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ABSTRACT The behavioral analysis of cyber-physical systems in safety-critical scenarios is a challenging
task. In this context, the endogenous and exogenous aspects of resilience are of a cornerstone importance
in system design and verification. Endogenous resilience is the inherent ability of the system to detect and
process internal faults and malicious attacks. Exogenous resilience is the permanent capability of the system
to maintain a safe operation within its ambient environment. In this article, we present a predictive dual-
sided contract-based formal methodology to address both aspects of resilience on top of a distributed object-
oriented component-based software model. It is illustrated by a case study of urban drone rescue systems.
We exploit the formalism of timed automata and the toolbox UPPAAL to predict by abstraction and analyze
(simulate and verify) endogenous resilience. Instead of presenting the final models of the case study, we
reflect our experience with UPPAAL in generic patterns of system design and contract specification, reusable
in other contexts with adaptations. The analysis of exogenous resilience is specific to the considered drone
rescue system. It consists of synthesizing by iterative model-checking safe flight paths for the drones within
a 3D virtual model of urban surroundings true to modern cities.

INDEX TERMS Resilience, Safety, Distributed control, Object-oriented software, Component-based
architectures, Design by contracts, Timed automata, 3D models, Model-checking, Temporal logic, Fairness.

I. INTRODUCTION
Industry 4.0 refers to the current trend of automation and data
exchange technologies used for the manufacture of systems
in many industrial sectors such as transportation, energy, and
medicine. It fosters the so-called “smart technologies” which
include Cyber-Physical Systems (CPSs), cognitive and cloud
computing, and the Internet of Things (IoT). In CPSs, com-
puting, communication and control technologies are tightly
integrated to achieve efficiency, reliability, robustness, real-
time, and stability when dealing with the physical devices.
Actually, CPSs cover autonomous and adaptive operations
and aim to include artificial intelligence.

Despite this trend, safety remains a thorny challenge as
amply discussed in [1]. One major problem is to combine the
system’s operation within the environment and its characteri-
zation including the choices of embedded hardware platforms
and software design approaches. In addition, a CPS needs to
be resilient: the ability to withstand a major disruption with
respect to permissible degradation parameters and to recover
within acceptable times and composite risks and costs [2].

The resilience aspects of CPSs are well summarized in [3].
The authors highlight the robust control issues that require
consideration of the following measures: 1) the adoption of
model-based approaches in software design and verification;
2) the diagnostic of the endogenous resilience relying on the
system ability to handle internal faults and malicious attacks;
3) the analysis of the exogenous resilience relying on the
system ability to maintain a safe operation within its ambient
environment by ensuring reliable control over sensors and
actuators. Our work orbits around these topics.

Industrialists are still using common reactive component-
based approaches to design software for CPSs [4]–[6]. Under
these approaches, software is rigid and hard to maintain. The
operation of a subsystem in the CPS is a row of cyclic reac-
tions to environment inputs. This mode of operation does not
allow a safe interactive behavior between the system parts.
Indeed, data are crudely sent and received “asynchronously”
between subsystems through wired and/or wireless networks.
This exchange has three major drawbacks: it is error-prone by
naming and processing the crude data, does not elucidate the
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interaction scenarios between subsystems during design, and
hardens their verification. The standards and norms [7]–[9]
governing the design of safety-critical (aeronautic, railway,
automotive, etc) CPSs recommend component-based devel-
opment and formal methods for design and verification, while
providing reliable solutions to the above issues at the risk of
blaming the whole system integrity and certification [10].

In this article, we adopt a distributed and object-oriented
component-based approach (extended from [10]) to design
the software layer of a typical CPS: an urban drone rescue
system with ground remote control. We define an object-
oriented component as a software entity with the following
functions: 1) it provides and requires environment-dependent
synchronous service interfaces; 2) it exchanges directly crude
data with its environment through asynchronous ports; 3) it
might exhibit progressive behavior at the run-time [11]. By
allowing distribution, the component instances can interact
(synchronously or asynchronously) while being deployed in
distant subsystem nodes. By allowing object-orientation, the
safety-critical scenarios are easy to analyze since component
interactions could be predicted early in design, and to trace
and debug later in the implementation.

In order to analyze endogenous resilience in the considered
CPS based on our software model, we establish a contract-
based formal method to predict by abstraction and analyze
the distributed interactive behavior of the system, the timing
constraints of its networking activities, and its survivability
in case of functional and timing faults, or detected malicious
attacks during operation. We use the toolbox UPPAAL [12]
to specify, simulate and verify endogenous resilience in our
CPS case study. The formal language of UPPAAL, based on
Timed Automata (TAs) networks [12], [13], is well-suited to
meet our goals since it comes with various useful features
for both design and verification: time-aware specifications,
channel-based broadcasts and synchronization mechanisms,
a C-like background language used to specify the behavioral
effects of state transitions in TAs networks, graphical inter-
faces for behavior simulation and analysis of model-checking
counterexamples, etc.

The main drawback we encountered by practicing model-
checking using UPPAAL is that fairness conditions, required
to define starvation-free models and to ensure liveness, can-
not be expressed neither in the Computation Tree Logic
(CTL) [14]–[16], used by UPPAAL to specify properties, nor
in the model like in the TLA+ language [17]. To overcome
this problem, we consider a subset of CTL∗ [18] (combining
CTL and the Linear Temporal Logic (LTL) [19]) as an exten-
sion of CTL to express fairness conditions. Then, we show
how they could be exploited to guarantee liveness properties,
and how TAs can be constrained in UPPAAL to meet them.

Despite its wide academic recognition and successful use
in some industrial applications (as summarized in [20]), the
common criticism against UPPAAL is about the current im-
plementation of its model-checker based on hash tables [21].
It does not scale to large and complex applications due to
the “wall problem” of combinatorial state explosion during

verification. Therefore, to truly scale up, UPPAAL should be
powered by efficient model-checkers and complemented by
incremental design on top approaches [22]. We sustain our
contributions by UPPAAL mainly for the reasons mentioned
above, and hope that more scalable inductive model-checkers
based on efficient SAT/SMT solvers [23], [24] with top-down
component-based abstraction languages and code generation
tools will be made available around it in the future.

The analysis of exogenous resilience is specific to our case
study of urban drone rescue systems. Concretely, it is relative
to the “safe presence” of drones in their ambient environment
and should be checked on sensor inputs (positions, battery
level, etc) and actuator outputs (flight signals). Being in early
predictive design, we synthesize optimized flight paths for
the drones in a scaled 3D virtualization (built using Blender)
true to the modern big cities. The synthesis of flight paths is
done by iterative model-checking with respect to input safety
properties (mainly obstacle avoidance).

The related works are provided and discussed in Section II.
In Section III, we present our urban drone rescue system and
its behavioral requirements. They are recalled in the next sec-
tions to illustrate gradually our contributions. In Section IV,
we present our work methodology going from the operational
design to resilience analysis. The software model of the con-
sidered system, and its underlying aspects of interoperability
and data exchange are provided in Section V. A feasibility
study of the implementation is provided in the same section.
The complete formal analysis of the endogenous resilience
in the system using UPPAAL is described in Section VI. A
theoretical body about the expression of fairness conditions
in timed automata under UPPAAL is also provided in the same
section. In Section VII, we present the 3D-driven formal
analysis of exogenous resilience using Blender. Section VIII
is dedicated to the conclusion discussions and perspectives.

II. RELATED WORKS
In [25], [26], the authors change the regular process of safety
analysis, focusing mainly on negative causes and impacts of
unwanted events, and take into account the success stories
that deem insignificant. With this aim, the authors promote
a new safety analysis classification (Safety-I, Safety-II and
Safety-III), and open up new perspectives on the considera-
tion of resilience aspects.

Safety-I is the traditional definition used in safety norms:
the system quality should ensure that the number of failure
events harmful to workers, the public, or the environment is
acceptably low. It requires avoidance of failures and mitigates
their eventual consequences. Safety-II focuses on the system
ability to succeed in its daily operation instead of studying
incidents and failure events and mitigates their consequences
as in Safety-I. It assumes that the daily performance vari-
ability provides the adaptations needed to respond to varying
conditions, and hence is the reason that things go right [25].
Safety-III is likely the combination of the two previous ones.
It acknowledges that acceptable and adverse outcomes have
common basis, namely everyday performance adjustments.
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It offers a new ontological understanding of safety as a new
field in system design and development, called “Resilience
Engineering”. Horizon openings could be cast on the current
safety issues under this new concept: given that the world
has become more complex, the explanations of unwanted
outcomes or success stories of system performance can no
longer be limited to cause-effect relations described by linear
models [25], [26].

Of the extensive literature around CPSs, we discuss some
topicality and works related to the ours. The European project
CPSwarm aims to define approaches and tool chains to de-
velop and test collaborative and reconfigurable autonomous
CPSs (see www.cpswarm.eu). The project partners provide
use cases about the usage of autonomous UAV systems in
ambient environments, similar to our drone rescue system.
Although, the case study was extracted from the CPSwarm
workbench [27] and tailored with our interest to resilience.

Few academic works already exist around the study of
CPS resilience because it is a recent research topic. In [28],
the proposed approach ensures resilience in CPSs through
self-healing structural adaptation. This involves adding and
removing components, or even changing their interaction at
run-time. The authors in [29] propose a hybrid theoretical
framework for robust and resilient control design. The pro-
posed framework is applied to the design problem of voltage
regulators in synchronous machines and motors.

In [30], the authors distinguish between the notions of in-
formation and infrastructure dependability, and clearly illus-
trate the need to formally model and reason about the depend-
ability aspects of CPS applications. In [31], the authors focus
on the CPSs communication aspects and study the effects of
intermittent data integrity guarantees on system performance
under stealthy attacks. The authors in [32] also tackle the
security issues in CPSs by identifying the problem of secure
control, investigating the defenses that information security
and control theory provide, and proposing a set of challenges
that need to be addressed to improve the survivability of a
CPS in case of cyberattacks. In [33], the authors propose a
software architecture of an agent-based production CPS and
consider interoperability and data consistency aspects in their
model. They also provide an implementation of such system
to evaluate multi-agent approach with regards to conventional
production processes.

Perhaps the closest work to ours is the one in [34] since the
authors make use of formal methods. They define a generic
component-based CPS meta-model in UML, and show how
it could be instantiated in concrete systems using a pattern-
based methodology based on the so called Formal Concept
Analysis (FCA) approach [35]. They also apply a knowledge-
driven process to determine all kind of relations between the
“cyber-” and “physical-” components of different subsystems
and their underlying functionalities to deal with their related
resiliency and redundancy properties. Our predictive analysis
of resilience in CPSs is specific compared to their approach.
By cons, our software design model is scalable in concrete
implementations as emphasized in Subsection V-D.

Notification

(1)

(2)
GCS

Navigation

(4)

(3)

Exploration

(6)
(5)

(E)

FIGURE 1. Drone/GCS crash exploration scenario. Notification phase: (1) a
person on-site sends an alert to the GCS by smartphone; (2) GCS activates
the drone; Navigation phase: (3) the drone continuously sends navigation data
to GCS; (4) GCS controls the drone when necessary; Exploration phase: (E)
while hovering, (5) the drone broadcasts the accident scene to GCS, which
in turn (6) may order it to provide medical supply for victims if needed. Steps
(3)/(4) and (5)/(6) are repeated with different frequencies (depicted by ).

III. DRONE RESCUE SYSTEM
Unmanned Aerial Vehicles (UAVs) or drones are quite useful
for healthcare organizations especially in emergency situa-
tions to avoid traffic jams, or when traditional transports are
severely restricted, following a natural disaster for example.
Common applications include live broadcasts of accidents to
early grasp them, and deliver the required medical supplies
for wounded people. UAVs are safe enough to transport
disease test samples and kits in areas with high contagion. In
emergency medicine, the studies have shown that drones are
fast to deliver automated external defibrillator to rescue out-
of-hospital heart attack victims using geographic information
systems. Flying at speeds of up to 97 km/h, the drone can
reach patients within a radius of 13 km2 per mn versus 10 mn
average for traditional services which increases the chance of
survival to 80% [36]. Being connected to live-stream camera
fixed on the drone, a Ground Control Station (GCS) instructs
the first aid gestures for the patients, and provides the needed
medical supply (transported as it happens by the drone).

Nevertheless, the usage of UAVs remains very challenging
at the design and verification levels despite the fast progress
of their related technologies. Our work tackles these issues
for the software layer of a Drone/GCS-based urban rescue
system. We provide the system requirements to deal with the
crash scenario of Fig. 1. By receiving a notification from on-
site persons who notice the crash severity (step 1), the GCS
activates and sends immediately a drone to the place of the
accident (step 2). Once flying, the drone sends continuously
its navigation data (including its position composed of the
latitude, longitude and altitude), the distance to the nearest
obstacle, and the battery level (step 3). The GCS sends back
control commands to the drone (when necessary) which may
be either i) a next valid position to be reached from a set of
possible paths, or ii) an emergency retrograde action if the
drone is unable to continue the mission, because of a weak
battery charge for example (step 4).
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Drone rescue system

Contracts

Software/Networking modelBlender design/verification

UPPAAL design/verification

Subsystems identification
Drones and GCS

System requirements

EndogenousExogenous

BCL Contracts

EndogenousExogenous

Software components
distributed and object-oriented

Component interactive behavior
required/provided interfaces, critical jobs,
directions of service calls and data exchange,
synchronous/asynchronous communications

Network/Middleware models, malicious
attacks, timing and functional faults

Verifier/Simulator

CTL properties

TAs networks

Smooth animation of moving
objects (drones)

Scaled 3D model of the urban
environment and objects

LTL properties

CAT model-checker
Blender plugin

FIGURE 2. The diagram of our predictive methodology applied to analyze the endogenous and exogenous aspects of resilience in the considered drone rescue
system; arrows significations: uses or depends on, tool input; inherits from.

When the destination is reached, the drone hovers around
the accident location and broadcasts a live video stream of the
situation (step 5), and continues to receive commands from
the GCS to provide the appropriate medical supply, and assist
the first aid gestures for the victims if required (step 6).

IV. PREDICTIVE METHODOLOGY
The graphic of Fig. 2 represents our predictive methodology
used to address the endogenous and exogenous aspects of re-
silience in our drone rescue system. The first step of any sys-
tem design is the identification of the subsystems involved,
and the definition of their behavioral requirements. A large
panel of languages (and tools) is available around the subject
of requirement engineering (like System Modeling Language
SysML [37] and Lifecycle Modeling Language LML [38]).
SysML has had a great success in the industry of safety-
critical systems. The well-known use case and requirement
diagrams of SysML are definitely useful to define high-level
textual early specifications of systems. Given that the case
study does not amount to significant complexity level, and
only operational design is considered in this work, we do not
exploit any of these languages to define system requirements;
we settle for the informal description given in Section III.

Requirements are on the foundation of the design process,
but are also used to define system contracts [39], required
for the verification phase. A contract is semantically a Hoare
triplet [40] that annotates a system operation by assumptions
on the inputs and guarantees on the outputs. We use for that
the Block Contract Language (BCL) [41] to extract contracts
from requirements. BCL is pattern-based and semi-formal,
easy to read, and convert to formal statements. For better
readability, the endogenous and exogenous BCL contracts
are given in Subsection VI-E and Section VII along with the
low-level properties used to verify our system design.

The software layer of our system is architected according
to a Distributed Object-Oriented Component-Based Design
(DOOCBD) approach extended from that of [10]. This new
architecture embraces interface-driven composition, service-
oriented interoperability, and direct data exchange between
the behavioral jobs (tasks) of components. At run-time, these
components are instantiated in distributed live objects that
communicate (locally or remotely) while being deployed in
connected software nodes embodied within the GCS and the
drones (see Section V).

In order to bring in design the real conditions of operation,
we need to analyze the system behavior within abstracted
models of wireless network and middleware: the scenarios
of exchanging (Tx/Rx) data through the network physical
layer should be emulated with respect to a bounded latency.
In addition, we should predict the system survivability when
functional and timing faults or malicious attacks are detected.

The endogenous resilience involves the specification of all
the critical scenarios and behavioral entities described above
in TAs networks using UPPAAL. Endogenous BCL contracts
are then translated to safety and liveness CTL properties and
analyzed by the simulator and model-checker of the toolbox.
Further details are provided in Section VI.

Concerning exogenous resilience, the design step involves
3D modeling of the urban environment and smooth anima-
tions of moving objects. The benefit of 3D models is stating
the obvious: they schematize concepts more distinctly than
any classic design language. Moreover, they allow an early
feasibility of the system before realization. We use Blender
with the built-in Contract Analysis Tool (CAT) to check if
the exogenous BCL contracts, related to flight plannings and
translated to LTL properties, are respected. If not, the flight
path planning is corrected iteratively until the properties are
met (see Section VII).
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V. SOFTWARE MODEL
CPSs (and particularly the drone rescue system presented in
Section III) are distributed and thoroughly compliant with the
software component-based design presented in this section.
It is an extended version of the DOOCBD approach already
introduced in [10]. Before presenting the component archi-
tecture of the system, we start by introducing the principles
of our approach, and its underlying properties of component
interoperability and data exchange.

System
Nodewells w

listeners  l
sources o

services s jobs £j

Middleware/Network

Other nodes

S

W

 L
O

£J

Physical

environment

synchronous

asynchronous

asynchronous

synchronous

Actuators

Sensors Actuators

Sensors

FIGURE 3. Distributed object-oriented model of a CPS; arrows signification:
executed periodically (resp. continuously) by, call methods from,
data flow; x represent a sequence of elements x1, ..., xn.

A. THE DOOCBD APPROACH
Distributed systems are networks of computing nodes inter-
acting with (and controlling) physical processes. According
to the model of Fig. 3, a node is typically an open big object
interacting with the physical environment and other nodes
composing the system [10]. It accepts input data from (resp.
provides services for) its environment, generates output data
for (resp. requires services from) it, and may express progres-
sive behaviors by running periodic jobs.

Crude (byte-coded) data can be exchanged directly with
the physical environment and between nodes through source
and well asynchronous ports (implemented resp. by methods
o and w). These ports are especially suitable for low-level
exchange with the hardware sensors and actuators used resp.
to sense and control the physical processes. On the other
hand, the services s are synchronous and used for high-level
inter-node interoperability. A service is a method with one-
shot computation. It is callable locally by a node (private or
public) or by its environment (only public), and may change
the internal state (private attributes) of the node, and might
require remote services from other distant nodes.

The jobs £j handle the actions and reactions of the node
while interacting with its environment. Like services, a job
may have impact the internal state of the node. It may also
1) require (private or public) methods, or 2) act as a periodic

crude data talker task (by running periodically data sources).
Data listeners  l are loops running continuously data wells in
order to input aperiodic data flows. More details about talkers
and listeners are presented in Subsection V-B.

The structure of components is almost the same as that
of nodes but at finer levels of encapsulation and granularity.
It is similar to the CORBA Component Model (CCM) [42]
of OGM. Concretely, each node incorporates one or more
partitions, each of which is a collection of component live
instances. These instances may interact locally within their
partitions, or with component instances of other partitions
running on the same or distant nodes [10].

B. SYN VS. ASYNCHRONOUS COMMUNICATIONS
The classic scheme of synchronous inter-node interoperabil-
ity is depicted by the scenario of Fig. 4. A node n requesting a
service from a remote node m is blocked while waiting for it
to return. The services m.srvc(rkn) are handled by aperiodic
tasks with priorities higher or lower than that of the nominal
processes ofm and should return before fixed time deadlines.

A task of n

n blocked n blocked

action after missed
deadline

latency

m.srvc(r1n) m.srvc(r2n)

Node n

Network

Nominal process of m

Another node m
Aperiodic execution of
services m.srvc(rxn)

FIGURE 4. Classic synchronous inter-node interoperability.

These aperiodic executions of services may or not preempt
the nominal process depending on their priorities and the
processor architecture of the execution platform. Aperiodic
service handlers in Fig. 4 might run on separate processors
different from those used for nominal executions.

A task of n

fixed blocking time window

timeout action before deadline
m.srvc(r1n) m.srvc(r2n)

return lost or spoiled by
the middleware

x

Node n

Network

Another node m

Nominal process of m

FIGURE 5. Timeout-constrained synchronous inter-node interoperability.

We adopted for our approach a more constrained model
of synchronous interoperability based on timeouts (see Fig.5)
which guarantee a better timing predictability than the classic
one: if it does not receive the return value of the service call
within a fixed time window, the caller process rejects the call
and takes the appropriate decision based on the criticality of
the service, and its impact on the system integrity. Timeouts
shall be adjusted to meet the task deadline.

VOLUME 7, 2019 5



S. Mouelhi et al.: Predictive Formal Analysis of Resilience in Cyber-Physical Systems

Real-time analysis of the caller task should consider the
worst-case blocking time of method calls (including network
latency). Low latency can be ensured by using adequate net-
working models and hardware platforms to improve real-time
determinism. High priority aperiodic service calls should not
disturb the nominal processes of the invoked node. They
should not be excessively delayed (so that the caller task
meets the best possible deadlines) especially when they are
critical for the caller process.

By adopting suitably method-based synchronous commu-
nication, the interoperability between objects is explicit in de-
sign, and the implementation is easy to debug and maintain.
Nonetheless, the synchronous communication is not the best
suited in other contexts, especially when the synchronization
is non critical for the system’s integrity, or when the data ex-
change is with low-level hardware components (sensors and
actuators). Fig. 6 depicts a simple scenario of asynchronous
data exchange between two nodes.

Node n

A task of n

D1

Network

Nominal process of m

Node m

D1 D2 D3

D2 D3 D4

....

Data deferrable server

Data waiting buffer

Budget usage

D1 D1D2 D2 D3

FIGURE 6. Asynchronous data acquisition. Sending data Di is aperiodic in
this generic scenario. In the software architecture discussed in Subsection V-C,
data are assumed to be periodically communicated by the talker tasks.

When a byte-coded data Di is aperiodically received by
the node m, it is handled by a server in order to convert it to
a software consumable information. A server is a periodic-
like task defined by two static parameters: a period and a
time budget. Once active, it reads the pending (threaded in a
buffer) received data as soon as possible within the limit of its
budget. Data are handled in general according to their arrival
instants. If the budget is exhausted, the server must wait until
the next cycle of the server to resume reading data. In the
scenario of Fig. 6, we consider the example of a deferrable
server [43] for asynchronous data acquisition.

The server may have higher or lower priority compared to
that of nominal processes depending on the data importance.
Like for synchronous interactions, the implementation should
ensure that important data processing is not excessively de-
layed, and does not disturb the real-time determinism of the
nominal process.

Asynchronous communication has drawbacks: 1) it is rigid
and difficult to maintain; 2) it is error-prone by wrongly read-
ing data; 3) it may suffer from non-deterministic processing
delays because data are buffered and handled according to
reception order; 4) the underlying communication semantics
between nodes is not explicit in the implementation.

C. COMPONENT-BASED ARCHITECTURE
The component architecture, depicted in Fig. 7, presents the
software structure of the drone rescue system, wherein nodes
and partitions are not depicted. Given that it involves the use
of several drones remotely guided by a GCS, its main com-
ponents are highlighted: Drone and GCS. The middleware
behavior is discussed in Subsection VI-B.

As briefly stated in Section III, Drone represents the main
software unit of a connected drone. It is to perform the
minimum of internal computations, and strictly follows the
GCS commands, making it regularly aware of its state. All
the heavy control operations, likely to consume an important
amount of the drone energy (particularly the battery charge),
are performed by GCS whose role is to fully control the drone
mission remotely: paths computation, assistance decisions,
retrograde actions, etc. It also controls the drone action on
the crash site when filming the accident, and supplying the
needed medical material.

Before starting the flight, the drone is activated by GCS by
invoking the public (+) method Activate, provided remotely
(@) from an instance of Drone running on the drone’s em-
bedded platform. Since it may simultaneously communicate
with several drones, GCS maintains a map attribute paths
(private –), associating each connected drone to a mission
path, which is a cursor-moving array of records Coordinates,
consisting of three fields: latitude, longitude and altitude. The
flight path of each drone is initialized by GCS, and can be
updated following unforeseen positions the drone may reach
during its flight (Control). As soon as a position in the path
is reached, the Drone instance updates (by the periodic job
Flight) the next position by calling Fly_To from GCS.

In order to decide about the next position, GCS needs to
be regularly informed of the drone’s state (by invoking the
method Get_Data). Drone periodically collects the following
sensing data for GCS: 1) the current position (Coordinates)
from the component Position_Updater (that acquires the lati-
tude and the longitude from a GPS unit, and the altitude from
a barometric sensor); 2) the distance to the nearest obstacle
from the component Sonar (using an ultrasonic sensor); 3)
the battery level from the component Battery_Checker; 4) a
stability boolean computed by Stability_Controller based on
three-dimensional linear and angular acceleration parameters
(resp. provided by an accelerometer and a gyroscope).

To reach the next position, Drone launches the speed
control process by calling the method Actuate_Rotors (proce-
dure) of the component Navigation_Controller. It computes
the Speed_Request for the whole drone based on the indi-
vidual Current_Speed of each rotor (provided by an instance
of the component Rotor showed in Fig. 8) and its current
Position. The actual speed is computed for each rotor using
the actual number of revolutions from the last speed compu-
tation (determined from the pulses generated by the motor
Encoder). This sensor has a predefined resolution in PPR
(Pulses Per motor Revolution), and is asynchronously read by
the instance of Rotor using the data listener Update_Pulses
(server) through the data well Read_Pulses (see Fig. 6).
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Drone software

GCS software

Middleware
(network layer)

Sensing components

Actuating components

Drone

Attributes

– identifier : Integer

References

psu :: Position Updater

stb :: Stabilization Controller

son :: Sonar

btr :: Battery Checker

nvg :: Navigation Controller

gcs :: @GCS

Required methods

Position

Stabilized

Sense Obstacle

Level

Actuate Rotors, Provide Supply

@Fly To, @Which Supply

Provided methods

+ procedure Activate (id : Integer) # Activation Failed

+ procedure Deactivate (id : Integer) # Deactivation Failed

+ function Get Data (id : Integer) → Sensing Data # Unknown Data

+ procedure Hover (id : Integer, p : Coordinates) # Hover Failed

Data sources

– procedure Stream Video (data : Byte array)

Periodic tasks

£ task Flight (period : Time Span)£ task Film (period : Time Span)

GCS

Attributes

– paths : (Integer, Coordinates array) map

– video buffers : (Integer, Byte array) map

References

drns :: (Integer, @Drone) map

Required methods

@Activate, @Deactivate

@Get Data, @Hover

Provided methods

+ function Fly To (id : Integer) → Coordinates # Unknown Position

+ function Which Supply (id : Integer) → Medical Supply

Data wells

– function Unstream Video → Byte array

Periodic tasks

£ task Control (period : Time Span)

Data listeners

 server Watch Video (period, budget : Time Span)

Position Updater

Attributes

– position : Coordinates

Provided methods

+ function Position → Coordinates

Battery Checker

Attributes

– level : Float

Provided methods

+ function Level → Float

Stability Controller

Attributes

– parameters : Float array

Provided methods

+ function Stabilized → Boolean

Sonar

Attributes

– distance : Float

Provided methods

+ function Sense Obstacle → Float

Navigation Controller

Attributes

– speed requests : Float array

References

psu :: Position Updater

Required methods

Position

Provided methods

+ procedure Actuate Rotors (p : Coordinates)

+ procedure Provide Supply (m : Medical Supply)

– procedure Compute Speed Request (i : Integer)

– procedure Compute Rotation Commands

FIGURE 7. The software component architecture of the drone rescue system. Dashed arrows represent the direction of data transitions when synchronous
services are invoked: i) they are in the opposite direction of method call (continuous arrows ) because transiting data are values returned or exceptions thrown
to the caller components; ii) they are in the same direction of a method call arrow when data are directly passed as argument(s) to the called component.

Navigation Controller

Attributes

– speed requests : (Integer, Float) map

References

psu :: Position Updater

rtrs :: Rotor array

Required methods

Position

Rotate, Current Speed

Provided methods

+ procedure Actuate Rotor (p : Coordinates)

– procedure Compute Speed Request (i : Integer)

– procedure Compute Rotation Command

Rotor

Attributes

– speed : Float

– pulses : Integer

Provided methods

+ procedure Rotate (pwm : Integer)

+ function Current Speed → Float

Data wells

– function Read Pulses → Byte array

Data sources

– procedure PWM Command (cmd : Byte array)

Data listeners

 server Update Pulses (period, budget : Time Span)

Motor

Encoder

FIGURE 8. Concrete architecture and dependencies of Navigation_Controller.

Once the speed request is computed, Navigation_Controller
actuates each rotor using a Pulse-Width Modulation (PWM)
command (Compute_Rotation_Command) passed to the
method Rotate for each instance of Rotor interfaced with
each motor (see Fig. 8). The actual PWM value is propor-
tionally calibrated in relation to the error between the speed
request and the current speed. Each Rotor then applies the
PWM command through the data source PWM_Command.

When the destination is reached, GCS signals the drone
to hover around the accident (by invoking the method Hover
provided by Drone), to broadcast a live stream video of the
accident using the data source Stream_Video, and to provide
the appropriate medical supply (Which_Supply), if needed.
When the mission ends, the drone flies back to the starting
position based on the same principle of the outward flight,
and is deactivated (Deactivate) by GCS upon arrival.

D. IMPLEMENTATION FEASIBILITY
Object-oriented development has often been a hard sell in
safety-critical systems industry [44]. The applied standards
require extensive verification processes and real-time difficult
to carry on by the dynamic aspects and flexibility of object-
oriented paradigms (polymorphism, dynamic dispatch, late
binding, overriding, etc). The distribution is also penalizing
because of its semantics (message passing, remote dispatch
and procedure call, etc). The Ada programming language is
sufficiently expressive to implement our software model and
can decidedly deal with these disadvantages. It is strongly
typed and object-oriented with a powerful and explicit sup-
port for tasking, concurrency, mutliprocessor architectures,
compiler directives (pragmas), design by contracts [39] (the
SPARK language [45]), etc. It allows developers to exploit
the object-oriented assets while avoiding vulnerabilities and
ensuring real-time [10], [44]. Besides, subsets of Ada are the
target of many design and code generation toolboxes widely
used in the industry (like SCADE Suite and Atelier B).

A speed control application for connected wheeled robot
platoons1, based on the DOOCBD approach, was discussed
in [10]. The implementation is mainly in Ada, and based on
annexes D and E of the Ada Reference Manual resp. of real-
time and distributed systems. Annex E (abbreviated DSA)
provides support for efficient distribution by making the mid-
dleware layer completely transparent and the development
easier. The distribution in the application is managed by the
middleware PolyORB [46] (maintained by AdaCore).

1https://github.com/mouelhis/adawrplatoon
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The covered control scenarios and interoperability aspects
in [10] are very close to those presented and discussed in
this article. The Ada application is a proof of concept of our
formal design, and we expect to contemplate prototyping real
drones in the future. The development process will be much
easier to approach. The predictive analysis presented in the
next two sections has pre-chewed a lot of the work.

Concerning wireless connectivity in UAVs, an in-depth
analysis of the implementation opportunities and challenges
is provided in [47]. According to the authors, low-altitude
short-range line-of-sight communication scheme seems to be
the best suited to our case study, and may potentially lead to
significant performance gains. This modality of wireless con-
nectivity allows the dynamic adjustment of the UAV states
to well suit the networking environment. For example, when
a UAV experiences good channels with ground terminals, it
can conserve energy to sustain good wireless connectivity
in order to transmit more data to terminals. This is entirely
what is needed in our medical rescue context. The standards
IEEE 802.11p [48] and ITS-G5 [49] can be adopted to im-
plement Drone-to-Drone or Drone-to-GCS communications
since they suit such highly dynamic networking topology.

VI. ANALYSIS OF ENDOGENOUS RESILIENCE
We distinguish four features to handle endogenous resilience
in our context: 1) the interactive behavior between drones
and the GCS during their flights, 2) their behavioral actions
(and reactions) while interacting with the GCS, 3) wireless
network latency impact on timing predictability, and 4) sur-
vivability in the presence of malicious attacks and functional
or timeout faults. Design and verification approaches dealing
with the second feature, which cover particularly the individ-
ual internal behavior of component units, are well established
both in academia and industry.

In this section, we provide a formal methodology to reason
about (by abstract prediction) and verify together the first, the
third, and the fourth features since they are challenging and
lack of a deep investigation in the literature. We reflect in
our formal design under UPPAAL the relevant parts of the
components behavior, which are related to their synchronous
interoperability in the presence of middleware and network
abstract models. Asynchronous data exchange is restricted to
non-critical communications and hardware management (see
Subsection V-B) and not considered in our design.

First, we start by recalling the definition of timed automata
and their transitional semantics. Second, we present UPPAAL
design patterns of the interactive behavior of the software and
middleware components under an abstract network model.
These patterns are to avoid hindering the article with the
final models, and to make them easy to approach. Then, we
provide an ample formal body on the expression of fairness
conditions in CTL, and how timed automata in UPPAAL
could be constrained to meet fairness, and ensure starvation-
free behaviors and liveness. We end the section with the CTL
properties, that we extract from BCL generic contracts of the
UPPAAL design patterns, and use for verification.

A. NETWORKS OF TIMED AUTOMATA
No better than the UPPAAL tutorial [12] to recall the common
definition of timed automata: finite-state machines extended
by synchronous-evolving clocks used to abstract and reason
about the real-time behaviors of systems. UPPAAL extends
them by bounded discrete integer variables. In this pargaraph,
we slightly revisit the succinct and intuitive definitions of the
formalism and its semantics given in [12] for more precision.

We denote by X the universal set of discrete variables.
Given a set X ⊂X, we define by T[x] the type (possible
values) of x∈X , written x :T[x] for short. TJXK is the type
of X (the union set of cartesian products

∏
xi∈X T[σ(xi)]

for all permutations σ :X→X). We write TJX1, ..., XnK
for TJ⋃1≤i≤n(Xi)K with Xi⊂X. We denote by C the
universal set of clocks. We have T[c] =R+ for any c∈C, and
T[C] = (R+)n for any C ⊂ C with a cardinality |C|=n.
The left shifted (or the next) version of x ∈ X with a one
logic step is denoted by x′ :T[x] e.g., let us consider two logic
successive states s1 and s2, if x = x1 at s1 and x = x2 at s2,
then x′ = x2 at s1 and so on. We generalize the notation for
sets, X ′ is the set of next versions x′ of all x ∈ X .

Conditions are predicates of the First-Order Logic (FOL).
Given X = {x1, ..., xn}⊂X, a predicate p on x ∈ X repre-
sents a subset of the possible values of x i.e., p is a sub-type
of T[x]. A predicate Q on X is then a sub-type of TJXK. The
projection of Q on Z = {z1, ..., zk}⊆X is written QJZK.
The syntax of predicates, functions, operators and constants
are defined according to variable types under specific theories
(equality, linear arithmetic, etc).Q〈x/x′〉 isQ by substituting
x ∈ X by its primed version x′. We generalize the notation
for sets: Q〈〈X/X ′〉〉=Q〈x1/x

′
1〉〈x2/x

′
2〉...〈xn/x′n〉.

Definition 1. A timed automaton (TA) A on C,X ⊂ C,X is
a tuple (Υ, ı,Σ,Ψ,G, E ,J , I) consisting of:
• a set of locations Υ with ı∈Υ is the initial state;
• a set of actions Σ;
• a transition function Ψ ⊆ Υ×Σ→Υ;
• a guard function G ⊆ Ψ→TJC,XK;
• an update function E ⊆ Ψ×TJC,XK→TJC ′, X ′K;
• an initialization function J ⊆ {ı}→TJC,XK;
• an invariant function I ⊆ Υ→TJC,XK.
For all c ∈ (R+)n =TJCK where n= |C|, we denote by

c ⊕ τ the tuple (c1 + τ, ..., cn + τ). To save space, we write
e1...ek instead of (e1, ..., ek) with k∈N+. We write A.K for
any component K ∈{Υ, ı,Σ,Ψ,G, E ,J , I} of A.

Definition 2. The semantics S(A) of A is a labeled transi-
tion system LTS (S, s0,R) where S⊂Υ×R|C|×TJXK is the
set of states with s0 = (ı,J (ı)JCK,J (ı)JXK)∈S is initial,
andR⊆S×(R+ ∪Σ)→S is a transition function such that:
• R(lcx, τ) = l(c⊕ τ)x if (∀t∈ [0, τ ]) c⊕ t∈I(l)JCK;
• R(lcx, a) = l′c′x′ such that

– l′ = Ψ(la),
– c∈I(l)∧G(la 7→ l′)JCK, c′ ∈E(la 7→ l′, c)JC ′K,
– x∈I(l)∧G(la 7→ l′)JXK, x′ ∈E(la 7→ l′, x)JX ′K,
– c′ ∈I(l′)〈〈C/C ′〉〉, and x′ ∈I(l′)〈〈X/X ′〉〉.

8 VOLUME 7, 2019
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In UPPAAL’s graphical language, a system is modeled by
a Network of Timed Automata (NTA) with concurrent be-
havioral semantics over sets of common clocks and variables
C,X ⊂ C,X, and actions Σ split into two disjoint subsets
Σasy and Σsy of resp. asynchronous and synchronous actions.
This NTA is written A1‖...‖An (or A1..n), and consists of
n TAs Ai for i∈{1, ..., n}. We write Ki, Ῡ and ı̄ resp. for
Ai.K, the product

∏
i Υi, and the vector ı1...ın. We define

I ⊆ Ῡ→TJC,XK and J ⊆{ı̄}→TJC,XK resp. such that
I(l̄) =

∧
i Ii(li) with l̄ = l1...ln and J (̄ı) =

∧
i Ji(ıi). We

write l̄[li/l′i] to denote l̄ with li replaced by l′i.

Definition 3. The semantics S(A1..n) of A1..n is a LTS
(S, s0,R) consisting of a set of states S ⊂ Ῡ×R|C|×TJXK
with s0 = (̄ı,J (̄ı)JCK,J (̄ı)JXK)∈S initial, and a transition
relationR ⊆ S×(R+ ∪ Σ)→S defined such that:
• R(l̄cx, τ)=l̄(c⊕ τ)x if (∀t∈ [0, τ ]) c⊕ t∈I(l̄)JCK;
• R(l̄cx, a) = l̄′c′x′ such that

– a∈Σasy, l̄′ = l̄[li/Ψi(lia)],
– c∈I(l)∧Gi(lia 7→ l′i)JCK, c′ ∈Ei(lia 7→ l′i, c)JC ′K,
– x∈I(l)∧Gi(lia 7→ l′i)JXK, x′ ∈Ei(lia 7→ l′i, x)JX ′K,
– c′ ∈I(l̄′)〈〈C/C ′〉〉, and x′ ∈I(l̄′)〈〈X/X ′〉〉;

• R(l̄cx, b) = l̄′c′x′ such that
– b∈Σsy, l̄′ = l̄[li/Ψi(lib)][lj/Ψj(ljb)],
– c∈I(l̄)∧Gi(lib 7→ l′i)∧Gj(ljb 7→ l′j)JCK,
v ∈I(l̄)∧Gi(lib 7→ l′i)∧Gj(ljb 7→ l′j)JXK,

– c′ ∈Ei(lib 7→ l′i, c)∧Ej(ljb 7→ l′j , c)JC ′K,
x′ ∈Ei(lib 7→ l′i, x)∧Ej(ljb 7→ l′j , x)JX ′K,

– c′ ∈I(l̄′)〈〈C/C ′〉〉, and x′ ∈I(l̄′)〈〈X/X ′〉〉.

From a given state of the resulted LTS, every Ai may 1)
fire a transition separately by elapsing time, or by enabling
an asynchronous action and applying its individual update
on variables and clocks, or 2) synchronize with another TA
Aj through transition(s) labeled by a synchronous action a
enabled as output (depicted a! in UPPAAL) in one of them
and as input (depicted by a? in UPPAAL) in the other such
that a! transition update applies before that of a? transition.

The toolbox UPPAAL offers additional design features like
time urgency, synchronous and broadcasting (asynchronous)
channels, data types (arrays and structures), etc. It has a query
language to specify CTL properties for model-checking; their
taxonomy is introduced in Subsection VI-C.

B. UPPAAL DESIGN PATTERNS
To preserve space and hide complexity, instead of present-
ing the whole UPPAAL models of our CPS case study, we
present our experience as generic design patterns, reusable
in other contexts with adaptations. The models of the jobs
Flight and Control, resp. of GCS and Drone, are discussed in
reference to those patterns (see Subsection VI-D). As stated
in Section I, we mainly use UPPAAL to sustain our predictive
analysis approach while being aware that the verification of
an exhaustive design will not scale due to the state explosion
problem. Nevertheless, the provided models are verifiable in
an acceptable time (see Subsection VI-D).

Parameters

int track

Outputs

Hack[track]

Globals

Frame message[NBT]

FIGURE 9. Pattern Hacker.

Parameters

int track

Inputs

Input[track], Hack[track]

Outputs

Output[track]

Locals/Globals

clock h, Frame message[NBT]

FIGURE 10. Pattern Network track.

We consider a wireless channel with a frequency band
divided into a fixed number NBT of half-duplex tracks (sub-
frequencies). The exchanged messages are defined as an
array message[NBT] of data frames. It contains among others
the coded message, and the identities of the transmitter and
the receiver. It is updated when a message is posted through
the channel Input[track], or when a message is received from
the channel Output[track] (see patterns 3 and 4).

Pattern 1 (Network track). A network frequency track (see
Fig. 10) can be designed as a timed automaton where a trace
starts by an input action on the channel Input[track] if data
are posted through the corresponding track, and finishes by
an output action from the broadcast channel Output[track] to
provide the frame message[track] to the destination(s). The
network latency is measured by a clock h local to each track
and bounded by MAX_LATENCY. It is reset to 0 by firing each
input/output synchronization edge or if no traffic is present
on the track for a delay equal to MAX_IDLE.

Broadcast channels allow one-to-many synchronizations:
an edge with an output action a! on a broadcast channel a
can always fire (if the guard is satisfied), no matter if any re-
ceiving edges (labeled by a?) are enabled immediately or not.
Those receiving edges once enabled will synchronize [12].

Pattern 2 (Hacker). A hacker can be designed as a single
state self-loop automaton injecting faults in message[track],
transiting on track (see Fig. 9). The hack is assumed to inter-
vene during the transmission phase (in the location Latency)
by enabling the input event Hack[track]?.

The above patterns may seem very simplistic since wire-
less networking and hacking malicious attacks cannot be
resumed by these light abstractions. Instead of investigating
concrete hacking scenarios, our goal here is to predict not
only the system survivability if such attack is detected, but
also its reaction when latency exceeds the prefixed timing
bound for synchronous communications. References to some
research studies on networking analysis and attack resilience
in CPSs are discussed in the related works (see Section II).
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Parameters

int node

Globals

bool to middleware[unit j]...

Inputs

Soft Action i[unit j] ...

Outputs

Input[track]

Parameters

int node

Locals/Globals

clock h[unit j], Queue q...

Inputs

Output[track k] ...

Outputs

Soft Action i[unit j] ...

FIGURE 11. Pattern Middleware Tx (top); Pattern Middleware Rx (bottom).

Pattern 3 (Middleware Tx). The middleware transmitter Tx
(see Fig. 11, top) is defined separately for each subsystem
node. It is designed as a wing-automaton looping on the initial
state for each software action Soft_Action_i[unit_j] (method
calls, return values or exceptions) made by a component unit_j
(method and jobs bodies). The middle urgent location Access
is used for network channel_access(). If a track is available,
access will be given to post() the coded message atomically
via the commited (see the explanation below) location Post,
while synchronizing with the network on Input[track].

An urgent location is equivalent to a location such that
its incoming edges reset a clock c, and it is labeled with an
invariant c≤ 0. Time does not progress in urgent locations.
However, interleaving with other clock-free edges is allowed.
A committed location is more restrictive: its outgoing edges
can be only interleaved with those of the other committed
locations [12]. In the Tx pattern (see Fig. 11, top), Access
is urgent since interleaving is allowed only when no tracks
are available. The location Post is however commited because
when access is given, Tx is intended to post immediately.

Pattern 4 (Middleware Rx). The middleware receiver Rx
(see Fig. 11, bottom) is also defined separately for each node
for all software unit_j of component instances. At the location
Listen, the receiver Rx listens the incoming message[track_k]
from each track_k by synchronizing with the Output[track_k]!
broadcasts. If the message is destined for a specific unit_j, it
is enqueued in q, and waits to be dequeued and decoded in
order to synchronize with the unit_j process on the adequate
software action Soft_Action_i[unit_j].

Pattern 5 (Attack detection). In case where a malicious_fault
is detected, Rx synchronizes on the channel Attack[unit_j] with
the body of unit_j. Attacks could be only notified by the
non-critical bodies. However, they should be handled, by the
control critical jobs, as security faults.

Parameters

int job, period

Locals/Globals

clock h[job]

bool intrusion, goal

int exception count,

timeout count

bool from middleware[job],

to middleware[job]

Inputs

Return[job]

Exception[job]

Attack[job]

Tiemout[job]

Outputs

Return[job]

FIGURE 12. Pattern Periodic job.

Pattern 6 (Timeout). In case the message is not delivered
within MAX_WAIT, Rx erases the content of q, and synchro-
nizes on the channel Timeout[unit_j] with the body of unit_j in
order to handle timing faults as explained in Subsection V-B,
and illustrated by the scenario of Fig. 5. The delay MAX_WAIT
is assumed to be equal to MAX_LATENCY with an extra time
window for the message delivery on Soft_Action_i[unit_j].

Pattern 7 (Periodic job). A periodic job can be designed in
UPPAAL as an automaton complying to the pattern showed in
Fig. 12. The parameter job is used to instantiate several times
the body for interactions if needed. After initialization, job
takes a Decision at the beginning of each periodic life cycle
until reaching – if possible – a desired goal behavior. Three
main causes can prevent it to reach that goal: the detection
of an intrusion, reaching the maximum number of authorized
timeouts (timeout_count is decremented until reaching 0), or
being aware of a critical_error. In this case, the retrograded
operation mode is activated if the situation is deemed critical.
Otherwise, job executes its nominal body by calling local or
remote methods, and performing local computations resulted
from their return and exception events. In Fig. 12, we show
the simple interactive scenario of calling a remote Method, if
a Return value is received, job exploits it to check whether the
goal behavior is reached or not. By catching Exception, job
– according to its impact on the system operation – decides
if critical_error should be set or not. If an Attack is detected,
intrusion is set to true. If MAX_WAIT is elapsed and nothing
is received, the job synchronizes on the channel Timeout and
decretments timeout_count.

In order to reach timeout scenarios in the job traces during
model-checking, a TIMEOUT_WINDOW extra delay is added
to the invariant of location Wait. During this delay Rx and
job may synchronize on Timeout (see Subsection VI-E). The
global variables from_middleware[call] and to_middleware[call]
are used to force the output (resp. input) actions of job to
synchronize with the transmitter Tx (resp. the receiver Rx)
corresponding actions, instead of synchronizing directly with
the method bodies as depicted in Fig. 11.
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Parameters

int call

Inputs

Method[call]

Outputs

Return[call],

Exception k[call] ...

FIGURE 13. Pattern Remote method.

Pattern 8 (Remote method). A remote method (see Fig. 13)
can be designed as an automaton where every trace starts
by an input action on the channel Method[call], and finishes
by an output action on the channel Return[call] or one of the
channels Exception_k[call]. The input parameter call is used to
instantiate several time the method body for open use.

Methods are considered to be stateless one-shot programs,
and are invoked if needed by their environments. No infinite
loop behaviors are expected by running a method, and conse-
quently possible traces of its behavior should be constrained
by the presence of a final (implicit) state equal to the initial
one. This choice was made to guarantee that an instance of
the method body could be instantiated (called) for a limited
number of times: we cannot expect unlimited method calls in
formal design, which may be the case in real executions.

C. FAIRNESS CONDITIONS
The query language of UPPAAL utilizes a subset of CTL to
define properties. It consists of state and trace formulae. State
formulae describe individual states, whereas trace formulae
quantify over traces of the model semantics (see definitions 2
and 3). Trace formulae are classified into safety, reachability
and liveness. Safety properties state that “something bad
will never happen”. These properties are usually formulated
positively, something good is invariantly true, i.e., given φ
a state formula φ, A�φ expresses that φ should be true in
all states. Reachability states that “something expected to
happen will occur under some circumstances”, i.e., there is
a trace starting from the initial state, such that φ eventually
holds (denoted E3φ). Liveness states that “something good
will eventually happen”. Liveness could be simply expressed
by the formula A3φ. A more useful form is the leads to
property φ  ψ: whenever φ is satisfied, then eventually
the state formula ψ will be satisfied [12].

Since we are only interested in the correctness of execution
starvation-free fair traces when verifying distributed systems.
A system model in UPPAAL is usually reduced to a collection
of deadlock-free processes (specified in a NTA), and we need
to consider only those traces in which each process resumes
infinitely often. Unfair traces, in which one process always
executes while preventing the others to resume (starvation),
are ignored. Since only finite state semantics are considered,
fairness requires that some of their states are visited infinitely
often in every fair computation (especially states that should
be reached to satisfy liveness properties) [15].

By default, the fairness conditions cannot be expressed in
CTL i.e., CTL cannot express that some proposition should
eventually hold on all fair traces [14]. A common solution to
this problem is to modify the CTL semantics. Traditionally,
the semantics of CTL formulae is defined with respect to a
labeled state-transition graph M = (S,R, P ) consisting of:
a finite set of states S, a transition relation R⊆S×S, and
an assignment P :S→ 2AP of atomic propositions in AP to
states. To express fairness, the semantics M is extended by
F ⊆ 2S . A trace ofM is fair iff for each state set F ∈F , there
are infinitely many positions on it at which some state of F
appears. The new semantics is the same as that of CTL except
that trace quantifiers range over only fair traces [15].

Exercising model-checking in UPPAAL led us to reason
about fairness to guarantee liveness properties. Given that the
query language of UPPAAL does not support fair semantics,
we need to intervene at the level of the model by acting on
TAs transitions activation. We first present an extension of
CTL syntax to express fairness conditions. It is actually a
subset of CTL∗ [18]. Then, practical examples are given to
show how to constrain UPPAAL models to meet fairness.

CTL extension
The semantics S(A1..n) of NTA (Definition 3) and S(A)
of single timed automata (Definition 2) are equivalent except
the presence of composite states l̄ ∈ Ῡ in the first. Otherwise
we have always time or channel transitions in both of them.
Thence, we found the following notations on Definition 2
by assuming A to be an NTA. A trace σ derived from R
is an infinite sequence s0[a0]s1..sk[ak]sk+1... of transitions
skak 7→ sk+1 ∈R where k→∞. A transition of sa 7→ t∈R
covered by σ is written s[a]t :σ. We write s :σ when the state
s is traversed by σ. We consider infinite traces since S(A)
is assumed to be deadlock-free. The traces of S(A) com-
bine together in an infinite labeled transition tree T(S(A))
obtained by unfolding S(A) from the initial state s0. We
denote by σs any trace of T(S(A)) starting from a state
s in T(S(A)) reachable from s0. We denote by ṡ∈S the
image of s in S(A). We define by vi∞σ an infinite sequence
of monotonic natural indexes k1..kl... of states traversed by σ
such that the difference between any two successive indexes
of the sequence is variable i.e., for all kiki+1, kjkj+1 where
i6=j, ki+1− ki might be equal or different from kj+1− kj .
We write k : vi∞σ if the index k is in the sequence vi∞σ .

We have already provided the needed notations to define
our CTL extension: for any trace σ = s0[a0]s1..sk[ak]sk+1...
ofM=T(S(A)), any state s reachable inM, and any well-
formed CTL formulae φ and ψ, we consider the following
inductive semantic assertions (the original syntax and seman-
tics of CTL are given in [14], [15]); |= means “satisfy”.
Trace formulae
M, σ |= 3φ ⇔ (∃s :σ)M, s |= φ

M, σ |= �φ ⇔ (∀s :σ)M, s |= φ

M, σ |= �3φ ⇔ (∃vi∞σ )(∀k : vi∞σ )M, sk |= φ

M, σ |= 3�φ ⇔ (∃k>0)(∀j≥k, i<k)M, sj |= φ∧M, si 6|= φ
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State formulae
M, s |= A3φ ⇔ (∀σs)M, σs |= 3φ

M, s |= A�φ ⇔ (∀σs)M, σs |= �φ

M, s |= E3φ ⇔ (∃σs)M, σs |= 3φ

M, s |= E�φ ⇔ (∃σs)M, σs |= �φ

M, s |= φ ψ ⇔ M, s |= A�(φ⇒ A3ψ)

M, s |= A�3φ ⇔ (∀σs)M, σs |= �3φ

M, s |= A3�φ ⇔ (∀σs)M, σs |= 3�φ

M, s |= E�3φ ⇔ (∃σs)M, σs |= �3φ

M, s |= E3�φ ⇔ (∃σs)M, σs |= 3�φ

Note that the first five state formulae are already defined
in CTL [14], [15]. We introduce the last four formulae; they
could be read by the following statements:
• M, s |= A�3φ: for all traces σs ofM starting from s,
φ is infinitely often satisfied by an infinity of the states
traversed by σ (may be not all of them) i.e., φ is said
here to be unconditionally fair [50];

• M, s |= A3�φ: for all traces σs ofM starting from s,
φ is eventually always satisfied from a state r posterior
to s in σs;

• M, s |= E�3φ: �3φ holds only for some traces σs;
• M, s |= E3�φ: 3�φ holds only for some traces σs.

Strong, weak and eventual fairness conditions
In order to express fairness conditions using the previous
state formulae, we need to introduce the facts of enabling and
firing actions inM as state formulae, Let a ∈ R+ ∪ Σ, the
formula Enabled(a) is a state predicate asserting that a is en-
abled.M, s |=Enabled(a) iff (∃t∈S) t=R(ṡa). Fired(a) is
a state predicate asserting that a is fired.M, s |= Fired(a) iff
(∃r, σr)M, r |=Enabled(a)∧ r[a]s :σr. We writeM|=φ if
(∀s)M, s |=φ.

Definition 4. M is strongly fair for an action a iff there is no
trace σ inM in which a is infinitely often enabled by S(A)
but never infinitely often fired in σ. This statement is written
formallyM|= SF(a) where SF(a) is defined as follows.

SF(a) , A(�3Enabled(a)⇒ �3Fired(a))

Definition 5. M is weakly fair for an action a iff there is no
trace σ inM in which a is always enabled by S(A) but never
infinitely often fired in σ. This statement is written formally
M|= WF(a) where WF(a) is defined as follows.

WF(a) , A(3�Enabled(a)⇒ �3Fired(a))

We also consider the case where the action a is eventually
enabled but never fired, hence we introduce a new condition
called eventual fairness.

Definition 6. M is eventually fair for an action a iff there
is no trace σ in M in which a is occasionally enabled by
S(A) but never fired in σ. This statement is written formally
M|= EF(a) where EF(a) is defined as follows.

EF(a) , A(3Enabled(a)⇒ 3Fired(a))

M is assumed to be unconditionally fair for time actions
τ ∈R+ i.e., the axioms (ufeτ ) and (uffτ ) below are assumed
to hold inM.

(ufeτ )
M |= A�3Enabled(τ)

(uffτ )
M |= A�3Fired(τ)

Proving liveness properties under fairness conditions
A liveness formula φ ψ holds under a strongly fairM for
an action a∈Σ if the rule (sf ) is backward satisfied.

1) M |= Fired(a) ψ
2) M |= φ Enabled(a)
3) M |= A�3Enabled(a)

(sf )
M |= SF(a)⇒M |= φ ψ

Whenever it is satisfied, φ inevitably leads to traces along
which a is certainly infinitely often enabled (premises 2 and
3). SinceM is strongly fair for a and firing a inevitably leads
to ψ (premise 1), then φ ψ holds.

The formula φ  ψ holds under a weakly fairM for an
action a ∈ Σ if the rule (wf ) is backward satisfied.

1) M |= Fired(a) ψ
2) M |= φ⇒ Enabled(a)
3) M |= E3�Enabled(a)

(wf )
M |= WF(a)⇒M |= φ ψ

Whenever φ is satisfied, then the action a is enabled, which
means that in the traces where a is eventually always enabled,
φ holds permanently from the states at which a is enabled for
the first time along these traces (premises 2 and 3) i.e., in
the second premise of Rule (sf ) becomes ⇒. Since M is
weakly fair for a and firing a inevitably leads to ψ (premise
1), then φ ψ holds.

The formula φ  ψ holds under an eventually fairM for
an action a ∈ Σ if the rule (ef ) is backward satisfied.

1) M |= Fired(a) ψ
2) M |= φ Enabled(a)
3) M |= A3Enabled(a)

(ef )
M |= EF(a)⇒M |= φ ψ

If the action a is eventually enabled in some fragments
of all the traces (premise 3), then φ when satisfied will lead
inevitably to those fragments (premise 2). Since a is also fired
from those fragments and inevitably leads to ψ (premise 1),
then φ ψ holds.

We can also define rules for liveness formulae of the
form A3φ. The rule (sfA3) states that A3φ holds under
a strongly fairM for an action a∈Σ if a is infinitely often
enabled in all the traces (premise 2). Since firing a inevitably
leads to φ (premise 1), then A3φ holds.

1) M |= Fired(a) φ
2) M |= A�3Enabled(a)

(sfA3)
M |= SF(a)⇒M |= A3φ
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The rule (wfA3) states that a formula A3φ holds under a
weakly fairM for an action a∈Σ if a is eventually always
enabled in all the traces (premise 1). Since firing a inevitably
leads to φ (premise 2), then A3φ holds.

1) M |= Fired(a) φ
2) M |= A3�Enabled(a)

(wfA3)
M |= WF(a)⇒M |= A3φ

The rule (efA3) states that a formula A3φ holds under
a eventually fair M for an action a∈Σ if a is eventually
enabled in all traces over finite fragments (premise 1). Since
a will be inevitably fired from those fragments and leads to φ
(premise 2), then A3φ holds.

1) M |= Fired(a) φ
2) M |= A3Enabled(a)

(efA3)
M |= EF(a)⇒M |= A3φ

We would like to mention that our method to define these
rules were mainly inspired from [50] and the studies about
fairness conditions in the Temporal Logic of Actions (TLA),
the logic behind the TLA+ language [17], [51].

Expressing fairness in UPPAAL models
After this theoretical body, we show now how the previous
fairness conditions could be expressed in UPPAAL models.

FIGURE 14. Patterns Eventual fair (top) and Strong fair (bottom) periodic jobs
with “Out loop” bodies: updates may applied in “Periodic body”. Labels “exit”,
“go_back” and “reinitialization” are action names.

If the pattern periodic job of Fig. 14 (top) is instantiated
in more then one process without the guard a[job] <= B of
go_back, a starvation problem occurs by infinitely running
Out loop body of job while preventing the others to resume.
Therefore, A3φ and φ ψ where φ and ψ are state predi-
cates of being resp. in the locations Init and Delay cannot be
satisfied for all the processes. To bypass this problem, we
should constrain the model by an eventual fairness condition
EF(exit) on the action exit. We use for that an integer array a
(for active). Init cannot be reached if a[job] exceed a bound B
after firing repeatedly go_back. At some point, exit is fired and
a is reset to 0 by some process. Consequently, execution is
alternated fairly between all processes. If Init is reached from
Delay infinitely often for reinitialization reasons (A�3 reinit
holds), then exit is infinitely often enabled and fired, and the
periodic job is constrained implicitly by the strong fairness
condition SF(exit) (see Fig. 14, bottom).

FIGURE 15. Pattern Weak fair loop job; in some periodic activities one might
expect a “Well” state that keeps the process active while being in a default state.

If the pattern loop behavior of Fig. 15 is instantiated in
more then one process without the guard a[job] <= B on the
loop, a starvation problem occurs by reaching the state Well in
a given process, and firing always the action loop. In this case,
the model should be constrained by weak fairness WF(loop)
on the action loop. When the bound B is reached, the current
process is leaved and a is reset to 0 by another process. The
update reset_except_for(job,a) prevents resetting a[job] by the
current process job each time loop is fired.

Finally, we impart that UPPAAL ensures timed locations
(with clock invariants) to be fairly visited. This induces un-
conditionally fair timed transitions in the resulted trace tree,
which is compliant with axioms (ufeτ ) and (uffτ ). Fairness
conditions are only used to constrain the activation of channel
actions from untimed locations.

D. CASE STUDY: DESIGN PROCESS AND MEASURES
The UPPAAL models of the periodic jobs Control and Flight
resp. of GCS and Drone, are available for download2. The
models are not exhaustive but sufficiently representative to
put into practice the previous design patterns, and to verify
endogenous contracts. Our design was divided to two sub-
models Drone_Flight.xml and GCS_Control.xml and con-
strained by urgent and commited locations (when possible)
in order to reduce the state space, prevent false counterexam-
ples, and speedup model-checking.

We consider a model with two drones and one GCS. The
GCS model is multi-task and multi-call: the job Control is
instantiated twice one per connected drone; several method
calls can be made simultaneously by drones in the node
GCS. However, the drone model is mono-task and mono-
call: the job Flight is instantiated once in a drone node, and
a method cannot be invoked simultaneously several times
since only the GCS calls methods from drones, and calls are
synchronous. The network communication band is composed
of three half-duplex tracks: messages cannot transit simul-
taneously on a track regardless of their directions (GCS to
Drone or Drone to GCS). The middleware Rx receives data
from each subsystem in a circular FIFO buffer.

Using these models, we analyzed by prediction the safety
behavioral requirements of the GCS and drones when remote
communication timeouts, malicious attacks, and functional
errors occur. The properties were defined according to the
verification process detailed in Subsection VI-E. The model’s
properties took 45 mn to be verified. The model-checking
were performed using the 64 bits version 4.1.19 of UPPAAL
running on a Core i7-4710MQ machine at 2.5 GHz.

2https://github.com/mouelhis/uppaals
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E. VERIFICATION PROCESS
We opted for a verification-by-contract process making use of
the text-based BCL language [41] to define the endogenous
resilience contracts. A BCL contract C , (A : ā | G : ḡ)
is an assume/guarantee statement where ā is a vector of
assumptions and ḡ is a vector of the guarantees. Assumptions
constrains whether a specification meets the guarantees. The
BCL rationals should be as simple as possible to reason about
requirements and their dependencies. They are very useful to
decompose, make easier hard verification processes, and to
exhaustively define the formal properties.

For sake of genericity, we present BCL contracts and CTL
properties as patterns like in Subsection VI-B. We start by a
first contract on the worst-case call blocking time (WCBT)
allowed for remote method invocations.

WCBT , (A : awn | G : mcr)

awn , Always [ wireless connection is reliable ]

mcr , Everytime [ a job calls a method remotely ]
Then [ a response is received ]
Within [ x tu (time unit) ]

Contract WCBT stipulates that the guarantee on the remote
call responsiveness (mcr) is relative to the availability and
reliability of the wireless network (assumption awn). Since
awn cannot be specified in UPPAAL, it is assumed to be
always true. According to Pattern 7 and Fig. 12, this contract
can be specified for a periodic job by the following three CTL
formulae (typewritten in the query language of UPPAAL):

WCBT1 , A[] Time_In imply h[job] <= MAX_WAIT
WCBT2 , A[] Time_Out imply h[job] > MAX_WAIT
WCBT3 , Decision --> Delay

where WCBT1 is a safety property stating that always in every
trace of the job, being in the location Time_In means that a
return value is received within MAX_WAIT (h[job] is reset to 0
before the method call). Otherwise, the job response is time-
out (h[job] > MAX_WAIT): Time_Out is reached (WCBT2), and
timeout_count is decremented. The liveness property WCBT3

ensures that waiting is not infinitely blocking and the periodic
activity always happen (see Fig. 5). --> represents .

WCET , (A : hao,wcbt | G : et)

hao , Always [ hardware is reliable ]

wcbt , Always [ call blocking time satisfies WCBT ]

et , Everytime [ job periodic cycle is released ]
Then [ job terminates its periodic activity ]
Within [ p tu ]

Contract WCET is about the worst-case execution time of
periodic jobs. It stipulates that timing predictability (guaran-
tee et) of periodic executions relies on the reliability of the
embedded platform and components (battery, sensors and ac-
tuators, etc) of the drone (assumption hao) and the guarantee
of Contract WCBT (assumption wcbt). Since hao cannot be
specified, it is assumed to be always true. Pattern 7 (Fig. 12)
natively supports Contract WCET: periodic jobs have timed
locations Delay (with a clock invariant h[job] <= period) and
guard h[job] == period to exit Delay when period (the WCET
upper bound) is elapsed.

Endogenous , (A : hao,mcr | G : atr, cer, ttr)

atr , Everytime [ intrusion is detected ]
Then [ retrograded mode is activated ]
Immediately

cer , Everytime [ critical error happens ]
Then [ retrograded mode is activated ]
Immediately

ttr , Everytime [ timeout happens several times ]
Then [ retrograded mode is activated ]
Immediately

Contract Endogenous stipulates that whatever a malicious
attack, a critical error, or recurrent timeouts happen, then the
retrograde mode is activated (resp. defined by the guarantees
atr, cer and ttr). This contract can be specified for Pattern 7
(Fig. 12) by the following CTL properties.

Malicious_Attack , E<> intrusion
Critical_Error , E<> critical_error
Max_Timeouts , E<> timeout_count == 0
Endogenous , (intrusion ||

critical_error ||
timeout_count == 0) -->
Retrograded_Mode

The first three properties should be checked to ensure that
there is some traces where intrusion, critical_error, and
timeout_count == 0 hold eventually so as Endogenous is
guaranteed to be checked on real traces. If only some of them
hold, the liveness property Endogenous may hold with no
trace to check for the others which is not representative.

Jobs Flight and Control resp. of the components Drone and
GCS were checked to be deadlock-free (A[] not deadlock),
and safe according to the verification process herein. The
GCS model was verified with respect to eventual and weak
fairness constraints (see Subsection VI-C).

VII. ANALYSIS OF EXOGENOUS RESILIENCE
Exogenous resilience is relative to the drone’s presence and
operation in its ambient urban environment. Concretely, it
should be checked by simulation or by target tests on the
signals acquired from sensors and/or applied on actuators. In
order to analyze the exogenous resilience in offline, we need
ideally a virtualization of the drone in the urban environment
to have a better understanding of safety issues, and rigorously
reason about them. A 3D model of an imaginary city was
constructed for that purpose using the toolbox Blender.

This model describes a navigation scenario as depicted in
Section III and Fig. 1. A scenario is an ordered sequence of
frames, the Blender’s fundamental time unit, that can reach
fractions of a second depending on the frame rate. Since it is
practically impossible to meticulously define the animations
frame per frame, interpolation is applied to solve this issue.
Blender allows the definition of pertinent positions or keys
(3D coordinates) for objects at specific frames along which
it creates the 3D animation using interpolation algorithms.
Three different interpolations are possible: constant, linear
and Bézier. We use the Bézier interpolation since it produces
smooth and more realistic animations.
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FIGURE 16. Path planning; lazy planning (left): the first planned path p1p2 of
the drone between p1 and the sub-target position p2 is computed in a lazy way
and leads to a crash with an obstacle building; corrected planning (right): GCS
recompute a new path p1p3p2 that passes over the building to avoid the crash.

As stated in Subsection V-C, GCS has the role to control
drone missions remotely, and to performs all heavy compu-
tations likely to consume energy, vital for flights. Since it has
a better awareness of the urban environment, GCS performs
the important operation of path planning. By considering the
current position of the drone, the destination and the urban
cartography, GCS computes by iterative correction the path
that the drone needs to follow until the destination. Fig. 16
illustrates the planning process on a sub-path between two
positions. After finding the next position p2 to be reached,
GCS acts first lazily and considers the simplest path p1p2

(Fig. 16, left). Next, it discovers (by anticipated verification)
that p1p2 intersects with a building (only permanent obstacles
are considered). Finally, it recomputes the path by adding an
intermediate position p3 above the building (Fig. 16, right).

Exogenous , (A : ok, oaw | G : cf,da)

ok , Always [ obstacles are buildings ]

oaw , Always [ GCS is aware of obstacles ]

cf , Always [ collisions are avoided ]

da , Always [ drone altitude < MA meters ]

Contract Exogenous states that a flight path is collision-
free (guarantee cf), and the altitude coordinates of the path
positions are always bounded by a maximum altitude MA
fixed in meters (guarantee da). We assume that obstacles are
restricted to buildings, and GCS is aware of their positions
and dimensions (assumptions ok and oaw). The Blender
built-in plugin CAT is used to specify and verify the LTL
properties of the iterative path planning process. We use LTL
since the 3D animations on which the properties are checked
are one-line frame sequences.

The above contract can be simply translated to the follow-
ing LTL property pattern:

Safe(p̄) , �

[ ∧
pi∈p̄,B∈B

(pi 6∈ B ∧ pi.altitude < MA)

]
where p̄ is the path, and B is the set of building obstacles Bi
defined in the 3D city model as parallelepiped objects. Video
animations of lazy and corrected flight paths are available
under the following links along with CAT windows to show
whether the LTL properties are met or not:
• lazy planning: https://youtu.be/MdaZhvlz_l8;
• corrected planning: https://youtu.be/5cW6PBzoIj8.

VIII. CONCLUSION DISCUSSIONS AND PERSPECTIVES
We are currently facing a growth in systems complexity, with
increasingly advanced technologies. CPSs, as part of Industry
4.0, are subject to this technological evolution. Embedded
computers in CPSs perform complex tasks to control sophis-
ticated physical processes in environments, that are becoming
more and more ambient, open and hazardous. In addition,
CPSs are required to be resilient to errors and disturbances,
and able to recover with the minimum costs. Modeling such
systems is difficult especially in critical contexts with regards
to their hardware, software and networking architectures, and
event unpredictability of their environments.

The contributions of this article suit this context. They are
articulated around a predictive approach to analyze resilience
in an urban drone rescue system with ground remote control.
It is based on a distributed object-oriented component-based
software architecture. The structure of an object-oriented
component, from our viewpoint, is new compared to the
CCM specifications [42] (resembling most to ours) and other
definitions [52], in which periodic jobs, data listeners, and
references to component instances are implicit features. We
dealt with endogenous and exogenous resilience aspects of
the case study at both design and verification. Endogenous
resilience is reflected in the system capability of processing
internal functional and timing faults, and resisting against
cyberattacks. Exogenous resilience relies on the system’s
ability to safely operate in its ambient environment.

To this effect, we have defined a formal methodology to
predict the system’s behavior by abstraction, and to verify
its resilience properties. We used UPPAAL networks of timed
automata to model the distributed interoperability between
subsystems, and to analyze its endogenous resilience under
an abstract networking model. In order to show the UPPAAL
modeling approach in an elegant way, and to avoid hindering
the body of the article with the final big models, we opted
for the presentation of generic design patterns for the main
software and middleware units of the system’s component
architecture (see Fig. 7). Model-checking in UPPAAL led us
to also reason about fairness conditions to validate liveness
properties. Under this particular scope, we have considered
a subset of the CTL∗ [18] syntax as an extension of CTL to
express strong, weak, and eventual fairness. Strong and weak
fairness conditions were well studied for different kinds of
temporal logics [17], [18], [50]. The novelty in this article
includes the introduction of the eventual fairness condition,
the rules to prove liveness properties, and the style by which
the formal material was presented.

Our design was mainly shaped to properly tackle a key
problem of CPSs which comes down to this question: how
to explicitly analyze the endogenous interactive behavior of
the system parts early during the design phase to ensure
high integrity in safety-critical scenarios? By focusing on
this key issue, we are solving one of the major problems of
classic reactive approaches widely adopted in critical systems
industry, which to our knowledge still has no complete and
rigorous tooled solutions (see Section I).
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Regarding the choice of UPPAAL, we claim that this tool
is the best suited to our time constrained predictive analysis
of CPSs endogenous resilience for the following reasons: 1)
its specification language, based on TAs, is GUI-powered and
adequate to design time-aware models; 2) it supports a subset
of the C language to specify state transition updates on clocks
and discrete variables, and to pre-chew implementation; 3)
its query language used to define properties is based on CTL,
which is a branching time logic quantifying over computation
trees rather than individual traces; 4) it also provides a GUI
for simulation and counterexample analysis; 5) it supports
statistical model-checking (UPPAAL-SCM) [53].

Other free toolboxes comparable to UPPAAL are available.
To the best of our knowledge, none of them combine all the
above features. In this paragraph, we quote two tools that we
think are the closest to UPPAAL. The first tool is PAT (Pattern
Analysis Toolkit)3: an enhanced model-checker for real-time
and concurrent systems. Model-checking under PAT is based
on LTL, which is less expressive than CTL. Counterexamples
can be graphically visualized, but unfolded in long traces
if the model is complex. Under UPPAAL, counterexamples
simulation is more user-friendly since traces can be animated
directly on TAs. The second is TAPAAL4: an efficient model-
checker of timed-arc Petri nets. Like UPPAAL, it offers a
GUI for design, simulation, and CTL-based model-checking.
However, besides the fact that design using timed-arc Petri
nets is less intuitive compared to TAs, TAPPAL has no back-
ground language to specify transition behaviors over discrete
variables, which is useful for implementation purposes.

Powerful commercial proof tools are also available for in-
dustrial safety-critical applications: Prover Certifier (Prover
Technology AB), Frama-C (CEA), Modeling Rules Verifier
and Optimizer (SafeRiver), Systerel Smart Solver (Systerel),
etc. These tools make use of inductive proof engines based
on efficient symbolic SAT/SMT solvers: MathSAT5, CVC46,
Glucose7, Lingeling8, etc. This work could be extended by
introducing a complete formal design and verification frame-
work for resilience analysis based on the above solvers.

Our predictive formal analysis of exogenous resilience is
embodied within a virtual modern city 3D (Blender) model.
To meet the exogenous contracts, flight paths are synthesized
by repetitive LTL model-checking using the CAT tool (a
Blender plugin). The goal behind this virtualization is that
the GCS follows a similar approach when computing flight
paths for drones on real city 3D maps. We deliberately did
not give more materials about this part in Section VII because
what was left is restricted to useless implementation details.
Unfortunately, we are not able to share the source code of the
CAT plugin and the Blender 3D models due to the intellectual
property clauses promulgated by CEA.

3https://pat.comp.nus.edu.sg
4http://www.tapaal.net
5http://mathsat.fbk.eu/
6http://cvc4.cs.stanford.edu/web/
7http://www.labri.fr/perso/lsimon/glucose/
8http://fmv.jku.at/lingeling/

We see three main directions for future works. The first
is to introduce a top-down component-based theory of our
approach. One possible trail is to revisit and question the
theory of timed I/O automata in [54], particularly the “input-
enabled” hypothesis (all input actions are enabled from any
location in an I/O timed automaton). This assumption is
contradictory with our approach and quite inconsistent, from
our perspective, with object-oriented design. The second is to
compare, with statistical model-checking, existing network
protocols and UAV fleet models using UPPAAL-SCM, using
our predictive analysis approach. The third is prototyping real
drones based on the software architecture of Fig. 7 and the
implementation approach discussed in [10].
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