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Mechanics of an adhesive tape in a zero degree
peel test: effect of large deformation and material
nonlinearity†

Chung-Yuen Hui, *a Zezhou Liu, a Helen Minsky, b Costantino Creton b

and Matteo Ciccotti b

The common pressure sensitive adhesive (PSA) tape is a composite consisting of a stiff backing layer and

a soft adhesive layer. A simple and common way to test how adhesive tapes respond to large shear

deformations is the zero degree peel test. Because the backing is very stiff compared to the adhesive

layer, the region where the adhesive layer is subjected to large shear can be hundreds of times its

thickness. We use a large deformation hyperelastic model to study the stress and deformation fields in

the adhesive layer in this test. We present a closed-form solution for the stress field in the adhesive layer

and use this solution to determine how load is transferred from the backing layer to the adhesive.

Our analytical model is then compared with finite element results, and except for a small region near

the peel front, the predicted stress and deformation agree well with the finite element model.

Interestingly, we find very different results from the classical linear theory established by Kaelble. In

particular for large deformations, our analysis shows that the lateral stresses (parallel to the rigid

substrate) are much larger than the shear stress in the adhesive layer. The discrepancy in the stress state

and the deformation state with the linear theory is particularly large near the peel front, which we study

with a finite element model. These new results will be very useful to interpret experiments and in

particular to identify the high stress regions where failure is likely to initiate in zero-degree peel tests

also called shear resistance tests in the PSA industry.

1 Introduction

A common way of studying the adhesive properties of pressure
sensitive adhesives (PSAs) is the tack test, where a flat steel
indenter is retracted after being pressed in contact with the
surface of a thin adhesive layer.2–6 The force versus indenter
displacement curve in this test provides important insights into
the failure mechanism under predominantly hydrostatic
tension.7,8 However, in applications, PSAs are often used as
lap joints where shear deformation is dominant. In industry,
the standard test for shear strength is to conduct a load-
controlled zero degree peel test9,10 to measure the time needed
to detach a standardized area of the adhesive tape from a stiff
substrate under a fixed moderate load (e.g. by a hanging weight,
schematics shown in Fig. 1).11,12 Alternatively PSA can be
debonded in shear in displacement controlled mode as for

Fig. 1 Schematics of a zero degree peel test. (a) L is the bond length
and is assumed to be infinite in extent. The adhesive and backing
thicknesses are represented as h and hb respectively. The applied
force F is usually provided by a hanging weight. (b) The overhanging adhesive
surface up to the peel front (x1 o 0, x2 = 0) can be seen as an interface
crack. Region 1 is close to the peel front, and region 2 occupies the rest of
the bond length except a small region near the right edge, which we named
region 3. In this work, region 3 does not exist since L is considered to
be infinite.
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example proposed by Sosson et al.13 In this method, a soft
thin adhesive layer is sheared between a hemispherical glass
indenter and a flat glass substrate. Nevertheless, the standard
load controlled test is widely accepted and commonly used
because of its practical relevance.

There is a large body of literature concerned with the
mechanics of the peel adhesion test including peeling of hetero-
geneous films14 and failure of lap shear joints,15 and here
we focus on the zero degree peel test. A well-known analysis of
the peel test for all peel angles was given by Kaelble in 1960.1

In his analysis, the backing layer is modeled as an elastic plate.
Since the deformation of the backing layer is assumed to be
small, the bending and in-plane stresses are decoupled. The
tension in the backing layer is coupled to the shear stress of the
adhesive layer by the shear lag model.16,17 Kaelble’s result for
the zero degree peel test will be discussed in more detail below.
More recently, the zero degree peel test has been studied by
several research groups, with different emphasis. For example,
Ponce et al.18 and Collino et al.19 studied the effect of interfacial
friction on peeling. The mechanics of their analysis is based on a
simplified version of Kaelble’s peel model – they use a shear lag
model to study the shear stress in the adhesive layer and ignore
the bending of the backing layer which induces a normal stress
concentration at the peel front. Cohen et al.20 studied failure of a
thin adhesive pad under loading parallel to the substrate.
Mojdehi et al.17 used the same shear-lag approach to study the
effect of compliance on the fracture mechanics of the zero
degree peel test. Their analysis reconfirms the classical fracture
mechanics’ result that the compliance of the load strain should
not affect the bond strength, whereas if the area-to-compliance
ratio is used as a fracture parameter, it directly influences the
bond strength.18,21–25

Two key assumptions in the standard analysis of the zero
degree peel adhesion test require further study. The first assump-
tion is that the deformation of the adhesive layer is sufficiently
small so that it can be modeled as a linear elastic solid. However,
in practice, PSAs are only lightly cross-linked to provide creep
resistance and they are thus very soft.26 A typical nominal stress
versus stretch behavior is shown in Fig. 2. For small strains, the
curve is linear; at larger strains, the material softens, as indicated
by a decrease in tangent modulus; finally, at high strains, the
adhesive hardens. Although extensive investigations of unloading
of PSAs have rarely been published, most of the deformation is
reversible and elastic although it is strain rate dependent.27,28

Given that in a zero degree peel test, the nominal shear
strain of the adhesive layer can become as high as 1000%, the
assumption of linear elasticity cannot possibly hold. In this
work, we will show that large deformation induces a lateral
stress (parallel to the rigid substrate) that is much larger than
the shear stress in the adhesive.

Local failure mechanisms (cohesive failure or interfacial
failure or a mixture of both, cavitation or interfacial debonding)
are sensitive to the stress state at the peel front and this
sensitivity brings up another key assumption: that is, the use
of a structural mechanics model to analyze the stress and
deformation states near the peel front. Since the peel front is

the tip of an interface crack, the stress state is highly concen-
trated and three dimensional. For example, if the adhesive was
modeled as linearly elastic, then in a full 3D analysis the stress
will have an inverse square root singularity as the peel front is
approached.29 The peel test for a zero thickness adhesive layer
using the fracture mechanics approach was studied in detail
by Thouless and Yang.30 In their analysis, the peel front is a
mixed mode crack characterized by mode I and mode II stress
intensity factors, which can be related to the applied peel force
for a given peel angle. However, their results are not directly
applicable to PSAs because (1) they assume small strain linear
elasticity; (2) their adhesive layer thickness is zero, whereas in
our case the adhesive layer thickness is comparable to the
backing layer thickness. A specific difficulty is that in the linear
theory, the mode-I stress intensity factor becomes negative as
the peel angle is reduced to zero. It is difficult to imagine how
the interface can fail under infinite compression. In summary,
a plate model (linear or nonlinear) cannot accurately capture
the stress state at the peel front. Finally, most structural models
in the literature assume that the stress and deformation in the
adhesive layer are independent of the thickness coordinate
(x2 in Fig. 1). Although this assumption is reasonable at
distances far away from the peel front, it breaks down as the
peel front is approached. Indeed, our analysis shows that the
normal stress on the interface between the adhesive/substrate
and the adhesive/backing interface can have the opposite sign.

The goal of this study is to develop a model for the zero
degree peel test without the usual assumption of small strains
and linear elasticity. Thus, the adhesive can sustain arbitrarily
large deformations. In addition, our material model also
captures the type of nonlinear elastic behavior that is exhibited
by PSAs. Our focus is on adhesive tapes with backing much
stiffer than the adhesive. This feature implies that the region of
the tape that is supporting shear can be much greater than the
thickness of the adhesive layer. In this work we assume that
the bond length L is infinite, that is, it is long in comparison
with the load transfer length. Fig. 1b shows that the tape can be

Fig. 2 Nominal stress P (normalizes by the shear modulus m) versus
stretch ratio l for Yeoh’s material with three terms C1 = 0.5m, C2 = �0.0237m
and C3 = 0.00166m.
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divided into three regions: region 1 is close to the peel front,
where there is a large stress concentration and where a non-
linear finite element (FE) analysis is necessary. The length of
region 1 is on the order of several adhesive layer thicknesses
(this will be confirmed by FE analysis). Region 2 occupies the
rest of the bonded tape, except for a small region near the right
edge, which we called region 3. In this work, region 3 does not
exist since L is considered to be infinite. The stresses in region
2 can still be very large, and are not necessarily dominated by
shear. We determine the stresses and strains in this region in a
closed form using a combination of asymptotic analysis and
a nonlinear shear lag model. Our result is then verified using a
nonlinear finite element model (FEM).

2 Model and geometry

The adhesive tape is modeled as a composite consisting of
a stiff backing bonded to the soft adhesive (cf. Fig. 1). The
thickness of the backing and the adhesive layer are assumed to
be uniform and denoted by hb and h respectively. A constant
force F is applied to the tape at one end (e.g. by a hanging
weight). A segment of the tape, of length L, is adhered to a flat
glass substrate, whereas the rest of the tape hangs over the
edge. In practice, the bond length L can be thousands of times
longer than the tape thickness h + hb.

The left bonded edge of the substrate coincides with the
origin of a fixed coordinate system (x1, x2). The portion of tape
in contact with the substrate occupies x1 A [0,L]. The peel arm
is the tape that is not in contact with the substrate. Since
the width of the tape b is much greater than its thickness,
we assume plane strain deformation where the out-of-plane
displacement u3 is zero and the in-plane displacements ua

(a = 1, 2) depend only on the in-plane coordinates (x1, x2). Since
the applied force is uniformly distributed across its width,
the appropriate force measured in a plane strain analysis is
F/b which has the unit of force per unit length. Before load is
applied, the tape is assumed to be stress free and a material
point in the tape is identified by its coordinates (x1, x2). After
load is applied, the material point occupies (y1, y2) with respect
to the same coordinate system, thus ya = xa + ua.

To motivate our model, we note that the typical shear
modulus of a pressure-sensitive-adhesive is less than 0.1 MPa,
whereas the Young’s modulus of the backing layer is on the
order of a few GPa.31 This large difference results in a very long
portion of the adhesive that is carrying load, which is named
the load transfer length lLT (lLT = N for a backing layer that is
infinitely stiff). Further, since the modulus of the substrate is
even larger than the backing, it is modeled as rigid. For a good
general purpose adhesive such as an office tape, the nominal
shear strain of the adhesive layer can approach or exceed 1000
percent before slip or failure occurs,32–35 so any realistic model
of this layer has to consider large deformation.

The contact region [0,L] can be divided into three distinct
regions. Since the substrate is rigid, the peel front at x1 = x2= 0
can be viewed as the tip of an interface crack (see Fig. 1b). Near

this edge, the stresses and deformation are dominated by the
presence of the crack. This region of high stress is called region
1 and occupies x1 A (�d,d), where d is on the order of the tape
thickness. Likewise, the right edge at x1 = L, x2 = 0 is a corner,
but since the bond length is very long the load transmitted to
this corner is small; furthermore, the strength of the singularity
at the corner is lower than that at the crack tip (region 3
consists of the material near this corner). In a typical test,
L Z lLT c h, so most of the tape that is in contact occupies the
region in between the two edges (region 2). However, since the
adhesive layer is very thin in comparison to lLT, the adhesive
within x1 A (d,lLT) can be subjected to very large shear strain, on
the order of 1000%. In most models of zero degree peel, the
adhesive in this region is assumed to be under a state of pure
shear stress, where other stress components are neglected since
they are assumed to be small. Although this approximation is
valid for small deformation, it breaks down when the deforma-
tion is large, as we will demonstrate below. In the following, we
shall assume L c lLT (L/lLT - N) so we can ignore the right
edge or region 3 in our analysis.

The nominal stress P versus stretch ratio l of a typical
adhesive in a uniaxial test can be found in Chopin et al.32

and Deplace et al.,36 and is represented sufficiently well by a
three-term Yeoh’s hyperelastic model in Fig. 2. It should be
noted that there is no universally accepted model for the
constitutive behavior of adhesives, here we use the simplest
model that can capture many of the key features observed in a
tensile test.36 These are: for small stretch ratios, the stress
versus stretch is approximately linear; the slope of the stress
versus stretch curve decreases (softening) at immediate
stretches; at large stretches the stress increases rapidly as the
adhesive strain hardens.

The strain energy density function F of Yeoh’s material has
the form:

F ¼
XN
k¼1

Ck I1 � 3ð Þk; (1a)

where N is the number of terms, Ck are the material constants
with units of stress and I1 is the trace of the right Cauchy–Green
tensor, i.e.,

I1 = tr(FTF), (1b)

where F is the deformation gradient tensor and the superscript
T denotes its transpose. Here the material is assumed to be
incompressible. In particular, 2C1 = m is the small strain shear
modulus. Note that for C2 = C3 = 0, Yeoh’s model reduces to the
neo-Hookean model. However, the normalized nominal stress
of a neo-Hookean material in a uniaxial test does not exhibit
softening and hardening behaviors (see the ESI† for details),
and hence is not expected to capture real adhesive behavior
such as those studied in Chopin et al.32 or Deplace et al.36

2.1 Load transfer length lLT

The variation of shear stresses along the adhesive layer can be
modeled using the well-known shear-lag model. Denote the
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shear stress on the interface between the backing and the
adhesive by t and the horizontal displacement of the backing
layer by ub(x1), i.e., it is uniform in the thickness direction.
In the shear-lag model, t is in general a nonlinear function of
the average shear strain �g � ub/h. Here we have used the usual
assumption that the backing layer is under uniaxial tension
and ub(x1) = u(x1,x2 = h), that is, displacements are continuous
across the backing/adhesive interface. In the shear-lag model,

Eb
�hbh

m
d2�g
dx12

¼ t̂ð�gÞ; (2)

where Eb* is the plane strain modulus of the backing and t̂(�g) �
t(�g)/m is the normalized shear stress. The quantity

lLT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb
�hbh=m

p
(3)

is defined as the load transfer length. Indeed, if we normalize
distance by

Z = x1/lLT, (4)

then (2) becomes

d2�g
dZ2
¼ t̂ð�gÞ: (5)

Note lLT=h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb
�hb=mh

p
and since hb is typically on the same

order as h, lLT=h �
ffiffiffiffiffiffiffiffiffiffiffiffi
Eb
�=m

p
. This means that the load transfer

length lLT is hundreds of times the adhesive thickness. Note
that in order to use the shear-lag model, we have assumed that
the normal traction on the backing/adhesive interface is zero,
and this will be justified below.

2.2 Analysis of region 2

We first give an approximate analysis of the stress state in region 2.
Our analysis is verified by a nonlinear finite element model. Our
idea is based on the fact that the modulus of the backing layer is at
least 4 orders of magnitude higher than the adhesive, as a result, the
variation of stress/deformation along the x1 direction must be very
slow. Hence the local stress versus strain relation can be determined
by assuming that the backing layer is rigid (this will be verified
below). Our analysis below is based on finite strain theory.

The symmetric true stress tensor s in the adhesive layer is
related to the deformation gradient tensor F by

s ¼ �pIþ 2
dF
dI1

B; (6)

where B = FFT is the left Cauchy–Green tensor, p is the Lagrange
multiplier or pressure needed to enforce incompressibility and
I is the identity tensor. In plane strain, F is:

F ¼

1þ u1;1 u1;2 0

u2;1 1þ u2;2 0

0 0 1

2
6664

3
7775; (7)

where ua,o � qua/qxo (a,o = 1, 2). The in-plane components of B
can be calculated using (7), they are:

B11 = (1 + u1,1)2 + (u1,2)2 4 0, (8a)

B12 = B21 = (1 + u1,1)u2,1 + (1 + u2,2)u1,2, (8b)

B22 = (u2,1)2 + (1 + u2,2)2, (8c)

Also, I1 is

I1 = (1 + u1,1)2 + (u2,1)2 + (1 + u2,2)2 + (u1,2)2 + 1. (9)

Define the shear strain g � u1,2 (which corresponds to the
average shear strain �g in the previous section). For large shear
strain, g c 1, we assume

|u2,1|, |u1,1| |u2,2| { 1 { g. (10)

Eqn (8) and (10) imply that

B11 = (1 + u1,1)2 + (u1,2)2 E g2, (11a)

B12 = (1 + u1,1)u2,1 + (1 + u2,2)u1,2 E g(1 + u2,2). (11b)

Since the material is incompressible,

detB = det(FFT) = detFdetFT = 1 ) B11B22 � (B12)2 = 1.
(12)

Eqn (12) implies that

B22 ¼
B12ð Þ2 þ 1

B11
: (13a)

Substituting (11a) and (11b) into (13a) results in

B22 E (1 + u2,2)2. (13b)

Substituting (13b) and (11a, b) into (12), the incompressibility
condition (12) can be written as:

u1,1 + u2,2 E 0. (14)

consistent with our expectations that all normal strains are
small as long as the adhesive is well-bonded to the glass
substrate. Since the upper surface of the backing layer is
exposed to air, we expect the normal stress t22 to vanish inside
region 2. By (6), this condition requires

p = mf(I1)B22, (15a)

where mf(I1) � 2dF/dI1. Substituting (15a) into (6), we find

t11 = mf(I1)(B11 � B22). (15b)

Substituting (13b) and (11a) into (15b), we find

t11 E mf(I1)g2. (15c)

Finally, (6) and (11b) imply that

t12 = mf(I1)B12 E mf(I1)g. (15d)

Note

I1 � 3 E g2, (15e)

so f (I1) is a function of the shear strain g.
Our analysis expresses all the true stress components as

functions of the shear strain. Eqn (15c) and (15d) show that,
for large shear strains, the dominant stress is t11 – not t12.
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Indeed, the ratio of t12/t11 E g�1 vanishes for large shear strain.
Thus, the order of the in-plane true stress is: |t11| c |t12| c

|t22| E 0. Note that the equilibrium equations are satisfied if
the shear strain is independent of the position, i.e., the backing
layer is rigid.

2.3 Relation between zero degree peel force and stress in the
adhesive layer

Having established that the local true stresses are related to the
strains by the simple relationships (15c) and (15d), we are in
a position to study load diffusion using the shear lag model.
This will allow us to relate the shear strain g to the peel force.
Eqn (5) is nonlinear, but it can be solved exactly by making g the
independent variable and Z the dependent variable. An exact
solution can be found for any incompressible hyperelastic
model where the strain energy density function depends only
on I1. Here we report the result for the special case of Yeoh’s

material where f I1ð Þ ¼ 1þ 4C2

m
g2 þ 6C3

m
g4

� �
:

ZðgÞ ¼ x1

lLT
¼ ln

g0
g

����
����� 1

2
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2C2

m
g02 þ

2C3

m
g04

r
þ C2

m
g0

2 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2C2

m
g2 þ 2C3

m
g4

r
þ C2

m
g2 þ 1

2
6664

3
7775;

(16a)

where g0 is the as yet unknown maximum shear strain at the
origin. Details of the derivation can be found in the ESI.†
Eqn (16a) dictates how the shear strain in the adhesive layer
varies with position. Eqn (16a) can be solved to yield the shear
strain g as a function of normalized position Z = x1/lLT, i.e.,

g2 ¼ 2e�2Z

A g0ð Þ 1� 2C2

mA g0ð Þ
e�2Z þ e�4Z

A2 g0ð Þ
C2

m

� �2

�2C3

m

" #( ); (16b)

where A g0ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0�4 þ

2C2

m
g0�2 þ

2C3

m

r
þ C2

m
þ g0

�2 (see the

ESI†). Note that the shear strain decays exponentially fast with
characteristic length equal to the load transfer length. Since
the stresses are related to the shear strains by (15c) and (15d),
they also decay exponentially fast away from the peel front.

The maximum shear strain g0 can be related to the peel force
F/b, which is the integral of the shear stress along the adhesive/
backing interface. The derivation of this relation is given in the
ESI,† for a three-term Yeoh’s solid, it is

F=b ¼ �m h

ffiffiffiffiffiffiffiffiffiffiffiffi
Eb
�hb
mh

s
|fflfflfflfflffl{zfflfflfflfflffl}

lLT

g0j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2C2

m
g0j j2þ

2C3

m
g0j j4

s
: (17)

The force is negative since it points in the negative x1

direction. Eqn (17) can be solved exactly to determine g0 in
terms of F, and the solution is:37

g0j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ s2 �

C2

3C3

r
; (18a)

where

s1 ¼ rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ q3

p� �1=3
; (18b)

s2 ¼ r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ q3

p� �1=3
; (18c)

r ¼ m
4C3

C2

3C3
þ F=bð Þ2

m2lLT2

" #
� C2

3C3

� �3

; (18d)

q ¼ m
6C3
� C2

3C3

� �2

: (18e)

Eqn (18a)–(18e) show that a nonlinear relation exists
between the maximum shear strain and the peel force. Finally,
the shear stress t12 and the lateral normal stress t11 in the
adhesive layer can be obtained in a closed form by substituting
(16a), (16b) and (18a)–(18e) into (15c) and (15d). In the limit of
small strains, the solution mentioned above reduces to the
result of Kaelble1 by formally setting C2 = C3 = 0. For this case,
the maximum shear strain g0 is directly proportional to the
force. Fig. 3 plots the maximum shear strain g0 versus the
normalized peel force %F � (F/b)/mlLT determined by eqn (17).
The linear theory of Kaelble is also shown in the same figure
(dashed line) for comparison. For large deformation, the linear
theory considerably underestimates the force at the same strain
g0 due to strain hardening. It is interesting to note that the
linear theory overestimates the force for shear strains between
�2 and �4, and this is due to the effect of strain softening. We
emphasize that the qualitative behavior of the nonlinear
solution holds regardless of the choice of parameters chosen
for the Yeoh model. In the ESI,† we plot two other sets of
parameters to justify this statement.

Fig. 4 plots the maximum normalized shear �tmax
12 � tmax

12 /m
and the normal stress �tmax

11 � tmax
11 /m against the normalized peel

force (solid lines). The linear theory of Kaelble is plotted on the
same figure (dashed lines) for comparison. For the shear stress,

Fig. 3 Normalized peel force %F versus maximum shear strain g0 at the peel
front. Nonlinear theory and linear theory (Kaelble) predictions, for various
%F, are plotted as solid and dashed lines respectively.
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the linear theory predicts a slope of one. However, the non-
linear theory shows that the maximum shear stresses increase
faster with increasing peel force. Indeed, eqn (17) shows that in
the limit where the shear strain is sufficiently large so that

1 þ 2C2

m
g0j j2 þ

2C3

m
g0j j4 �

2C3

m
g0j j4, that is, when strain hard-

ening dominates, F=b � �mlLT
ffiffiffiffiffiffiffiffi
2C3

m

r
g0j j3. In particular, note

that the linear theory assumes t11 = 0, whereas the lateral
normal stress is much larger than the shear stress at large
deformation. This conclusion is always valid and is indepen-
dent of the hyperelastic model. Indeed, equations ((15c) and
(15d)) indicate that t11 E t12g for large shear strain.

3 Finite element (FE) analysis

The finite element model and the mesh strategy are shown
schematically in Fig. 5 and implemented in a commercial FEM
software, ABAQUSs. The adhesive is modeled by a three-term
Yeoh’s material with C1/m = 0.5, C2/m = �0.0237 and C3/m =
0.00166, where m = 2C1 is the small strain shear modulus
(Fig. 2). The backing layer is modeled as a linear elastic solid
with Young’s modulus, Eb = 30 000m, and Poisson’s ratio, n = 0.3.
In the simulation, the overlap length L = 1000h is approximately
5 times the load transfer length lLT, and the overhanging length is
20h. The initial thickness of the backing hb is considered to be 2h
(which is representative of typical tapes31). In this FE model, we
normalize all distances by the initial thickness of the adhesive h
and all stress quantities by the small strain shear modulus of the
adhesive, m.

The displacements on the adhesive/substrate interface are
fixed to be zero. The constant force F/b is mimicked by a hori-
zontal traction t acting on the left end of the backing, and the
integral of this traction over the backing’s end in the current
configuration is maintained to be equal to F/b. To balance the
accuracy and efficiency of the computation, we choose a very
fine mesh near the origin in the adhesive, while far away the

element size increases and is about 0.2h near the end. Hybrid
plane strain elements CPE4H and CPE3H are used to simulate
the incompressibility of the adhesive. Our convergence test
shows that further refinement of the mesh does not affect the
FE results (except the first few elements near the origin where
there is a singularity).

3.1 Comparison between theory and a FEM

For a given force F, (16) and (18) allow us to obtain the shear
strain distribution along the adhesive/backing interface.
To compare with the FEM result, we set

g ¼ uFE1 �x1; �x2 ¼ 1ð Þ
h

; (19)

where %x1 = x1/h, %x2 = x2/h and uFE
1 (%x1, %x2 = 1) is the horizontal

displacement at the adhesive/backing interface extracted from
the FEM results. Fig. 6 plots the shear strain g as a function of
the normalized position %x1. The solid lines are the analytic
solutions given by eqn (16) and (18), and the FEM results are
shown as symbols for different values of normalized peel force
%F. This comparison demonstrates that our analytic solution
matches the FEM results extremely well. Also, Fig. 6 shows the
exponential decay in the shear strain distribution.

In our analytical model, the stresses in the adhesive layer are
assumed to be approximately independent of x2. Eqn (16), (18)
and (15d) allow us to express the interfacial true shear stress
between the adhesive layer and the substrate as a function of
normalized position %x1; these results are plotted in Fig. 7 for
different values of the normalized force %F. The finite element
results (true stress, symbols) are also plotted. In order to
compare results with different peel forces in one plot, we divide
�t12 and �t11 by �tmax

12 and �tmax
11 respectively, where �tmax

12 and
�tmax

11 are the maximum values of these normalized stresses
evaluated at the origin using our analytic solution (see Fig. 4).
Here it is important to remember that �tmax

12 and �tmax
11 depend on

the peel force nonlinearly (see Fig. 4), hence the actual stresses
increase rapidly with the peel force. Again, the finite element
result agrees very well with the analytical model as long as %x1 is
in region 2. The insets in Fig. 7a–c show that our analytical
model breaks down in a region about 3 times the thickness of
the adhesive tape. Indeed, our result shows that the analytical

Fig. 4 Normalized peel force %F versus maximum normalized shear
�tmax

12 (solid blue line) and lateral normal stress �tmax
11 (dashed–dotted red

line). The linear theory of Kaelble is plotted as dashed and dotted lines.
Note that the linear theory assumes t11 = 0.

Fig. 5 Schematic of a finite element model and mesh strategy. The red
and blue filled rectangles represent the backing layer and adhesive layer
respectively, and the rigid substrate is modeled by the fixed displacement
boundary condition.
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model is surprisingly good at larger deformations, for example,
for %F r �2.92, both the shear and normal stress agree reason-
ably well with the finite element result at distances of %x1 Z 3h.
Finally, our finite element result in Fig. 7c confirms that the
normal stress t22 is indeed close to zero in region 2.

Fig. S1 of the ESI† plots the FEM stresses on the adhesive/
backing interface. As expected, these stresses are practically the
same in region 2 and agree well with our analytical model.

3.2 Region 1: crack tip field

In this section we focus on region 1, where the stresses and
strains are dominated by the presence of the interface crack.
We study the stress field near the crack tip using the FEM.
In particular, we plot the stresses along the adhesive/backing
and adhesive/substrate interfaces. Fig. 8a shows that the
normal stress �t22 oscillates near the peel front due to the localized
bending of the backing layer. Here we note that the results along

Fig. 6 Shear strain g plotted versus %x1. Analytic solutions and FEM results are plotted as lines and symbols respectively: (a) linear–linear plot and
(b) log–linear plot.

Fig. 7 True stress along the adhesive/substrate interface with different applied loads. Analytic solutions and FEM results are plotted as lines and symbols
for different applied forces, i.e., %F = �0.58, �2.92, �5.84 and �11.68 respectively. The true stresses near the origin are plotted in the insets: (a) �t12/�tmax

12 ,
(b) �t11/�t

max
11 , and (c) �t22.
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both interfaces are plotted against the deformed configuration.
Note that on the adhesive/substrate interface, there is no
difference between deformed and undeformed coordinates,
i.e., xa = ya, since the substrate is rigid. However, there are
significant differences between these two configurations
along the adhesive backing interface, as material points are
unconstrained – this is why the horizontal axis in Fig. 8b is
labeled as %y1 = y1/h. To highlight this difference, the profiles of
the adhesive and backing are plotted in the bottom of Fig. 8b,
and we pick four material points (%x1 = �1, 0, 1, and 2, %x2 = 1)
and their deformed coordinates are also indicated. Also, Fig. 8b
shows that when the deformation is large, the adhesive in front
of the crack deforms severely. Due to the complexity of local
geometry and effect of nonlinear elasticity, the stress fields
in the adhesive layer near the adhesive/backing interface are
very complicated, and this region is shaded in Fig. 8b. It is
interesting to note that �t22 along the adhesive/substrate inter-
face changes rapidly from a pattern of ‘tension–compression–
tension’ to ‘compression–tension’ as the applied force
increases. In other words, for small peel forces, the material
points on the adhesive/substrate interface that are closest to the
crack tip are under tension. As the force increases, these
material points are under compression. Recall that if the adhe-
sive layers were to have zero thickness, linear elastic fracture

mechanics would predict that an infinite compressive interfacial
normal stress exists at the crack tip. However, our simulations
suggested that, for an adhesive layer with finite thickness,
the interfacial normal stress can actually be tensile, at least
for small applied forces. Also, �t22 retains the pattern of
‘tension–compression–tension’ on the adhesive/backing
interface, irrespective of the peel force. In both cases, the
amplitude of stress increases with the peel force.

It is interesting to compare our finite element result with
Kaelble’s prediction, which assumes small strains and uses
a plate theory instead of solving the full elasticity equations.
His result for the normal stress in the adhesive layer (see eqn (7) in
his paper1), in the notation of this paper, is:

t22 = �b2F(2h + hb)e�bx1[cos bx1 � sin bx1]/b, (20a)

where

b ¼ 9m
Eb
�hb3h

	 
1=4
: (20b)

This comparison is shown in Fig. 8a where Kaelble’s results are
plotted as dashed lines. Clearly, the linear theory fails to predict
the stress. In addition, since the normal stress predicted by the
linear theory is independent of x2 and does not distinguish

Fig. 8 �t22 along the adhesive/substrate and adhesive/backing interfaces with different applied forces. FEM results are plotted as solid, dashed, dashed–
dotted and dotted lines for %F = �0.58, �2.92, �5.84 and �11.68 respectively. (a) �t22 along the adhesive/substrate interface. We also plot the linear theory
predicted by Kaelble1 as symbols for comparison. (b) �t22 along the adhesive/backing interface in the top image. Four material points (red circles in the
bottom image) are plotted to indicate the deformation.
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between undeformed and deformed configurations, it cannot
possibly capture the behavior as shown in Fig. 8b. Note that the
characteristic length of decay of the normal stress (1/b) in
Kaelble’s theory is much smaller than the shear load transfer
length lLT, since it depends on the ratio m/Eb* with an exponent
1/4 instead of 1/2.

Fig. 9a, b and 10a, b plot the normalized stress component �t12

and �t11 along the adhesive/substrate and adhesive/backing inter-
faces in region I respectively. The stresses due to %F = �11.68 are
too large to fit in the same figure and we provide this information
in the ESI.† Note that at higher peel forces these stresses behave
differently on these interfaces. The normalized hydrostatic pressure
%p � (�t11 + �t22 + �t33)/3 along these interfaces are plotted in Fig. 11.

4 Energy release rate

As shown by Kendall,38,39 for a peel arm that is linearly elastic and
bonded to a rigid substrate (with an infinitely thin adhesive), the
energy release rate is exactly zero were it not for stretching of the peel
arm. For our case the geometry is different: the thickness of the
adhesive layer is comparable to that of the peel arm and part of the
adhesive is bonded to the peel arm instead of the substrate.

Nevertheless, Kendall’s conclusion is still true for our geometry.
Indeed, in our geometry, crack growth by Da can be achieved by
moving an element of length Da and height h from x1 = N to the
load point. The amount of work done by the peel force as the crack

advanced by Da is F=bð ÞepDa ¼
F=bð Þ2

Eb
�hb

Da, where ep is the strain in

the peel arm. Because the backing layer is linearly elastic and the
adhesive in the peel arm carries no force, half of this work is used to
increase the strain energy of this element as it moves from x1 = N to
the load point. Therefore, the energy that is available for crack

growth is
F=bð Þ2

2Eb
�hb

Da; so the energy release rate is exactly:

G ¼ F=bð Þ2

2Eb
�hb

: (21)

Eqn (21) is valid for large deformation of the adhesive layer, as long
as L c lLT. The critical peel force to initiate interface debonding Fc

can be determined using energy balance: the energy release rate G
reaches the interfacial fracture energy G, i.e.,

G ¼ Fc=bð Þ2

2Eb
�hb
¼ G) Fc=b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eb

�hbG
p

: (22)

Fig. 9 �t12 along the adhesive/substrate and adhesive/backing with different applied forces. FEM results are plotted as solid, dashed and dashed–dotted
lines for %F = �0.58, �2.92 and �5.84 respectively. (a) �t12 along the adhesive/substrate interface. (b) �t12 along the adhesive/backing interface.

Fig. 10 �t11 along the adhesive/substrate and adhesive/backing with different applied forces. FEM results are plotted as solid, dashed and dashed–dotted
lines for %F = �0.58, �2.92 and �5.84 respectively. (a) �t11 along the adhesive/substrate interface. (b) �t11 along the adhesive/backing interface.
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Note that the peel force needed to grow the interface crack can be
very large, since the modulus of the backing layer is on the order of
GPa. Here, one must distinguish between the energy release rate G
which is the amount of energy available for fracture and the
interfacial fracture energy G. The former for this case is independent
of the nonlinear elastic behavior of the adhesive and is controlled by
the elasticity of the backing layer. The latter is a material property
which depends on how the material fails near the crack tip. The
local failure process is sensitive to the mechanical behavior of the
adhesive, since the stress and strain states near the crack tip are very
different for linear and nonlinear materials subjected to the same
applied force. In other words, the interfacial fracture energy is
controlled by the material behavior. Therefore, the critical peel force
will be dependent on whether the material is linear or nonlinear.
Note that we have assumed that the bond length L is much longer
than the load transfer length lLT, so that the energy release rate is
independent of the bond length. This is certainly not the case for
short bond lengths (i.e., lLT Z L). For this case, the energy release
rate is no longer given by (21); specifically, (21) underestimates the
energy release rate. Indeed, when the crack grows (i.e., bond length
decreases), the shear stress has to increase since the force F/b is kept
constant. This means that the energy release rate increases with
crack extension (for smaller L), so unless G increases with crack
extension which is typically not the case, crack growth is unstable.

5 Summary and discussion

We present a large deformation analysis of the stress state in
the adhesive layer of an adhesive tape subjected to a zero degree
peel force. The adhesive layer is modeled as an incompressible
hyper-elastic solid with a strain energy density function that
depends only on the scalar invariant I1 or the trace of the right
Cauchy–Green tensor. Although our solution method does not
depend on the form of the strain energy function, the solution is
presented for a three-term Yeoh’s model since this is the simplest
material model that can capture the nonlinear elasticity of typical
PSAs. Exact closed-form solutions are obtained for the in-plane

stresses t11 and t12 in the adhesive layer in region 2. Surprisingly,
even though the material is nonlinear and deformation is large,
these stresses decay exponentially from the peel front with a
characteristic distance equal to the load transfer length – which
is an aspect of the linear theory. These exact solutions are in
excellent agreement with our FEM. A surprising result is that for
large shear deformation, the lateral true stress t11 within the load
transfer length is much larger than the shear stress, whereas in
the linear theory this stress is assumed to be zero. As a result, the
hydrostatic pressure in the adhesive layer is not small and cavities
can nucleate and grow at distances far from the peel front.
We compare our result with the linear theory which assumes
small deformation and a linear elastic adhesive layer. Our results
show that the linear theory fails to predict the peel force to sustain
a given amount of deformation. For large deformation, the peel
force is governed by the strain hardening behavior of the adhesive.
Since our method in Section 2.3 can be used to produce an exact
closed-form solution for any incompressible hyperelastic solids
where the strain energy density function depends only on the
trace of the right Cauchy–Green tensor, our result provides a path
to study the zero degree peel test without the constraints and
limitations imposed by linear elastic theory.

We also used a nonlinear FEM to study the 3D state of stress
near the peel front. In this region (region 1), our analytic solution
breaks down. In particular, the true normal stress t22 can be very
large and alternates between compression and tension. Although
this result (an oscillatory state of normal stress) is predicted by the
linear model of Kaelble,1 his result underestimates the stress near
the peel front. This is due to the fact that Kaelble uses a plate
model which cannot capture the 3D state of stress at the crack tip.
In addition, his model assumes that the adhesive is linearly
elastic, whereas a nonlinear elasticity model can account for stress
increase due to strain hardening. More importantly, the plate
model predicts that the normal and shear stresses are inde-
pendent of x2, whereas the stresses on the backing/adhesive
interface and the adhesive/substrate interface are different as
shown by our result in Fig. 9 and 10. It is also interesting
to note that at high peel forces, the material directly ahead of

Fig. 11 Hydrostatic pressure %p along the adhesive/substrate and adhesive/backing with different applied forces. FEM results are plotted as solid, dashed
and dashed–dotted lines for %F = �0.58, �2.92 and �5.84 respectively. (a) %p along the adhesive/substrate interface. (b) %p along the adhesive/backing
interface.
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the peel front (along the adhesive/substrate interface) is under
compression while for the small peel force it is under tension.
This, together with the fact that the stress states are different on
each interface, may have important consequences on determining
at which interface the adhesive fails.

The result presented here is limited to the case of the
infinite bond length L, that is, when the bond length is much
longer than the load transfer length lLT. In practice, the bond
length can often be comparable or smaller than the load
transfer length. For these cases, crack growth can be unstable
since the energy release rate is expected to increase with crack
length (or decreasing bond length), as noted by Mojdehi et al.17

Our approach can be extended to study this case and these
results will be presented in a future study. A more serious
limitation of our analysis is that we have not accounted for the
viscoelasticity of the adhesive. Indeed, at the instant when the
force is applied, the adhesive will have a larger shear modulus
(due to its entangled structure) than at longer times, when it
relaxes to its plateau modulus (due to its chemical crosslinking).
Viscous creep will then cause the load transfer length to increase
with time. Thus, our analysis is strictly correct for short or long
times. Specifically, for times much shorter than the characteristic
relaxation time t of the adhesive, the moduli in our model should
be replaced with the short time moduli; for times much longer
than t, the moduli in our model should be replaced with the
plateau moduli. It is possible to include linear viscoelasticity in
our model using a very crude approximation. Kaelble40 proposed
that his elastic peel model can be extended to include linear
viscoelasticity if the elastic shear modulus of the adhesive is
replaced by its relaxation modulus. We apply this idea to our
nonlinear model, that is, we replace m in (17) by the shear
relaxation modulus m(t) while C2/m(t) and C3/m(t) are assumed to
be material constants independent of time and m(t) is assumed
to be independent of strain. In particular, the load transfer
length will now be time dependent, i.e.,

lLT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb
�hbh=mðtÞ

p
: (23)

Certainly the approximation given by (23) is valid for short and
long times. In the ESI,† we use a simple viscoelastic model with
one relaxation time to check this idea and find that the shear
strain distribution at intermediate times is predicted quite well
by this approximation. Of course, the relaxation behavior of real
adhesives is much more complex and will not be captured
well by a linear viscoelastic model with a single relaxation time.
The role of viscoelastic behavior in the peel test will be the
subject of a future study.

However for highly deformed adhesives in shear, our non-
linear elastic solution provides realistic stress distributions and
kinematics in the adhesive for a given applied load. This result
can then be used to predict much more accurately the locus of
failure in the adhesive, which is a long-standing problem in
this geometry. As has been shown, a linear solution will predict
the stresses incorrectly and will give predictions that are
inconsistent with experiments. Furthermore, many changes in
the chemistry of the adhesive and in particular crosslinking will

affect only non-linear properties and not linear properties.
A linear model will fail to capture the effect of those differences
and has no chance at all to predict failure correctly.
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