
HAL Id: hal-02076905
https://hal.science/hal-02076905v1

Submitted on 22 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Active Preference Learning based on Generalized Gini
Functions: Application to the Multiagent Knapsack

Problem
Nadjet Bourdache, Patrice Perny

To cite this version:
Nadjet Bourdache, Patrice Perny. Active Preference Learning based on Generalized Gini Functions:
Application to the Multiagent Knapsack Problem. Thirty-Third AAAI Conference on Artificial Intel-
ligence (AAAI 2019), Jan 2019, Honolulu, United States. �hal-02076905�

https://hal.science/hal-02076905v1
https://hal.archives-ouvertes.fr

Active Preference Learning based on Generalized Gini Functions:
Application to the Multiagent Knapsack Problem

Nadjet Bourdache and Patrice Perny
Sorbonne Université, CNRS,

Laboratoire d’Informatique de Paris 6, LIP6
F-75005 Paris, France

Abstract

We consider the problem of actively eliciting preferences
from a Decision Maker supervising a collective decision pro-
cess in the context of fair multiagent combinatorial optimiza-
tion. Individual preferences are supposed to be known and
represented by linear utility functions defined on a combina-
torial domain and the social utility is defined as a generalized
Gini Social evaluation Function (GSF) for the sake of fair-
ness. The GSF is a non-linear aggregation function parame-
terized by weighting coefficients which allow a fine control of
the equity requirement in the aggregation of individual util-
ities. The paper focuses on the elicitation of these weights
by active learning in the context of the fair multiagent knap-
sack problem. We introduce and compare several incremental
decision procedures interleaving an adaptive preference elici-
tation procedure with a combinatorial optimization algorithm
to determine a GSF-optimal solution. We establish an upper
bound on the number of queries and provide numerical tests
to show the efficiency of the proposed approach.

1 Introduction
Fair multiagent optimization problems over combinatorial
domains appear in various contexts studied in Artificial In-
telligence such as resource allocation and sharing of indi-
visible items (Bouveret and Lang 2008; Chevaleyre, En-
driss, and Maudet 2017; Bouveret et al. 2017), assign-
ment problems (Lesca and Perny 2010; Aziz et al. 2014;
Heinen, Nguyen, and Rothe 2015; Gal et al. 2017), multi-
objective state-space search (Galand and Spanjaard 2007)
and dynamic social choice (Freeman, Zahedi, and Conitzer
2017), but also in other optimization contexts such as facility
location (Ogryczak 2009). One common characteristic in all
these problems is the focus on fairness: we are looking for
a solution allowing a balanced distribution of satisfaction on
the different agents.

Defining precisely what is a fair solution in a collective
decision context is a matter of preferences and subjectivity.
One can put more or less emphasis on the notion of fair-
ness in preference aggregation. This leads to a wide range
of attitudes from pure egalitarism (maximization of the min-
imum of the individual utility functions) to softer notions
combining the objective of reducing inequalities and that

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of preserving a good overall efficiency. One common way
of introducing fairness in Social Choice is to require the
preference to be t-monotonic, i.e., monotonic with respect
to mean preserving transfers reducing inequalities (a.k.a.
Pigou-Dalton transfers). More formally, given a utility vec-
tor x = (x1, . . . , xn) where xi is the value of solution x
according to agent i, any modification of x leading to a vec-
tor of the form (x1, . . . , xi−ε, . . . , xj+ε, . . . , xn) for some
i, j, ε such that xi − xj > ε > 0 should makes the Decision
Maker (DM) better off. Under the Pareto principle (requiring
monotonicity in every component) and some other mild re-
quirements such as completeness, requiring t-monotonicity
of the social preference leads to define the social utility as
a Generalized Gini social-evaluation Function (GSF), i.e.,
fα(x) =

∑n
i=1 αix(i), as shown in (Blackorby and Don-

alson 1978; Weymark 1981), where x(i) is the ith smallest
component of x and α1 ≥ · · · ≥ αn ≥ 0 (more weight is
attached to the least satisfied agents). In other words, fα(x)
is an ordered weighted average (Yager 1998) of individual
utilities xi defined using decreasing weights.

The GSF fα is parameterized by the weighting vector
α = (α1, . . . , αn) allowing the control of the importance at-
tached to agents according to their rank of satisfaction. The
parameterized function fα includes several well-known so-
cial evaluation functions as special cases. For example, if
α1 = 1 and αi = 0 for all i > 1 then only the least satis-
fied agent matters and we obtain the egalitarian criterion. On
the other hand, if αi = 1 for all i then all components have
the same importance and we obtain the utilitarian criterion.
Many nuances are possible between these two extremities,
leading to various possible tradeoffs.

Eliciting the preferences of the DM on some pairs of solu-
tions will certainly contribute to reveal the implicit tradeoff
she makes between the need of overall efficiency and the aim
of fairly distribute the satisfaction of individuals. So, assum-
ing that the overall utility of solutions is defined using fα,
we need a preference elicitation procedure allowing to know
the α vector sufficiently precisely to be able to determine the
optimal solution from individual preferences. The aim of our
paper is to introduce interactive decision procedures com-
bining the incremental elicitation of vector α modeling the
attitude of the DM towards fairness and the determination of
a fair and Pareto-optimal solution (maximizing fα). For the
sake of illustration, we develop this study on the multi-agent

0-1 Knapsack problem (MKP), a multiobjective version of
the standard knapsack problem in which objectives are lin-
ear utility functions representing the agents’ preferences.

The paper is organized as follows. In Section 2 we re-
call some background on the MKP. In Section 3 we briefly
review some related work. Then, in Section 4 we recall the
basics of usual incremental weight elicitation methods based
on the minimization of regrets and discuss their application
to the elicitation of the weighs defining α. In Section 5 we
present an interactive branch and bound algorithm in which
preference elicitation is combined with implicit enumeration
to determine a necessary optimal knapsack. Then, in Section
6, we propose an alternative approach for regret optimization
leading to a faster elicitation procedure. We also propose a
variant with bounded query complexity. Finally, in Section
7 we provide numerical tests to show the practical efficiency
of the proposed approach.

2 The Fair Multiagent Knapsack Problem
We consider a decision situation involving a set of n agents
and p items. Every item k is characterized by a positive
weight wk and a vector of n positive utilities (u1k, ..., u

n
k)

where uik ∈ [0,M] is the utility assigned to item k by agent
i, and M is a constant representing the top of the utility
scale. A solution is then a subset of items represented by a
binary vector z = (z1, ..., zp), where zk = 1 if item k is se-
lected and zk = 0 otherwise. Feasible subsets are character-
ized by a capacity constraint of the form

∑p
k=1 wkzk ≤ W

where W is a positive value bounding from above the to-
tal weight of admissible solutions. The utility of any so-
lution z is then characterized by a utility vector x(z) =
(x1(z), . . . , xn(z)) where xi(z) =

∑p
j=1 u

i
jzj measures the

satisfaction of agent i with respect to solution z. The MKP
problem is then a multiobjective optimization problem that
consists in maximizing utilities xi, i = 1, . . . , n. This prob-
lem has multiple applications in various decision contexts
involving multiple agents such as voting (election of a com-
mittee of bounded size), resource allocation (distributing re-
sources under a capacity constraint) and transportation (op-
timal cargo problems with competing demands).
Example 1. We consider an instance of MKP with 3 agents,
a maximal weight W = 48 and 7 items whose weights and
utilities are given in the following table:

k 1 2 3 4 5 6 7
wk 6 5 6 11 13 15 12
u1k 5 20 17 16 13 1 4
u2k 6 18 3 3 20 12 17
u3k 11 0 13 17 4 10 3

If we adopt the utilitarian approach consisting of maxi-
mizing the sum x1(z) + x2(z) + x3(z) under the knapsack
constraint, we obtain a standard knapsack problem. The op-
timal solution is z∗1 = (0, 1, 1, 1, 1, 0, 1) leading to utility
vector x(z∗1) = (70, 61, 37). Although the average satis-
faction is maximal (56), we remark that the utility vector
is ill-balanced and this solution may be considered as un-
fair. As far as fairness is concerned, we may prefer maximiz-
ing min{x1(z), x2(z), x3(z)} which leads to solution z∗2 =

(1, 0, 1, 1, 1, 0, 1) with utility vector x(z∗2) = (55, 49, 48),
a much better balanced utility vector. However the average
satisfaction is now lower than 51. An intermediary option
between these two solutions is z∗3 = (1, 1, 1, 1, 1, 0, 0) lead-
ing to x(z∗3) = (71, 50, 45) which improves the worse com-
ponent of x(z∗1) while keeping a near-optimal average (55).

This example shows that various tradeoffs can be pro-
posed in the MKP depending on the compromise we want
to make between fairness and average efficiency. Interest-
ingly, in the instance of Example 1, the fα-optimal solution
for α = (1, 23 ,

1
3) is neither z∗1 (utilitarian optimum) nor z∗2

(egalitarian optimum) but z∗3 . This illustrates how fα could
be used to generate a soft compromise between the utilitar-
ian and egalitarian optima.

Ordered weighted averages such as function fα are in-
creasingly used in AI to obtain fair solutions in multiob-
jective optimization problems, see e.g. (Galand and Span-
jaard 2007; Golden and Perny 2010; Goldsmith et al. 2014;
Heinen, Nguyen, and Rothe 2015). Interestingly, they are
also used with different assumptions on weights in multiwin-
ner voting for proportional representation see e.g. (Elkind
and Ismaili 2015; Skowron, Faliszewski, and Lang 2016)
and in the MKP to define the value of a set of items
(Fluschnik et al. 2017). In this paper, we consider the prob-
lem of finding a solution to the MKP that maximizes func-
tion fα, α having decreasing components, formally:

maxx fα(x1, . . . , xn) xi =
∑p
k=1 u

i
kzk ∀i ∈ J1, nK∑p

k=1 wkzk ≤W
zk ∈ {0, 1} ∀k ∈ J1, pK

(1)

The general problem defined in (1) is NP-hard. It indeed
includes the standard knapsack problem (which is known
to be NP-hard) as special case, when all coefficients αi
are equal and positive. Note that if the fα function is re-
placed by a product (Nash welfare), then the problem re-
mains NP-hard (Fluschnik et al. 2017). Moreover, well-
known pseudo-polynomial solution methods proposed for
the standard knapsack problem (based on dynamic program-
ming) are not valid for ordered weighted averages due to
non-linearity. Let us give an example:
Example 2. Consider an instance of (1) with p = 3
items {1, 2, 3} with weights w1 = w2 = w3 = 1 and
n = 2 agents with utilities (u11, u

1
2, u

1
3) = (10, 5, 0) and

(u21, u
2
2, u

2
3) = (0, 5, 10). Assume that W = 2 and α =

(1, 12). If we evaluate the subsets of size 1 we obtain the
value fα(10, 0) = 5 for {1}, fα(5, 5) = 7.5 for {2} and
fα(0, 10) = 5 for {3}. For the subsets of size 2 we obtain
the value fα(15, 5) = 12.5 for {1, 2}, fα(10, 10) = 15 for
{1, 3} and fα(5, 15) = 12.5 for {2, 3}. We can see that no
fα-optimal singleton is included in the optimal pair {1, 3}.

This example shows that the fα-optimal knapsack cannot
simply be constructed from fα-optimal subsets. However,
for any α with decreasing components, an fα-optimal knap-
sack can be obtained by mixed integer programming, due to
a smart linearization of function fα (Ogryczak and Śliwiński
2003) making it possible to solve reasonably large instances
in a few seconds. Moreover, there are some tractable cases

when we consider integer weights wk and a constant W (as
in a committee election problem of fixed-size; all items have
the same weight). In such cases, the number of subsets of
size at most W is indeed polynomial in p when W is a con-
stant. Therefore the fα value of every subset can be com-
puted in polynomial time, yielding the optimal subset.

When α is not known, we must solve the twofold problem
of eliciting α and determining an fα-optimal subset. We pro-
pose hereafter an adaptive approach interleaving preference
queries with the exploration of feasible subsets.

3 Related Work
A first stream of related work concerns incremental pref-
erence elicitation methods for decision making. Incremen-
tal elicitation relies on the idea of interleaving preference
queries with the exploration of feasible solutions to focus the
elicitation burden on the useful part of preference informa-
tion (active learning). This idea has been succesfully used in
AI for decision support. There are indeed various contribu-
tions concerning model-based incremental decision-making
on explicit sets, see e.g., (White, Sage, and Dozono 1984;
Ha and Haddawy 1997; Chajewska, Koller, and Parr 2000;
Wang and Boutilier 2003; Braziunas and Boutilier 2007;
Benabbou, Perny, and Viappiani 2017), and also some con-
tributions for incremental decision making on implicit sets
(combinatorial optimization problems), mainly focused on
linear aggregation models, see e.g., (Boutilier et al. 2006;
Gelain et al. 2010; Weng and Zanuttini 2013; Benabbou and
Perny 2015b; Brero, Lubin, and Seuken 2018). The prob-
lem under consideration here is more challenging because
on the one hand the set of feasible knapsacks is implicitly
defined by a capacity constraint and, on the other hand, GSF
is a non-linear aggregation function which prevents to com-
bine local preference elicitation with a dynamic program-
ming algorithm (because preferences induced by a GSF do
not satisfy the Bellman principle). There are a few recent
attempts to face these two difficulties simultaneously (non-
linearity of the decision criterion and the implicit definition
of the solution space) on other problems, e.g., the multiob-
jective shortest paths and assignment problems (Benabbou
and Perny 2015a; Bourdache and Perny 2017) but, to the best
of our knowledge, no solution was proposed for the MKP.

Preference elicitation has been recently considered in the
MKP, but under a different perspective that consists of elic-
iting agent’s preferences. For instance, in the context of ap-
proval voting, an incremental utility elicitation procedure is
proposed in (Benabbou and Perny 2016) to reduce the uncer-
tainty about individual utilities until the winning subset can
be determined. Another recent study concerns implicit vot-
ing and aims to approximate the optimal knapsack by elic-
iting preference orders induced by individual utilities and
applying voting rules (Benade et al. 2017). In both of these
works the preference aggregation rule is known and the elic-
itation concerns individual values. In this paper the setting
is different. Individual utilities are assumed to be known
and the elicitation part aims to capture the attitude of the
DM (supervising the collective decision process) with re-
spect to fairness and to define the social utility. Finally, the
fairness issue was recently addressed in the MKP problem

in (Fluschnik et al. 2017) where various aggregation rules
are studied including the Nash product but the elicitation of
the social utility function is not investigate in that work.

4 Incremental Elicitation of GSF Weights
We first explain how standard elicitation schemes based on
regret minimization (Wang and Boutilier 2003; Boutilier et
al. 2006) can be implemented to elicit the αweighting vector
in order to determine an fα-optimal element on an explicit
set of solutions. We will then underline the main issue to
overcome to extend the approach to implicit sets defined by
an instance of the knapsack problem.

At the beginning of the elicitation process, we assume that
no information about α is available except that α ∈ Rn and
α1 ≥ α2 ≥ . . . ≥ αn ≥ 0 (to enforce monotonicity and fair-
ness, as previously explained). To bound the set of possible
α, we can also add a (non-restrictive) normalization condi-
tion of type maxi αi = 1 or

∑
i αi = 1. These constraints

define the initial uncertainty set A containing all admissible
α vectors. The setA is then reduced using the constraints de-
rived from preference statements collected during the elici-
tation process. Any new statement of type “x is preferred to
y” translates into the constraint fα(x) ≥ fα(y). It is impor-
tant to remark that, although fα is not linear in x, it is linear
in α for a fixed x. Hence, preferring x to y leads to the linear
inequality

∑n
i=1 αi(x(i) − y(i)) ≥ 0 defining an half-space

in Rn. Once several preference statements have been col-
lected, A is reduced to the bounded convex polyhedron de-
fined as the intersection of all the half-spaces obtained from
preference statements.

In order to measure the impact of uncertainty A on
the evaluation of solutions, one can define the max-regret
(MR) of choosing solution x in X as the maximum utility
loss against all possible alternative choices. Under the GSF
model assumption, it is formally defined for all x ∈ X by:

MR(x,X,A) = max
y∈X

max
α∈A
{fα(y)− fα(x)} (2)

Remark that MR(x,X,A) ≥ 0 since y = x is allowed.
Given the uncertainty setA, a robust recommendation would
be to select in X the solution x∗ minimizing MR(x,X,A)
over X . This solution is named the minimax-regret solution
and the associated MR value (namely the minimax regret) is
defined by MMR = minx∈X MR(x,X,A). Note that when-
ever MMR = 0 then x∗ is a necessary optimal solution be-
cause, by definition, fα(y)− fα(x∗) ≤ 0 for all y ∈ X and
all α ∈ A. When MMR is strictly positive one can collect
new preference statements in order to further reducing the
uncertainty setA and therefore the MR and MMR values. In
order to generate a new preference query, one may use the
Current Solution Strategy (CSS) proposed in (Boutilier et al.
2006) that consists in asking the decision maker to compare
the current MMR solution x∗ to its best challenger y∗ ob-
tained by maximizing fα(y) − fα(x∗) over all y ∈ X and
all α ∈ A. Once x∗ is known, y∗ can easily be determined
using linear programming, provided that X is explicitly de-
fined. The generation of preference queries is iterated until
the MMR value is sufficiently small.

We have seen that MR computations are in the core of
the elicitation procedure, both for measuring the impact of
uncertainty on the quality of the MMR solution, and for se-
lecting the next preference query. However, when the set of
feasible utility vectors X is implicitly defined, x is a vector
of decision variables xi defined in (1) and fα(x) includes
quadratic terms of type αix(i). Hence the computation of
MR values requires non-linear optimization and the com-
putation of MMR requires min-max quadratic optimization.
This is critical because MR and MMR values must be re-
computed at every step of the elicitation process. Let us
present two different ways to overcome this problem.

5 Interactive Branch and Bound
In the MKP introduced in (1), the set of feasible utility vec-
tors is defined by: X = {x(z), z ∈ {0, 1}p :

∑p
k=1 wkzk ≤

W} and possibly includes a huge number of elements. In or-
der to implement the CSS strategy on such a combinatorial
domain, we first introduce an interactive branch and bound
algorithm with a depth first search strategy. It consists in the
implicit enumeration of feasible knapsacks by exploration of
a binary search tree. Each node of the tree is a subproblem of
its parent node, it represents a subset of feasible knapsacks
defined by some constraints on variables zi (see (1)). More
precisely, the algorithm consists of two interleaved phases
executed iteratively: a branching phase that progressively
develops the nodes to construct the exploration tree, and a
bounding phase enabling to decide whether or not a given
node is worth developing. We present now these two phases.

Bounds. At every node η of the search tree, two bounds are
computed, an upper bound UB(η) and a lower bound LB(η)
on feasible fα values attached to node η. The definition of
UB(η) is based on the following well-known result:
Proposition 1. For any weighting vector α ∈ Rn+ with de-
creasing weights and such that

∑n
i=1 αi = 1, we have for

all x ∈ Rn, fα(x) ≤ 1
n

∑n
i=1 xi.

Thus an upper bound can be obtained by maximizing
1
n

∑n
i=1 xi over the set of feasible knapsacks associated to

η. Note that this upper bound is independent of α which is
practical here since α is unknown. This bound is the opti-
mal value of a standard knapsack problem at node η denoted
KP(η). This problem can be solved by dynamic program-
ming. Actually, to reduce computation times, we did not
use this bound but a relaxed upper bound UB(η) obtained
by solving the continuous relaxation of KP(η). This can be
done very efficiently using a well-known greedy algorithm
that consists in repeatedly selecting items in decreasing or-
der of values uk/wk (where uk = 1

n

∑n
i=1 u

i
k is the aver-

age utility of item k) until there is no space left for the next
item. This last item is then truncated to reach the maximum
weight W . This leads to a solution z∗ having at most one
fractional component which is actually the optimal solution
of the relaxed knapsack problem.

The lower bound LB(η) is defined from the minimal fα
value that can be reached by some feasible solution present
at node η. In order to obtain a non-trivial bound, we use so-
lution z∗ obtained by considering the integer solution corre-
sponding to z∗ defined above after removing the fractional

item. We then compute the smallest fα value for x(z∗) by
solving the linear program minα∈A fα(x(z∗)).

Branching Scheme. Every node η implicitly represents a set
of feasible solutions of the knapsack problem, characterized
by elementary decisions (zk = 1 or zk = 0) made on some
items k ∈ J1, pK. When η is developed (following the depth
first search strategy), two children η′ and η′′ are generated,
partitioning the set of feasible solutions attached to η. To
create these nodes, we consider solution z∗ introduced above
for computing UB and we branch on the unique fractional
variable zr in z∗ by setting either zr = 1 or zr = 0.

Pruning Rules: LetO denote the set of nodes that have been
generated but not yet developed at a given step of the algo-
rithm. Our first pruning rule (detnoted PR1) is quite standard
and relies on bounds UB(η) and LB(η), for all η ∈ O.
PR1: Let η∗ be the node with the higher LB in O. We prune
all nodes η such that UB(η) ≤ LB(η∗) because no solu-
tion in the search tree rooted in η can improve the value
fα(x(z∗(η

∗))) obtained at node η∗.
At any step of the algorithm, the computations of bounds

LB(η) for all η ∈ O yields a set of feasible knapsacks de-
fined by {z∗(η)), η ∈ O}. The set S = {x(z∗(η)), η ∈ O}
of utility vectors attached to these solutions provides a sam-
ple of feasible utility vectors. Our second pruning rule (de-
noted PR2) consists in filtering this set S to keep only the
potentially optimal solutions. A solution x ∈ S is said to
be potentially optimal in S if there exists α ∈ A such that,
∀y ∈ S, fα(x) ≥ fα(y). Hence the second pruning rule is:

PR2: Prune any solution x ∈ S that is not poten-
tially optimal in S. This amounts to testing whether
minα∈A maxy∈S fα(y) − fα(x) > 0 which can easily be
done by linear programming since S is finite.

Incremental Elicitation. The branch and bound procedure
presented above progressively collects in S all possibly op-
timal solutions. To reduce the cardinality of this set periodi-
cally during the process, we use the CSS strategy recalled at
the end of Section 3 to generate preference queries as soon
as |S| exceeds a given threshold (e.g., 5 or 10 elements), and
once more at the final step. Thus, the computational cost of
the CSS strategy is reduced because it only applies to set S
whose size is bounded by a constant rather than to the en-
tire set X . The new preference statements obtained allow
further reductions of A and therefore of MR and MMR val-
ues on the elements of S. Preference queries are repeatedly
generated until MMR = 0. Thus, all solutions x ∈ S such
that MR(x, S,A) > 0 are removed from S. We combine
this adaptive elicitation process with the branch and bound
exploration to progressively reduce the set A and therefore
the set of possibly optimal solutions. When this process ter-
minates, S provides at least one necessary optimal solution:

Proposition 2. Let A0 be the initial uncertainty set. The in-
teractive branch and bound presented above terminates with
an uncertainty set A ⊆ A0 and a solution set S such that:
∀s ∈ S, ∀α ∈ A, fα(s) = maxx∈X fα(x).

Proof. First, let us remark that without pruning and filtering,
our algorithm would output a set S containing all feasible

knapsacks (explicit enumeration). Let η be a node pruned
by PR1 at some step of the procedure and let Aη denote
the uncertainty set at this step. Clearly, A ⊆ Aη ⊆ A0.
Moreover, for all y ∈ η and all α ∈ Aη we have fα(y) ≤
UB(η) ≤ LB(η∗) ≤ fα(y′) for some y′ ∈ η∗. The inequal-
ity fα(y) ≤ fα(y′) holds in particular for all α ∈ A which
shows that y′ is as least as good as y, thus justifying the prun-
ing of y. Note that removing y does not weaken our pruning
possibilities for the next iterations due to the presence of
y′ and the transitivity of preferences. The same arguments
holds if y′ is later removed due to another solution y′′ and
so on. Similarly, for any x removed in S using PR2 and an
uncertainty set Ax we know that for all α ∈ Ax there exists
x′ such that fα(x) ≤ fα(x′). This remains true whenever
Ax is reduced to A. Here also, removing x does not weaken
our pruning possibilities for the next iterations due to the
presence of x′ and transitivity. Thus, all pruning operations
made at any step using PR1 or PR2 remain valid for the fi-
nal set A. Moreover, when the procedure stops, the MMR
value is equal to 0. Hence, all remaining solutions in S are
fα-optimal, for all α ∈ A which completes the proof.

6 Extreme Points Exploration
The second approach we introduce is based on the direct
optimization of regrets on X . To overcome the problem on
nonlinearity of MR functions (discussed at the end of Sec-
tion 4) we propose a method based on the exploration of the
extreme points of the uncertainty polyhedron A. Due to the
convexity of A and the linearity of fα(x) in parameter α,
optimal MR values are necessarily obtained on one of the
extreme points of A. Thus, in the MR and MMR computa-
tions, we can restrict the possible instances of α to this finite
set of points. This enables to change the quadratic formula-
tion of regrets into a linear one. More precisely, we have:
Proposition 3. Let Aext be the set of all extreme points of A
and m = |Aext|, then the MMR value on X can be obtained
by solving only m+1 mixed integer linear programs.

Proof. MMR = min
x∈X

max
y∈X

max
α∈A
{fα(y)− fα(x)}

= min
x∈X

max
y∈X

max
α∈Aext

{fα(y)− fα(x)}

= min
x∈X

max
α∈Aext

max
y∈X
{fα(y)− fα(x)}

= min
x∈X

max
α∈Aext

{f∗α − fα(x)}
where f∗α = maxy∈X fα(y) is obtained for any α ∈ Aext

by solving a mixed integer linear program using a lineariza-
tion of fα proposed in (Ogryczak and Śliwiński 2003). Thus
|Aext| = m such optimizations must be peformed. Then, the
MMR value is obtained by solving: min t subject to the con-
straints {t ≥ f∗α − fα(x), ∀ α ∈ Aext, x ∈ X}. Thus, we
get the MMR value after (m+ 1) optimizations.

Algorithm. The idea of our algorithm is to interleave prefer-
ence queries with MMR computations until the MMR value
drops to zero (see Algorithm 1). Note that with the initial
definition of A given in line 1 the set Aext contains only n
elements (all vectors whose i first components are equal to 1,
the others being equal to zero). The answer to the preference
query generated in line 4 allows a reduction of the MMR

Algorithm 1:
1 A← {α ∈ Rn+ : α1 = 1 , αi ≥ αi+1∀i}
2 Compute Aext

3 repeat
4 Ask a query to the DM
5 Restrict A according to the answer
6 Update Aext

7 until MMR ≤ ∆;
8 return x∗ = arg minx∈X MR(x,X,Aext)

value, and this can be iterated until MMR ≤ ∆, where ∆ is
a positive acceptance threshold. If ∆ = 0 then the algorithm
yields an optimal solution, otherwise we only obtain a near-
optimal solution. We propose below two different strategies
for generating preference queries:

Strategy S1: The first strategy is focused on the fast reduc-
tion of MMR values. It uses the CSS strategy recalled at the
end of Section 4. It makes it possible to determine a neces-
sary winner or almost necessary winner while parameter α
remains largely imprecise, thus saving a lot of queries. This
strategy is illustrated below on Example 1.

Example 2 (continued). If we apply Algorithm 1 to Ex-
ample 2 with strategy S1, the initial uncertainty set A
is pictured on Figure 1.a. To simulate the DM’s an-
swers we use the weighting vector (1, 2/3, 1/3) (the dark
point in the figures). The MMR value is computed a first
time and we obtain MMR = 3 > 0. So, the DM is
asked to compare x∗ = arg minx∈X MR(x,A,X) =
(71, 50, 45) obtained from z1 = (1, 1, 1, 1, 1, 0, 0) and y∗
= arg maxy∈X maxα∈A fα(y)− fα(x∗) = (55, 49, 48) ob-
tained from z2 = (1, 0, 1, 1, 1, 0, 1). Assume the DM prefers
x∗, then we add fα(x∗) ≥ fα(y∗) to the definition of
A, leading to a smaller uncertainty set pictured in Figure
1.b. The MMR value is computed again and we find MMR
= 2 > 0, the DM compare x∗ = (71, 50, 45) and y∗ =
(70, 61, 37) obtained from z1 and z3 = (0, 1, 1, 1, 1, 0, 1)
respectively. Assume the DM still prefers x∗, then the con-
straint fα(x∗) ≥ fα(y∗) is added to the definition of A. The
final set A is pictured in Figure 1.c. The MMR is updated
and we find MMR = 0 so the algorithm stops. By construc-
tion, solution x∗ remains fα-optimal whatever α ∈ A.

α2

α3

a. 1

1

α2

α3

b. 1

1

α2

α3

c. 1

1

Figure 1: Evolution of the uncertainty set A

Strategy S2: This strategy is focused on a methodic division
of the uncertainty set, which indirectly entails a reduction of
MMR values. Every component αi, i ∈ J1, nK is bounded by
an interval Ii = [li, ui] of possible values (initially [0, 1]). At

every step, we select the largest interval Ii and we generate a
preference query enabling to remove the half of the interval.
More precisely, we ask the DM to compare the two utility
vectors x and y defined as follows:
x = (0,

λc

1 + λ
, ...,

λc

1 + λ︸ ︷︷ ︸
×(i−2)

, c, ..., c︸ ︷︷ ︸
×(n−i+1)

), y = (
λc

1 + λ
, ...,

λc

1 + λ︸ ︷︷ ︸
×i

, c, ..., c︸ ︷︷ ︸
×(n−i)

)

and λ = (li + ui)/2 is the middle of Ii and c ∈ (0,M].
Suppose that x is preferred to y, we deduce fα(x) ≥ fα(y)
and then:

λc
1+λ (

i−1∑
j=2

αj) + c
n∑
j=i

αj ≥ λc
1+λ (

i∑
j=1

αj) + c
n∑

j=i+1

αj

⇒ αi ≥ λ
1+λα1 + λ

1+λαi ⇒ (1 + λ)αi ≥ λα1 + λαi
⇒ αi ≥ λα1

Under the non-restrictive assumption that α1 = 1 we obtain
αi ≥ λ = (li + ui)/2. On the other hand, whenever y is
preferred to x, a similar reasoning leads to αi ≤ (li+ui)/2.
In both cases we can update one of the bounds of Ii.

Example 2 (continued). Let us now apply Algorithm 1 with
strategy S2, the weighting vector used to simulate the DM’s
answers being still (1, 2/3, 1/3). The initial uncertainty set
A is the same as in Figure 1.a. and the first MMR value is
3 > 0. We have initially I2 = I3 = [0, 1], we first chose
to reduce I2 (arbitrarily). For this, we construct two vectors
x and y as explained above (with i = 2) to generate the
first preference query. The DM’s answer allows to add the
constraint w2 ≥ 0.5 as pictured in Figure 2.a. The MMR
value is recomputed and we still find MMR = 3 > 0 so
we ask a second question to the DM aiming to reduce I3
since it is now bigger than I2. The answer leads to the con-
straint w3 ≤ 0.5 which is added to the definition of A (Fig-
ure 2.b). The MMR is still positive. The process continue and
two more questions will be necessary to obtain MMR=0 (the
associated constraints are pictured in Figures 2.c and 2.d.).

α2

α3

a. 1

1

α2

α3

b. 1

1

α2

α3

c. 1

1

α2

α3

d. 1

1

Figure 2: Evolution of the uncertainty set A

This dichotomous reduction of intervals makes it possible
to bound from above the number of queries necessary to ob-
tain a MMR smaller than ∆. Since the utilities of the p items
for the n agents belong to [0,M], we indeed have:

Proposition 4. Algorithm 1 used with S2 and ∆ = δnpM
requires at most ndlog2(1/δ)e queries for any δ ∈ (0, 1].

Proof. Let us first prove that if ui − li ≤ δ for all i ∈ J1, nK

then MMR ≤ ∆. Let α′ be a vector arbitrary chosen in A at
the current step and x′ the solution maximizing fα′ over X .
For any solution y ∈ X we have:
maxα∈A{fα(y)− fα(x′)}+ fα′(x

′)− fα′(y)
= maxα∈A{(fα(y)− fα′(y))− (fα(x′)− fα′(x′))}
= maxα∈A{

∑n
i=1 (αi − α′i)︸ ︷︷ ︸

≤δ

y(i)−
∑n
i=1 (αi − α′i)︸ ︷︷ ︸

≤δ

x′(i)}

≤ δ
∑
i:αi>α′i

y(i) + δ
∑
i:αi<α′i

x′(i) ≤ δnpM = ∆

The term fα′(x
′) − fα′(y) being positive (x′ being optimal

for α′), then maxα∈A{fα(y)−fα(x′)} ≤ ∆. This reasoning
being true for any solution y, then MR(x′, X,A) ≤ ∆. The
MMR value being obtained by minimizing MR(x,X,A)
over all x ∈ X , we obtain MMR ≤ ∆.

Moreover, note that we initially have Ii = [0, 1], for all
i ∈ J1, nK due to line 1 of Algorithm 1. Hence, the itera-
tive dichotomous reduction of an interval Ii requires at most
dlog2(1/δ)e queries to obtain ui − li ≤ δ for any i ∈ J1, nK
which gives ndlog2(1/δ)e overall.

Note that this bound is based on the worst case scenario.
In practice it frequently happens that the MMR drops to 0
before reducing the size of all intervals to δ which saves
multiple preference queries.

Example 3. If n = 10, p = 50 and M = 20 then
npM = 10000 represents the range of possible fα values
on subsets and therefore the range of possible MMR values.
Parameter δ represents the maximal percent error allowed
on fα values. If we accept a 5% error (δ = 0.05) it gives
∆ = 500 and 10dlog2(1/0.05)e = 50, therefore we need at
most 50 preference queries. We will see in the next section
that only 17 preference queries are used on average.

7 Experimental Results
We have tested the interactive branch and bound (IBB) in-
troduced in Section 5 and Algorithm 1 introduced in Section
6 (used with ∆ = 0 to obtain exact solutions). To generate
instances, utility and weights are generated at random us-
ing an uniform density. The capacity W is randomly drawn
around a reference value defined as the half of the weight of
the entire set of items. This allows to favor the generation
of hard knapsack instances. We generate instances of dif-
ferent sizes involving up to 100 items and up to 10 agents.
The DM’s answers are simulated using an hidden fα func-
tion (α is randomly chosen). The linear programs formu-
lated for regrets computations are solved using the Gurobi
library of Python. The set Aext is computed (lines 2 and 6 of
Algorithm 1) using the cdd Python’s library, which is an im-
plementation of the double description method introduced
in (Fukuda and Prodon 1996). The tests are performed on a
Intel(R) Core(TM) i7-4790 CPU with 15 GB of RAM.

We first compare the performances of the two algorithms
both in terms of computation time (in seconds) and number
of preference queries (see Tables 1 and 2). The results are
averaged over 30 runs with a timeout set to 20 minutes for
every run. Due to the time constraint, the algorithms may be
stopped before finding an optimal solution. In this case, they
return the best solution found within the time window (any-
time property). In particular, Algorithm 1 returns the current

Computation times (s)

n
p 20 50 100

3 10.45 139.22 (60 %) 198.62 (37 %)
5 25.8 170.86 (67 %) 274.31 (23 %)
10 94.21 (97 %) 166.62 (27 %) 374.03 (17 %)

Number of queries

n
p 20 50 100

3 3.3 4.7 (60 %) 5.73 (37 %)
5 3.9 5.9 (67 %) 8.0 (23 %)
10 7.1 (97 %) 7.5 (27 %) 9.6 (17 %)

Table 1: Results for Interactive Branch & Bound (IBB)

Computation times (s) Number of queries

n
p 20 50 100

3 0.2 0.9 0.6
5 0.5 1.9 5.8

10 8.3 81.8 411.7

n
p 20 50 100

3 2.7 3.9 5.3
5 2.8 6.8 11.2
10 4.7 11.2 23.1

Table 2: Results for Algorithm 1 with strategy S1

MMR solution which represents a robust choice since the
gap to optimality is guaranteed to be lower than the current
MMR value. In the tables below, we provide both the aver-
age solution time on solved instances and the percentage of
solved instances within 20 minutes (when < 100%).

Tables 1 and 2 show that Algorithm 1 mostly outperforms
IBB. It not only solves 100% of instances within the time
constraint but runs faster on average. It also requires fewer
preference queries for small or middle size instances. For big
instances IBB seems to generate less preference queries but
this evaluation is optimistic. The average performance only
includes instances solved within the time constraint.

We next assess and compare the performances of the two
elicitation strategies S1 and S2 in Algorithm 1. First S1 and
S2 are compared to a random strategy S3 for the selection
of preference queries. The results are given in Figure 3 that
represents, for every strategy, the average MMR value (com-
puted over 30 runs) as a function of the number of preference
statements collected during the elicitation process.

In Figure 3 MMR values are given as a percentage of
the initial MMR value computed before running the elici-
tation procedure. We can see that strategies S1 and S2 are
significantly more efficient that the random strategy S3, the
decrease in MMR value being faster for these two strate-
gies. For instance, to obtain a MMR smaller than 10% of
the initial value, we need about 5 queries for S1 and ap-
proximatively 17 queries for S2 while 30 preference queries
would not be sufficient with S3. Wa also observed that the
actual regret defined as the optimality gap achived by the
current MMR solution decrease faster than the MMR val-
ues. It very quickly drops to 0, which explains that we did
not plot the curve on Figure 3. Moreover, we can see that
S1 is significantly faster than S2 on average. This can be ex-
plained as follows: Algorithm 1 implemented with S1 looks
for preference queries aiming at quickly discriminating the
solutions of the instance to be solved without trying to learn

Figure 3: Elicitation with S1, S2, S3 (10 agents, 50 items)

precisely vector α. Very often, a necessary winner can be
identified while some components αi remain largely impre-
cise. This is the key point explaining practical efficiency.
Unfortunately, this approach does not provide any control
on the reduction of uncertainty and prevents to derive non-
trivial formal bounds on the number of queries. Algorithm
1 implemented with S2 generates queries designed to sys-
tematically reduce the uncertainty attached to weights (the
range of possible value is divided by two at every step), and
the optimal solution is obtained as a byproduct. It allows to
bound the number of queries from above but the drawback
is that the generated queries may not be very efficient to de-
termine the optimal choice because queries are not taylored
specifically to discriminate between the solutions appearing
in the particular instance to be solved. This explains why S1
empirically performs better than S2. Nevertheless, strategy
S2 is also interesting because we have obtained a theoretical
bound on the maximum number of queries (see Proposition
4) while keeping good empirical performances.

8 Conclusion
We proposed two active learning algorithms for the elicita-
tion of weights in GSFs and the determination of fα-optimal
knapsacks. Algorithm 1 used with strategy S1 or S2 appears
to be quite efficient, both in terms of preference queries and
computation times. One research direction to further im-
prove the computation of regrets concerns the control of the
number of extreme points |Aext| in the uncertainty set. Al-
though the exploration of Aext was easily tractable in the
experiments we made, an interesting challenge would be
to design new questionnaires enabling a closer control of
|Aext| while keeping the informative value of our preference
queries. Besides this perspective, the techniques presented
here could be adapted to other fair multiagent combinato-
rial optimization problems (e.g., fair assignment problems,
fair multiagent scheduling problems) and more generally to
elicit other decision models (linear in their parameter).

9 Acknowledgments
This work is supported by the ANR project CoCoRICo-
CoDec ANR-14-CE24-0007-01.

References
Aziz, H.; Gaspers, S.; Mackenzie, S.; and Walsh, T. 2014.
Fair assignment of indivisible objects under ordinal prefer-
ences. In Proceedings of AAMAS-14, 1305–1312.
Benabbou, N., and Perny, P. 2015a. Combining preference
elicitation and search in multiobjective state-space graphs.
In Proceedings of IJCAI-15, 297–303.
Benabbou, N., and Perny, P. 2015b. Incremental weight elic-
itation for multiobjective state space search. In Proceedings
of AAAI-15, 1093–1099.
Benabbou, N., and Perny, P. 2016. Solving multi-agent
knapsack problems using incremental approval voting. In
Proceedings of ECAI-16, 1318–1326.
Benabbou, N.; Perny, P.; and Viappiani, P. 2017. In-
cremental elicitation of choquet capacities for multicriteria
choice, ranking and sorting problems. Artificial Intelligence
246:152–180.
Benade, G.; Nath, S.; Procaccia, A. D.; and Shah, N. 2017.
Preference elicitation for participatory budgeting. In Pro-
ceedings of AAAI, 376–382.
Blackorby, C., and Donalson, D. 1978. Measures of rela-
tive equality and their meaning in terms of social welfare.
Journal of Economic Theory 2:59–80.
Bourdache, N., and Perny, P. 2017. Anytime algorithms
for adaptive robust optimization with OWA and WOWA. In
Proceedings of ADT-17, 93–107.
Boutilier, C.; Patrascu, R.; Poupart, P.; and Schuurmans, D.
2006. Constraint-based optimization and utility elicitation
using the minimax decision criterion. Artificial Intelligence
170(8-9):686–713.
Bouveret, S., and Lang, J. 2008. Efficiency and envy-
freeness in fair division of indivisible goods: Logical repre-
sentation and complexity. Journal of Artificial Intelligence
Research 32:525–564.
Bouveret, S.; Cechlárová, K.; Elkind, E.; Igarashi, A.; and
Peters, D. 2017. Fair division of a graph. In Proc. of IJCAI-
17, 135–141.
Braziunas, D., and Boutilier, C. 2007. Minimax regret based
elicitation of generalized additive utilities. In Proc. of UAI-
07, 25–32.
Brero, G.; Lubin, B.; and Seuken, S. 2018. Combinatorial
auctions via machine learning-based preference elicitation.
In Proceedings of IJCAI’18, 128–136.
Chajewska, U.; Koller, D.; and Parr, R. 2000. Making ratio-
nal decisions using adaptive utility elicitation. In Proceed-
ings of AAAI-00, 363–369.
Chevaleyre, Y.; Endriss, U.; and Maudet, N. 2017. Dis-
tributed fair allocation of indivisible goods. Artificial Intel-
ligence 242:1–22.
Elkind, E., and Ismaili, A. 2015. Owa-based extensions of
the chamberlin-courant rule. In Proc. of ADT-15, 486–502.
Fluschnik, T.; Skowron, P.; Triphaus, M.; and Wilker, K.
2017. Fair knapsack. arXiv:1711.04520.

Freeman, R.; Zahedi, S. M.; and Conitzer, V. 2017. Fair and
efficient social choice in dynamic settings. In Proceedings
of IJCAI-17, 4580–4587.
Fukuda, K., and Prodon, A. 1996. Double description
method revisited. In Comb. and Computer Science. Springer.
91–111.
Gal, Y. K.; Mash, M.; Procaccia, A. D.; and Zick, Y. 2017.
Which is the fairest (rent division) of them all? J. ACM
64(6):39:1–39:22.
Galand, L., and Spanjaard, O. 2007. Owa-based search in
state space graphs with multiple cost functions. In Proceed-
ings of FLAIRS-07, 86–91.
Gelain, M.; Pini, M. S.; Rossi, F.; Venable, K. B.; and Walsh,
T. 2010. Elicitation strategies for soft constraint problems
with missing preferences: Properties, algorithms and exper-
imental studies. Artificial Intelligence 174(3):270–294.
Golden, B., and Perny, P. 2010. Infinite order Lorenz dom-
inance for fair multiagent optimization. In Proceedings of
AAMAS-10, 383–390.
Goldsmith, J.; Lang, J.; Mattei, N.; and Perny, P. 2014. Vot-
ing with rank dependent scoring rules. In Proceedings of
AAAI-14, 698–704.
Ha, V., and Haddawy, P. 1997. Problem-focused incremental
elicitation of multi-attribute tility models. In Proceedings of
UAI-97, 215–222. Morgan Kaufmann Publishers Inc.
Heinen, T.; Nguyen, N. T.; and Rothe, J. 2015. Fairness and
rank-weighted utilitarianism in resource allocation. In Proc.
of ADT-15, 521–536.
Lesca, J., and Perny, P. 2010. LP solvable models for multia-
gent fair allocation problems. In Proc. of ECAI-10, 393–398.

Ogryczak, W., and Śliwiński, T. 2003. On solving linear pro-
grams with the ordered weighted averaging objective. Euro-
pean Journal of Operational Research 148(1):80–91.
Ogryczak, W. 2009. Inequality measures and equitable lo-
cations. Annals of Operations Research 167(1):61–86.
Skowron, P.; Faliszewski, P.; and Lang, J. 2016. Find-
ing a collective set of items: From proportional multirep-
resentation to group recommendation. Artificial Intelligence
241:191–216.
Wang, T., and Boutilier, C. 2003. Incremental utility elicita-
tion with the minimax regret decision criterion. In Proceed-
ings of IJCAI-03, 309–318.
Weng, P., and Zanuttini, B. 2013. Interactive value iteration
for markov decision processes with unknown rewards. In
Proceedings of IJCAI-13, 2415–2421.
Weymark, J. 1981. Generalized gini inequality indices.
Math. Social Sciences 1(4):409–430.
White, C. C.; Sage, A. P.; and Dozono, S. 1984. A model of
multiattribute decision making and trade-off weight deter-
mination under uncertainty. IEEE Transactions on Systems,
Man, and Cybernetics 14(2):223–229.
Yager, R. 1998. On ordered weighted averaging aggregation
operators in multicriteria decision making. In IEEE Trans.
Systems, Man and Cybern., volume 18, 183–190.

