sub-tasks of a C-DAG, we need to assign them
artificial scheduling deadlines and offsets, such that, if every instance of a sub-task executes
within its window defined by its offset and its deadline, then all precedence constraints are
respected and the task completes before its end-to-end deadline (see Example 2 in Section 2).
The problem of optimally assigning offset and deadlines to sub-tasks is very difficult, and
many heuristics have been proposed in the literature.

Second, we observe that in EDF a sub-task may preempt another sub-task allocated on
the same processor if and only if the relative deadline of the former is strictly less than the
relative deadline of latter. Therefore, to avoid preemption on a given sub-task, we can assign
it a relative deadline shorter than the sub-tasks that can potentially preempt it. However,
in doing so, we have to guarantee that other constraints are respected as well (precedence
constraints and schedulability constraints).

Summarizing, in this paper we propose a novel methodology for 1) assigning artificial
deadlines and offsets to the sub-tasks of a C-DAG, and 2) allocating sub-tasks to com-
putational resources, so to guarantee schedulability and to reduce the overall preemption
cost.

2 System model

2.1 Background on GPU preemption
To motivate our work, and to justify our model, in this section we describe the way preemption
is done in recent GPU architectures.

Early GPUs were designed to maximize throughput, therefore preemption was limited to
special cases. For example, when executing graphical tasks, preemption was allowed at the
boundary of draw calls (i.e. triangles). With the evolution of GPU architecture, they have
been used for a wide variety of different computational tasks (not only graphical), and they
were increasingly used to speed up the performance of complex real-time critical tasks.

For this reason, recent NVIDIA Pascal architectures [?] include a hardware component
called preemption engine to support preemption for different types of tasks. In particular, we
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distinguish between graphical tasks and computational tasks. For graphical tasks, in addition
to Draw-Boundary Preemption, Pascal also offers Pixel-Level Preemption: when a preemption
request is received, Pascal stops rasterizing new pixels, completes all operations for the
pixels currently in the pipeline, and initiates a context switch. For computational tasks,
Pascal offers Thread-Level and Instruction-Level preemption: in the first case, preemption is
initiated when all threads of a sub-task complete on CUDA cores (notice that a sub-task
may consist of a sequence of groups of parallel threads). In the second case, preemption is
achieved by saving the context at the currently executing instruction in a similar way to
classical CPU preemptions.

The finer the preemption level, the more time consuming preemption is. Preempting at
the draw boundaries involves very little state information to save. However, preempting at
the thread level includes larger costs; and at instruction (resp. pixel) level involves a massive
amount of information, including contents of caches and the register files of all CUDA cores.

Capodieci et al. [?] calculated the order of magnitude on the cost of preemption in modern
GPUs: an upper bound to the timing cost can be estimated in 50µsec for a computational
task, and to 750µsec for a graphical task. However, the exact preemption cost depends
on many different factors, and different sub-tasks may exhibit different preemption costs
even within the same task. For the scope of this paper, we model the worst-case cost of
preemption as a parameter of each sub-task.

2.2 Task model
Let T = {τ1, τ2, · · · , τn} denote a set of n tasks. Each task τi ∈ T is represented by a
tuple: (i) a Directed Acyclic Graph (DAG) denoted by G(τi), (ii) its period T(τi) and (iii)
its end-to-end deadline D(τi). When it is not important, we drop task index for the sake of
simplicity.

Each task graph G = {N , E} is compound of a finite set N of nodes, and a finite set
E of directed edges representing precedence order between graph nodes. No cycles are
allowed in the graph. A node can be either a sub-task v ∈ V or a condition-control node
c ∈ C, (N = C ∪ V). A sub-task v is an elementary sequential execution block and can be
implemented as a single thread. A condition-control node c is a non-deterministic condition
evaluated on line. According to the value of the condition one of two successors of c is
selected1.

To simplify the model and the presentation of our work, in this paper we restrict to
identical multiprocessor platforms. In fact, addressing heterogeneous code requires
a more complex task model where sub-tasks are tagged with the core on which they are
allowed to execute (a GPU sub-task can only execute on GPUs, etc.). A more complex model
accounting for heterogeneous multicore has been presented in [?]. However, we remark that
the work presented in this paper can be easily extended to heterogeneous multicores, and it
will be the subject of a future work.

A sub-task is characterized by its execution time C(v) and by the overhead to account when
preempting sub-task v, called preemption cost and denoted by pc(v). An edge e(ni, nj) ∈ E
models a precedence constraint (and related communication) between node ni and node nj .

ni is an immediate predecessor of nj if ∃e(ni, nj) ∈ E. pred(ni) denotes the set of all
immediate predecessors of node ni. ni is a predecessor of a nj if there exist a path from ni

1 We can easily express the case of a condition with multiple successors by defining successively branches
of two-successors condition-control nodes.

Pre pr in t
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to nj . If a sub-task has no predecessor, it is a source node of the graph. In our model we
allow a graph to have several source nodes. In the same way, ni is an immediate successor
of nj if nj is an immediate predecessor of ni. ni is a successor of nj if there is a path from
nj to ni. If a node has no successors, it is called sink node. src(τ) denotes the set of all
source nodes in task τ , and src(T ) =

⋃
τ∈T src(τ) denotes all source sub-tasks in task set T ,

respectively. |S| denotes the cardinality of the set S.
We consider a sporadic task model, therefore parameter T represents the minimum inter-

arrival time between two instances of the same task. When an instance of a task is activated
at time t, all source sub-tasks are simultaneously activated. All subsequent sub-tasks are
activated upon completion of their predecessors, and sink sub-tasks must all complete no
later than time t+ D. We assume constrained deadline tasks, that is D ≤ T.

We define an execution pattern pj(τ) of task τ as one possible combination of all condition-
control nodes in G. P(τ) denotes the set of all execution patterns. We define the pattern
execution time as follows:

C(pj(τ)) =
∑

vk∈pj(τ)

C(vk) (1)

We denote by vol(τ) the volume of task τ computed as the maximum execution time among
all its execution patterns: vol(τ) = max{C(pj(τ)), j ∈ {0, · · · , |C|+ 1}}. and we define the
utilization of task τ as: u(τ) = vol(τ)

T(τ) . We define also the task set utilization as the sum of
utilizations of all its tasks: U(T ) =

∑
τ∈T u(τ).

In this paper, we allow sub-tasks of the same task to be allocated onto different cores.
We define by Vk(τ) the set of all sub-tasks of task τ that are allocated on core k. τk denotes
an isomorphic graph of τ where sub-tasks not belonging to Vk have null execution time and
null preemption cost, and the sub-tasks belonging to Vk have the same execution time and
preemption cost.

I Definition 1. Let vi be is an immediate predecessor of vj. If vi and vj are allocated onto
different cores, then we say that vi is a “null predecessor” of vj regarding its allocation core.

Let π(τ) denote a complete path2 of task τ , Π(τ) denote the set of all paths of task τ .
We define the slack Sl(π,D(τ)) along path π as:

Sl(π,D(τ)) = D(τ)−
∑
v∈π

C(v) (2)

We denote by π∗(τ) the path having the maximum sum of execution time of its sub-tasks,
called critical path.

I Example 2. Consider the task described in Figure 1. Task execution times and preemption
costs are described in Table 1.

The task in Figure 1 starts its execution with a single source sub-task v1. Further,
according to condition C2, the task may follow the execution pattern v4, v8 to join the sink
node v9, or follow the other pattern and execute v3 and further fork a parallel execution v5

2 Complete path is a path from one source node to one sink node
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v1 C2

v3

v4

v5

v6

v7

v8

v9

Figure 1 DAG Task example

v C(v) pc(v) v C(v) pc(v)

v1 4 4 v3 9 3
v4 3 2 v5 5 4
v6 10 0 v7 4 1
v8 5 1 v9 2 1

Table 2 Parameters of the example.

and v6, both tasks join back v7 to finally execute the sink node v9. Notice here that in this
example source and sink nodes are unique, however this is not mandatory.

If sub-task v3 gets preempted, the preempting sub-task has to account for 3 times units
of preemption overheads. If the preempting task preempts sub-task v5, it has to account
4 times units. It is important to account for the correct preemption cost to guarantee the
respect of deadline constraints.

The volume vol(τ) is equal to 34.

3 Deadlines and offsets assignment: Quick overview

In this paper we assume that sub-tasks are scheduled by EDF. Therefore, we need to assign
artificial deadlines to sub-tasks. Additionally, several techniques have been proposed to
enforce the respect of precedence constraints across different cores [?,?,?], among them also
assigning artificial offsets to each sub-task. In fact, offsets and deadline are assigned so that,
if each sub-task executes within its artificial offset and deadline, execution order is respected
and the overall task respects its deadline.

We denote by D(v) the artificial deadline of v. The activation time of a task instance
is the absolute time of the arrival of source sub-tasks instances. The artificial offset O(v)
is the interval between the activation of the task graph and the activation of the sub-task.
The absolute deadline of a sub-task instance is the activation time plus the artificial offset
plus the artificial deadline D(v). We also define the local deadline as the interval between
the task graph activation and the sub-task absolute deadline: it is computed as the sum of
its artificial offset and its artificial deadline (O(v) + D(v)).

Figure 2 illustrates the relationship between the activation times, the artificial offsets and
deadlines and local deadlines of the sub-tasks in Figure 1. We assume that v1, v3, v9 have
been allocated on the same core whereas v5 and v7 on another core and v6 on a third core.
Please notice that the right branch of the condition has been taken.

Most of the artificial deadline assignment algorithms distribute the slack computed in
Equation (2) to different sub-tasks on every path in a task graph. However, they differ on
the way this operation is done (referred as calculate_share in Equation (3)). In Section 7, we
will describe the most popular techniques proposed in the literature, and in Section 6.2 we
propose our own heuristics.

D(v) = C(v) + calculate_share(v, π) (3)

Once artificial deadlines are computed for all sub-task, we can automatically assign offsets
as follows. As source nodes are activated as soon as the task is activated, their offset is set

Pre pr in t
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v9v1 v3
Core 1

Core 2

Core 3

v5

v6

v7

v7 Local deadline

v6 artificial deadline

O(v5)

Absolute deadline

Activation time

task relative deadline

Figure 2 Example of offset and local deadline

to 0. For the other sub-tasks:

O(v) =
{

0, if preds(v) = ∅
maxv′∈preds(v){O(v′) + D(v′)}, otherwise

(4)

if the sub-task has more than one immediate predecessor, the offset is computed recursively
as the maximum between the local deadlines of its immediate predecessors (Equation (4)).

Sub-task v is feasible if for each task instance arrived at aj , sub-task v executes within the
interval bounded by its arrival time a(v) = aj + O(v) and its absolute deadline a(v) + D(v).

I Lemma 3. A task is feasible if all its sub-tasks are feasible.

Proof. By definition, the local deadline of the sink sub-tasks is equal to the deadline of the
task D. Moreover, the offset of a sub-task is never before the local deadline of a preceding
sub-task. Therefore 1) the precedence constraints are respected and 2) if sink sub-tasks are
feasible then task is feasible. J

4 Preemption-aware analysis

In this paper, we consider a sporadic task system. We show in [?] how to compute and
reduce preemption costs. For completeness, we state here Lemma 4 and Theorem 6.

I Lemma 4 (Worst case preemption). Let V = {v1, v2, · · · , vK} be a set of sub-tasks to be
scheduled by EDF on a single core.

Consider Vpc = {v′1, v′2, · · · , v′K}, where v′i has the same parameters as vi, except for its
wcet that is computed as C(v′i) = C(vi) + pci and pci = max{pc(v)|v ∈ V ∧D(v) > D(vi)}.

If Vpc is schedulable by EDF when considering a null preemption cost, then V is schedulable
when considering the cost of preemption.

Lemma 4 accounts the maximum preemption cost in each sub-task execution time. If
the system is schedulable in this configuration, then it is schedulable when considering
preemption. The lemma is safe but very pessimistic. Pessimism can be reduced by using
Theorem 6.
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We highlight here the difference between pc(vi), which represents the cost to preempt vi,
and pci which is the cost that vi needs to account to preempt other sub-tasks.

I Definition 5 (Maximal sequential subset). A maximal sequential subset VM of task τ is a
maximal subset of Vτ such that:

it is weakly-connected;
∀v ∈ VM , v′ ∈ pred(v) is either null and does not belong to VM , or non null and belongs
to VM .

Further, we denote by vM the sub-task with the shortest local deadline among all sub-tasks in
VM that are either sources, or have a null predecessor.

I Theorem 6 (Limited preemption cost). Let V = {v1, v2, · · · , vK} be a set of sub-tasks
scheduled by to EDF on a single processor. Consider Vpc = {v′1, v′2, · · · , v′K} where v′i has
the same parameters as vi, except for the wcet that is computed as C(v′i) = C(vi) + pci, and
pci is computed as in Equation (5) or (6).

If vi = vM , then

pci = max{pc(v)|v ∈ V \ Vτ ∧D(v) > D(vi)}; (5)

where Vτ is the set of sub-tasks of task τ where vi belongs.
otherwise,

pci = 0 (6)

If Vpc is schedulable by EDF when considering a null preemption cost, then V is schedulable
when considering the cost of preemption.

Proofs of Lemma 4 and Theorem 6 can be found in [?]. For space reasons, they are not
reported in this paper.

To adopt pci notation for partitioned scheduling, we revise the symbol to pci(k) to denote
the preemption cost of sub-task vi when allocated onto core k.

I Theorem 7 (Preemption aware volume). Let T be a set of tasks, whose sub-tasks have
already been allocated on a set of cores. Consider task τ ∈ T , and suppose that τ is allocated
on a subset of cores denoted by K. Let τ̄k denote the subset of sub-tasks of τ allocated on
core k ∈ K.

Consider now a second configuration for task τ in which all sub-tasks of τ are allocated
on the same core j ∈ K, let us call such a configuration as ¯̄τ j; the other tasks maintain the
same configuration of allocation.

Then:∑
k∈K

(vol(τ̄k) +
∑
vi∈V̄k

pci(k)) ≥ vol(¯̄τ j) +
∑
vh∈ ¯̄Vj

pch(j). (7)

In plain words, splitting the allocation of a task on several cores costs more in term of
utilization than allocating all sub-tasks in one single core.

Proof. We start by proving that the following inequality is correct:∑
k

vol(τ̄k) ≥ vol(¯̄τ j) (8)

Pre pr in t
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We must consider two cases. First, consider the case of a task not containing any
condition-control nodes. According to the definition of τ̄k, sub-tasks of τ not allocated to k
have null execution times. Thus,∑

k

vol(τk) = vol(τ)

Now consider the case when the task contains conditional branches. Two branches of a
conditional node will both contribute each on its core on the task volume, however if they
are allocated on the same core, only one of will contribute to the volume. Therefore, the left
part of Inequality (8) cannot be inferior to the right part.

Now we prove that the following inequality is also correct:

∑
k

∑
vi∈V̄k

pci(k) ≥
∑
vh∈ ¯̄Vj

pch(j) (9)

By assuming that all sub-tasks are allocated onto one core j, the maximal sequential
subset VM contains all sub-tasks, thus∑

vh∈ ¯̄V

pch(j) = pcM (j) + (|V| − 1) · 0 (10)

where pcM (j) is the preemption cost of vM on j (Theorem 6).
Let us analyze the left hand side of Inequality (9).∑
k∈K

∑
vi∈V̄k

pci(k) =pcM (j) +
∑

z∈K\{j}

∑
vi∈V̄z

pci(z). (11)

As the last sum (in Equation (11)) is greater than or equal to 0, the inequality in (9) is
proved.

By adding both Inequalities (8) and (9), the Theorem is proved. J

I Theorem 8 (0-cost preemption). Let T denotes a set of tasks allocated on same core and
scheduled using preemptive EDF. T is scheduled without any preemption if and only if:

all source sub-tasks have the same artificial deadline Dsrc;
all other sub-tasks have deadline shorter than Dsrc.

Proof. Only-if. For a given sub-task v, from Theorem 6, and from the fact that all sub-task
are allocated on the same processor, we derive that v can only be preempted by a source
sub-task. Since all source sub-tasks have deadline larger than the deadline of v, thus no
preemption can occur on v.

If. By contradiction, assume that at least one preemption occurs. The preempting
sub-task must be a source, thus:

∃v ∈ Vsrc,∃v′ ∈ V D(v) < D(v′).

By assumption, the condition above is not possible, thus proving the second leg of the
equivalence. J

According to Theorem 8, if it is possible to feasibly assign the same deadline to all source
nodes, which is greater to all other resource of a task system allocated onto the same core
without any null-predecessor, the preemption cost is 0.

Theorems 7 and 8 will be used to build our allocation and deadline assignment heuristics.
We present now preemption-aware deadline assignment using ILP and further allocation

and deadline assignment heuristics.
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5 ILP preemption-aware deadline assignment

Finding the optimal solution for overall problem (deadline assignment and allocation that
minimizes preemption cost) is very complex due to the extremely large space of parameters
to explore.

In this section, we propose a model based on Mixed Integer Linear Programming (MILP)
to assign artificial deadlines to sub-tasks, assuming a single core. The MILP model proposed
here can be used by the heuristics for allocation on multicore systems of Section 6.1. In
Section 6 we will also propose heuristics for deadline assignment as an alternative to the
MILP formulation.

5.1 Decision variables and objective function
Let seql(τ) denote the lth maximal sequential subset of task τ on a given core and let vMl
denote its vM , selected according to Theorem 6. Let D(v) be an integer decision variable
expressing the deadline of sub-task v.

Let p(vi,vj) be a binary decision variable to express the ability of sub-task vi to preempt
sub-task vj . According to Theorem 6, only sub-tasks vMl in all maximal sequential subsets
(∀l) have to account for maximal preemption costs, all the other sub-tasks account for 0
preemption cost. Thus, the variable p is defined for the combination of sub-task vml for every
maximal sequential subset and all sub-tasks as follows:

∀l,∀vj ∈ V \ Vτ , p(vM
l
,vj) =

{
1, D(vi) < D(vj)
0, Otherwise (12)

Where V = (
⋃
τ∈T V(τ)) is the set of all sub-tasks in task set and τ is the task to which vMl

belongs.
The objective function tries to reduce as much as possible the preemption cost, thus it is

modeled as follows:

Minimize
∑
τ∈T

∑
l

∑
vj∈{V\V(τ)}

pc(vj) p(vM
l
,vj) (13)

5.2 Preemption and deadline assignment constraints
To express the ability of vMl to preempt vj , we impose the D(vMl ) < D(vj) that can be
linearized as follows:

BIG_NUM p(vM
l
,vj)+D(vMl )− D(vj) >= 0, vi ∈ Vτ

BIG_NUM p(vM
l
,vj)−BIG_NUM + D(vMl )− D(vj) <= 0 (14)

if D(vMl ) is shorter than D(vj), the p(vM
l
,vj) is set to 1 so both constraints in Equation (14)

can be respected, otherwise it is set to 0.
Other constraints can be linearized in a similar way. Due to space constraints, we do not

report here the rest of the linearized constraints.
For each task, we need to impose that the sum of deadlines in each complete path does

not exceed the task deadline as follows:

∀τ,∀π ∈ Π(τ),
∑
v∈π

D(v) ≤ D(τ) (15)

Pre pr in t
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We highlight that if sub-task v is present in several paths, it has only one decision variable
D(v). Moreover, the deadline of each sub-task need to be greater than its execution time
(slack need to be greater or equal to 0), thus D(v) ≥ C(v).

5.3 Feasibility constraints
In addition to the above constraints, we need to impose the schedulability of the system.

I Theorem 9 (Single core feasibility). Let T be a set of task graphs allocated onto a single-core
core. Task set T is schedulable by EDF if and only if:∑

τ∈T
dbf(τ, t) ≤ t,∀t ≤ t∗ (16)

where dbf is the demand bound function [?] for a task graph τ in interval t. The demand
bound function is computed as the maximum cumulative execution time of all jobs (instances
of sub-tasks) having their arrival time and deadline within any interval of time of length t.
For a task graph, the dbf can be computed as follows:

dbf(τ, t) = max
v∈τ

∑
v′∈τ

⌊
t− Õ(v′)− D(v′) + T(τ)

T(τ)

⌋
C(v′) (17)

where

Õ(v′) = (O(v′)− O(v)) mod T(τ)

The dbf constraints can be expressed into our ILP as follows:

C(v′)pc =
{

C(v′), if v′ /∈ {vMl ,∀l}
C(v′) + max∀j,vj /∈Vτ {p(v′,vj) · pc(vj)}, otherwise (18)

Schedulability can be tested by applying the constraint presented in Equation (16) for all
values of t between 0 and the tasks hyper-period by replacing C(v′) in Equation (17) by the
execution time C(v′)pc computed in Equation (18).

It is time consuming to compute the exact dbf as in Equation (17). Several dbf approxima-
tions has been proposed in the literature of real-time systems. One of simplest for conditional
DAGs has been presented by Baruah et al. in [?]. We enhanced this approximation to take
into account the preemption costs. Our modification is described in Equation (19). First let
us define vol(τ)pc as the task volume when accounting for preemption overheads :

vol(τ)pc = vol(τ) +
∑
l

max(∀j,vj /∈V(τ)){p(vM
l
,vj) · pc(vj)}

The dbf can be approximated as:

dbf∗(τ, t) =
{

0, if t < D(τ)
vol(τ)pc + upci × (t− D(τ)), otherwise (19)

Where upc
i = vol(τ)pc

T is the task utilization when taking into account preemption costs.
The approximation described here is only valid when all sub-tasks of the same task are

allocated on the same processor. If one or more sub-tasks of the same task are allocated
on a different processor, the approximation does not guarantee the respect of the artificial
deadlines of the sub-tasks, and hence of the precedence constraints. Therefore, if all sub-tasks
of a task are allocated onto the same processor, we use the approximation; otherwise we
resort to the exact dbf.
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6 Allocation and deadline assignment heuristics

In this section, we present the different heuristics used in this paper to assign deadlines and
allocate sub-tasks onto processors so to minimize the impact of the preemption cost on the
schedulability of the system. As mentioned in Section 4, to achieve optimal and sub-optimal
solutions, deadline assignment of different sub-tasks of different tasks have to be considered
at the same time, because the cost of preemption is a function of all sub-tasks allocated on
the same core.

Thus, our algorithm consists of 3 steps: (i) group tasks (sub-tasks) by means of Algorithm
2, (ii) assign deadlines using either single core ILP deadline assignment as shown in Section 5,
or one of the heuristics described in Algorithm 3 and (iii) re-adjust task groups and allocate
each group onto a core. This 3-step approach is described in Algorithm 1.

6.1 Allocation heuristics

Algorithm 1 starts by clustering tasks (Line 3) into separate groups, such that each group
has total utilization strictly greater than 1 (except the last one).

If the number of groups is greater than the number of available cores, the system is non
feasible as it will be proved in Lemma 11.

Further, task groups are sorted in a non-increasing order of total utilization (Line 7). For
each task group, we first assign deadlines using either ILP, or one of the preemption-aware
heuristics described later on.

Algorithm 1 Allocation algorithm
1: input : T : set of conditional DAG tasks
2: parameters :ASSIGN_PARAM(ILP,PREEMP_A,FAIR,PROP)
3: clusters = cluster_taskset(T )
4: if |clusters| > m then
5: return FAIL
6: end if
7: sort_clusters(clusters) . sort by total utilization
8: for T c ∈ clusters do
9: feasible = False
10: removed = ∅
11: while (not feasible) do
12: assign_deadlines(T c,ASSIGN_PARAM)
13: feasible = test_feasibility(T c)
14: if (not feasible) then
15: removed += omit_subtasks(T c)
16: end if
17: end while
18: insert(removed,T |clusters|)
19: if |clusters| > m then
20: return FAIL
21: end if
22: end for
23: assign_task_groups_to_cores()
24: return SUCESS
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Further, for each group the algorithm tests the feasibility of the sub-tasks in the group
(except if the ILP approach is used, because it always produces a feasible task set). If the
system is not feasible, a sub-task is selected to be removed from the current group (line 15).

When a sub-task is removed from the group, it is replaced by a null sub-task with
execution time and preemption costs equal to 0. The removed sub-task is inserted into the
removed list and will be allocated to another group later on.

Selection of the sub-task to be removed is done by first selecting a random task in the
group, and then a sub-task in the given task by using one of the following heuristics:

random heuristics: The sub-task to omit is selected randomly from all sub-tasks in
the task.
preemption-aware heuristic: This heuristic behaves differently when it is applied to
a task with no null-sub-tasks, and when it is applied to a task containing at least one
null sub-task.
In the first case, the algorithm selects the sub-task with the largest execution time among
all sub-tasks that do not belong to the critical path of the task. If all sub-tasks in the
task belong to the critical path, then the last one in the critical path is chosen.
In the second case (presence of at least one null sub-task), the heuristic tries to avoid
creating too many sequential maximum subsets (holes). Hence, it looks for null sub-tasks
and removes one of their predecessor or successors. Among all candidates, it gives priority
to the one with the largest execution time and that does not belong to the critical path.
Notice that, when two consecutive sub-tasks are removed, their deadline and offsets might
be later reassigned when moving them to a different group.

The system tests iteratively the schedulability until finding a feasible schedule by invoking
test_feasibility. test_feasibility uses dbf based tests according to two situations: If all sub-
tasks of the same sub-task are allocated on the same core, it uses the dbf approximation
described in Equation (19), otherwise it uses the exact dbf described in Equation (17). Since
every time we remove a sub-task, the while loop (Line 11) will converge to the case of no
sub-tasks, which is obviously feasible. The non-allocated sub-tasks which are contained in
removed_task list are added to the last task group to be allocated in the future iterations.
Further, the algorithm invokes the clustering algorithm to add the removed sub-tasks (see
Algorithm 2).

As a consequence, new clusters may be produced. The algorithm fails at any time the
number of clusters is greater than the number of available cores.

We now describe the clustering algorithm. First of all, tasks are sorted according to the
following order relationship.

I Definition 10 (Task order function). For a task τi, we denote by γ(τi) the average artificial
deadline of task τi, computed as:

γ(τi) = D(τi)
maxπ∈Π(τi) |π|

where |π| denotes the number of sub-tasks in path π, and Π(τi) is the set of all paths in τi.
Let τi, τj be two tasks. The order relationship τi > τj is defined as

τi > τj =⇒ γ(τi) > γ(τj). (20)

Notice that > sorts tasks according to their average deadline. If two tasks have similar
average deadline, then it is likely possible to group them on the same processor: then, as
stated by Theorem 8, we can reduce the cost of preemption by assigning the same deadline
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Algorithm 2 cluster_taskset
1: input : T : set of conditional DAG tasks
2: Output : clusters: set of tasksets
3: sort_tasks(T ) . By > relation
4: T current = ∅
5: for τ ∈ T do
6: if u(τ) ≥ 1 then
7: add_cluster({τ}, clusters)
8: else
9: add_task(τ, T current)
10: if U({T current} ≥ 1 then
11: add_cluster(T current, clusters)
12: T current = ∅
13: end if
14: end if
15: end for
16: return clusters

to their source sub-tasks, and shorter deadlines to following sub-tasks. On the contrary, if
we group tasks with very different average deadline on the same core, it is unlikely to assign
the same large deadline to all source sub-tasks, leading to a large preemption cost.

Once the tasks have bee sorted according to their average deadline, Algorithm 2 adds tasks
one by one to a group until total utilization is greater than 1. Tasks having an utilization
greater than 1, are put in their own group3. When a group has an utilization greater than 1,
a new cluster is created.

I Lemma 11 (Necessary test). Let T be a task set and M the number of clusters of T
obtained by algorithm 2.

If M > m, then the task system is not feasible.

Proof. Trivially, if M > m, the total utilization exceeds m, so the system is not schedulable.
J

6.2 Deadline assignment heuristics
The deadline assignment step has a large impact on schedulability and preemption overheads.
In fact, a good deadline assignment technique can allow us to avoid costly preemption or
even reduce the preemption cost to zero as proven in Theorem 8. In this section, we will
show how to assign deadlines while taking into account preemption costs.

First we start by defining the preemption heaviness of sub-task v as :

w(v) = pc(v)
C(v)

According to their heaviness, we define three classes of sub-tasks:

Non preemptive: sub-tasks with preemption heaviness greater than or equal to 1.
Preempting these sub-tasks costs more than waiting for their completion, so they must
be assigned the same shortest possible deadline.

3 We observe that this approach is similar to the federated-scheduling framework.
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Heavy: sub-tasks with preemption heaviness greater then a given threshold α and less
than 1.
Preemptive: sub-tasks with preemption cost less than or equal to α.

Algorithm 3 Preemption-aware deadline-assignment.
1: input : T : set of conditional DAG tasks, method: Int
2: base_deadline = 0
3: for (τ ∈ T ) do
4: b_d = max(maxv∈τ C(v), D(τ)

max_depth(τ) )
5: base_deadline = max(b_d, base_deadline)
6: end for
7: reduce_deadlines(T )
8: switch method do
9: case FAIR_DEADLINE :

10: ∀τ, fair_deadline_single_task(τ)
11: case PROP_DEADLINE :
12: ∀τ, prop_deadline_single_task(τ)
13: case PA_DEADLINE:
14: ∀τ, pa_deadline_single_task(τ)

Algorithm 3 assigns deadlines by taking into account preemption costs. The algorithm
has three main steps: the first assigns deadlines to all sources sub-tasks, the second one
re-adjusts, if necessary, the source sub-tasks deadlines, and the final step assigns deadlines to
the other sub-tasks.

The first step starts by computing the base_deadline. It represents the maximum deadline
that source sub-tasks may be assigned, so to eliminate all possible preemption according to
Theorem 8. It is computed as the maximum between the largest execution time among all
sub-tasks of all tasks in the group, and the maximum average deadline γ(τ) among all tasks
in the group.

Assigning base_deadline to source sub-tasks does not ensure schedulability, thus a neces-
sary test is applied to quickly eliminate unfeasible solutions.

The necessary test computes the slack in the critical path of every tasks, and checks that
it is still positive:

∀τ,D − base_deadline >
∑
v∗∈π∗

C(v∗)− C(v′) (21)

where v′ is the source of the critical path π∗(τ).
If the test in the previous equation fails, the task group is not feasible when assigning the

base_deadline to source sub-tasks. Therefore base_deadline is decremented iteratively until
Condition 21 becomes true.

After this iteration, the deadline of each source sub-task is set to the maximum between the
base_deadline and the sub-task execution time (the per-sub-task slack can not be negative).
If the execution time of the critical path is less than the task deadline (necessary condition
even on a unlimited number of cores), this second step will converge.

The third step assigns deadlines to the rest of the sub-tasks. It may use the already
existing heuristics such as fair, proportional deadline assignment described in Section 7 or
the preemption-aware deadline assignment described in Algorithm 4. In the case a group
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has no null sub-task, all heuristics behave in the same way regarding preemption cost (see
Theorem 6). However, in case of a null sub-task, a well-designed heuristic can reduce
preemption cost.

Algorithm 4 is a novel heuristic for assigning artificial deadlines. It starts by selecting
all heavy sub-tasks. Further, it selects d_min, the minimum deadline that has been already
assigned in a previous step. d_min is an upper bound to heavy sub-task deadlines, otherwise
these tasks can be preempted by at least one source sub-task. Further, another upper bound
d_b_min is computed as the minimum γ(τ). This step is similar to source sub-tasks deadline
assignment, however the minimum is selected instead of the maximum. In fact, if this heavy
tasks deadline is greater than this value, at least one of the sub-tasks for which the deadline
is not-yet assigned will have a smaller deadline, hence be able to preempt at least one heavy
task.

The minimum between the two upper bounds d_min and d_b_min is selected as a new
upper bound. Further we ensure that this upper bound is greater than the maximum sub-task
execution time (Line 6) of heavy sub-tasks. If it is the case, the maximum execution time
among heavy sub-tasks is selected. Further, heavy sub-tasks deadlines are reduced in a way
similar to source sub-tasks deadline assignment. Further, the deadlines of light non-source
sub-tasks are assigned using either fair or proportional deadline (line 11). We highlight that
already assigned deadlines are not reassigned again (except when the deadlines are canceled
inside the omit function in Algorithm 1).

Algorithm 4 pa_deadline_single_task(τ)
1: input : T : set of conditional DAG tasks, method
2: heavy_list = select_tasks_with w(v) > α

3: d_min = min{Dv} . Already assigned deadlines
4: d_b_min = min{ D(τi)

maxπ∈Π(τi) |π|
} . for all τ ∈ T

5: c_max = maxv∈heavy_list{C(v)}
6: d_c = max{c_max,min{d_min, d_b_min}}
7: for v ∈ heavy_list do
8: D(v) = d_c
9: end for
10: reduce_deadlines(T )
11: switch method do
12: case FAIR_DEADLINE :
13: ∀τ, fair_deadline_single_task(τ)
14: case PROP_DEADLINE :
15: ∀τ, prop_deadline_single_task(τ)
16: return SUCCESS

7 Related work

Several task models have been proposed in the literature to express data dependency and
parallelism within a real-time task, most of them are based on DAGs (directed acyclic graphs),
e.g. [?,?,?,?]. DAGs have received a lot of attention in preemptive global (e.g. [?,?,?,?])
and partitioned (e.g. [?,?,?]) scheduling.

One of the most effective techniques to schedule DAGs on multicore platforms is to assign
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intermediate deadlines and offsets4 to sub-tasks in order to enforce precedence constraints.
The advantage of such techniques is that a set of dependent sub-tasks is converted into a
set of independent sub-tasks with offsets, for which well-know and efficient schedulability
analysis exists. However, optimal assignment of intermediate deadlines and offset is a difficult
problem.

The most popular heuristic algorithms are based on the idea of dividing the slack time
along each path among all its sub-tasks according to some simple rule. Two among the many
alternative heuristics are:

Fair distribution: assigns slack as the ratio of the original slack by the number of
sub-tasks along the path:

calculate_share(v, π) = Sl(π,D(τ))
|π|

(22)

Proportional distribution: assigns slack proportionally to the contribution of the
sub-task execution time in the path:

calculate_share(v, π) = C(v)
C(π) · Sl(π,D(τ)) (23)

The share of every sub-task is computed according to a non-increasing order of paths
by cumulative execution time. Authors of [?] studied the deadline assignment problem in
distributed real-time systems. They formalized the problem and identified the cases where
deadline assignment methods have a strong impact on system performances. They proposed
Fair Laxity Distribution (FLD) and Unfair Laxity Distribution (ULD) and studied their
impact on the schedulability. In [?], authors analyze the schedulability of a set of DAGs
using global EDF, global rate-monotonic (RM), and federated scheduling. Yifun wu et al.
in [?] propose techniques to set offsets and deadlines using ILPs. Qamhieh et al. in [?]
proposed a sufficient schedulability test of a set of DAG tasks onto a multicore platform.
They assigned intermediate deadlines and offsets according to path length using techniques
similar to Equation (21).

All the above-cited works consider preemption costs to be negligible. In the presence of
high and variable preemption cost, the previous techniques may be ineffective. A radical
approach is to consider non-preemptive systems as those found in [?, ?]. Bertogna et
al. [?,?,?,?] propose limited preemption models as a viable alternative between the two
extreme cases of fully preemptive and non-preemptive scheduling.

To reduce the preemption costs, two main techniques have been proposed. In [?], a task
can not be preempted up to a given priority, called Preemption Threshold. Thus, each task
is assigned a priority and a preemption threshold, and the preemption takes place only when
the priority of the arriving task is higher than the threshold of the running task. On the
other hand, Baruah in [?] proposed deferred preemption. According to this method, when
a high priority task is activated on a core where a low priority task is running, a function
is evaluated on-line to define the longest interval the current task can continue to execute
non-preemptively without compromising the respect of real-time constraints. Finally, fixed
preemption points have been introduced to forbid a task to get preempted out of well-defined
preemption points specified in the code. A complete survey about such techniques can be
found in [?].

4 In this paper, we refer to them as artificial deadlines and offsets.
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For all these preemption-aware techniques the preemption cost itself is still considered
negligible. Some of these techniques can be used to reduce/avoid on-line preemption cost,
however they cannot be used in the case of very high preemption costs.

Phavorin et al. in [?] have shown that single processor EDF is not optimal when
considering preemption costs. This work is the closest one to our work. However, they
use techniques to build off-line static schedules, whereas our techniques is based on EDF.
Moreover, we use assume C-DAGs, thus our sub-tasks are dependent, whereas Phavorin et
al. consider only independent L&L tasks. Finally, they consider a single core platform, we
are interested in partitioned scheduling over multicores.

8 Results and discussions

In this section, we evaluate the performance of our deadline assignment heuristics and
allocation strategies. We compare the combination of several heuristics proposed in this
paper against fair and proportional deadline assignment combined with the bin-packing
heuristics: Best Fit (BF) and Worst Fit (WF). We adapted BF and WF to take into account
the preemption costs evaluated using Theorem 6.

We compare schedulability rate, preemption cost reduction efficiency and practical
complexity of the techniques cited above on a platform of 4 identical cores.

8.1 Task Generation
We conducted our experiments on a large number of randomly generated task sets. First,
the generation algorithm starts by producing n utilizations whose sum is equal to x (varies
in every experiment) by using the UUniFast [?] algorithm, n is randomly selected between
[8, 12].

For each utilization, the algorithm uses again UUniFast-discard to distribute the task
utilization to n_v sub-task, so to obtain per-sub-task utilizations. n_v is randomly selected
between 7 and 15. The sub-task utilization is multiplied by the task period to compute the
sub-task execution time. Further, two approaches to assign preemption costs and define task
topologies are used:

1. In the first approach, the per-sub-task preemption cost is generated randomly according
to a probability Ppc = 0.7: thus 70% of the sub-tasks are assigned preemption cost in
the interval [0%, 20%] of the sub-task execution time; and 30% of the sub-tasks have
preemption cost in interval [70%, 120%] of their execution time. Sub-tasks are connected
randomly without creating cycles.

2. In the second approach, the per-sub-task preemption cost is computed as a fixed percentage
of the sub-task execution time. In the different experiments, this fixed cost is chosen in
the list {0%, 30%, 60%}. Further, sub-tasks are randomly divided assigned intoto L = 5
layers. Sub-tasks of layer l are randomly connected only to sub-tasks of layer l + 1.

We remark that the second approach has been designed to stress our heuristic. In fact,
as the number of sub-task is set between 7 and 15 and it is randomly distributed across
5 layers, the number of sub-tasks in a layer can very often be equal to 1. This is actually
unfavorable for our heuristic because, in the case a task is not feasible on a single processor,
the algorithm is forced to split the critical path and generate several maximal sequential
subsets.

Moreover, as the load is fairly distributed between layers, fair deadline assignment
heuristic have better chances to achieve good deadline assignment compared to our heuristic
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that assigns large deadlines to source tasks and over-constrains the sub-tasks in the following
layers. The per-task utilization is limited to 60% in the second generation method.

Once a DAG has been generated, we transform it into a C-DAG by randomly inserting
conditional nodes between sub-tasks to simulate tasks’ dynamic behavior, thus creating new
paths without increasing the task utilization. The task period is selected randomly from a
predefined list of periods {50, 80, 100, 150, 200, 300, 400, 500, 600, 800, 1200}, so to establish
an upper bound to the hyperperiod. The task deadline is selected randomly in the interval
[0.75 · T, 0.85 · T].

8.2 Simulation results and discussions
We vary the baseline utilization from 0 to 4 by a step of 0.25. Every point in the following
figures represents the average value of 100 experiment. In all experiments, the standard
deviation is between 2% and 3% of the average value (except for Figure 5a, which will be
discussed later on).

The results presented in this section are the combination of several heuristics proposed
in this paper and in the literature. Each combination is denoted by 3 letters: (i) the task
allocation heuristic can be either C for clustering, B for best fit or W for worst fit; (ii) the
deadline assignment heuristic can be either capital P for preemption aware heuristic, or F
for fair deadline assignment, or I for ILP; (iii) sub-task selection (Line 15 in Algorithm 1), it
can be either R for random heuristic or P for preemption aware selection heuristic.
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Figure 3 Schedulability rate VS total utilization : Random and controlled generation.

In Figure 3a, tasks are generated using the first method. The figure shows the schedulab-
ility rate of the following combinations: CPP, CPR, CFR , WFP, BFP and CIP heuristics as
a function of total utilization.

CIP uses clustering for allocation, preemption aware selection heuristic to omit sub-tasks
and an exact solution to assign per-group deadlines, thus it presents the highest schedulability
rates. CPP and CPR combines the preemption-aware heuristics proposed in this paper,
and they presents very high schedulability rates. CFP takes advantage of the clustering
properties that allow grouping sub-tasks with a “fair” possible deadline distribution.

Even when combined with optimal deadline assignment techniques, BF and FF show a
low performances, because (i) preemption cost depends on the allocation, (ii) these heuristic
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add sub-tasks individually, and no global state is considered.
In Figure 3b, tasks are generated using the second method and preemption cost equal to

zero. The goal of the experiments reported in this figure is to study the effectiveness of our
approaches in the absence of preemption costs. The figure reports the schedulability as a
function of total utilization for CPP, CPR, WFP (BFP is omitted to avoid surcharging the
figure as it is outperformed by WFP). With the increase of the workload, heuristics based on
fair deadline assignment perform slightly better than preemption-aware based heuristics. In
fact, the preemption-aware heuristics try to reduce the number of preemptions even when
the preemption cost is null, and they tend to over-constrain unnecessarily the non-source
sub-tasks. CIP outperforms all other heuristics, as it combines clustering with optimal
deadline assignment.
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Figure 4 Schedulability rate VS total utilization with fixed preemption overhead.

In Figure 4a and Figure 4b, task are generated according to the second method, with
a fixed preemption cost of 30% and 60% of the sub-task execution time, respectively. The
schedulability falls sharply even for low utilization rates: as the preemption cost increases,
reducing the number of preemptions becomes essential for schedulability. Again, CIP
outperforms all other heuristics. We observe that at low workloads, CPP and CPR provide
performance close to CIP, however as the workload increases, CIP dominates all the others.
In contrast, BF and WF schedulability rates fall more sharply and they are not able to
achieve more than 10% schedulability rate even at a very low utilization.

Figure 5a represent the preemption cost reducing efficiency as a function of total utilization
for schedulable task sets. The preemption reduction efficiency of vertex vi is defined as:
ε(vi) = pci(h)

pc(vi) . In the figure we show the total preemption efficiency (the sum for all sub-tasks).
It quantifies the effectiveness of a heuristic in reducing the preemption costs: the lower, the
better. Only schedulable task sets are considered in this figure. Please notice that, since the
number of schedulable task sets decreases substantially for high utilization, the standard
deviation increases from 10% on the left part of the figure, to more than 50% in the right
part of the figure, so those points are less meaningful.

As expected, in general clustering based approaches are more effective in reducing the
preemption cost compared to WF-based approaches. The inversion on the very low utilizations
can be explained by observing that WF distributes tasks onto different cores first, thus
sub-tasks of the same task may be allocated onto the same core with less concurrence. On
the other hand, clustering based approaches tend to cluster all tasks onto the same core,
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Figure 5 Preemption reduction efficiency and analysis execution time

thus the preemption cost is higher for very low utilizations. When the load increases, WF
fits more tasks on the same core, potentially increasing the number of preemption compared
to our heuristics that are designed to reduce the number and the cost of preemption. CIP is
more efficient as it assigns optimal deadlines with the goal of minimizing preemption costs
reduce.

Figure 5b shows the execution time of the analysis for schedulable tasks set under
clustering based and WF based approaches. Even if the theoretical complexity of clustering-
based approaches seem to be greater than the classical bin-packing heuristic, in practice they
are more efficient. In fact, clustering based approaches group tasks only once and assign
them artificial deadlines and offset before proceding with allocation, wheras, when using
bin-packing based heuristics, at each allocation the deadline assignment algorithm is invoked
again. We observe that the good performance shown by CIP are not for free. In fact, the
execution time increase considerably with the increase of utilization. The clustering heuristic
is called more often to re-assign non-allocated sub-tasks to cores.

9 Conclusions and future work

In this paper we propose technique to allocate C-DAG tasks onto identical multicore platforms,
by accounting for task preemption. Since the cost of preemption can be very large in modern
GPU, our technique reduces the number of preemptions by setting appropriate artificial
deadline to sub-tasks and by allocating tasks with similar deadlines on the same core. Results
of our extensive synthetic experiments show a significant reduction on total preemption cost
when combining preemption-aware allocation with preemption-aware deadline assignment
techniques.

The work presented in this paper can be easily extended to heterogeneous platforms with
multiple ISA and multiple capacities as in [?]. We also plan to investigate other premption-
reducing techniques, such as the deferred preemption proposed by Baruah et al. [?]. Finally,
we plan to extend our approach to separately take into account saving and loading context,
thus allowing tighter bounds on preemption costs.
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