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Abstract

A two-dimensionalmathematicalmodel for cellsmigratingwithout adhesion capabil-
ities is presented and analyzed. Cells are represented by their cortex, which is modelled
as an elastic curve, subject to an internal pressure force. Net polymerization or depoly-
merization in the cortex is modelled via local addition or removal of material, driving a
cortical flow. The model takes the form of a fully nonlinear degenerate parabolic system.
An existence analysis is carried out by adapting ideas from the theory of gradient flows.
Numerical simulations show that these simple rules can account for the behavior observed
in experiments, suggesting a possible mechanical mechanism for adhesion-independent
motility.

Keywords: Variational methods; weak solutions; cell motility modelling; cellular cortex; actin polymerization
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1 Introduction
One of the most important cellular behaviors is crawling migration. It is observed in many
cellular systems both in culture and in vivo [Paluch et al., 2016, Phillipson et al., 2006], and
involved in many essential physiological or pathological processes (wound healing, em-
bryonic development, cancer metastasis etc. [Wolf and Friedl, 2006]). Since the works of
Abercrombie in 1970 [Abercrombie et al., 1970], which described the multistep model of
lamellipodia-based cell migration, numerous authors have studied the mechanisms of actin-
based cell migration. As a result, despite some remaining open questions, lamellipodial
migration is now well understood and described. This migration mode implies that specific
adhesion points transmit intracellular pulling forces from the cytoskeleton to the substrate
[Rafelski and Theriot, 2004, Vicente-Manzanares et al., 2009] Actin filaments polymerize be-
low the leading plasmamembrane generating pushing forces, and plasmamembrane tension
resists actin network expansion, pushing back the actin filaments into the cell body. Through
adhesion complexes linking the cytoskeleton to the substrate, these retrograde forces are
translated into forward locomotion of the cell body [Rafelski and Theriot, 2004].

Yet, recent studies indicate that cell migration can be achieved without specific adhesions
in confining three-dimensional environments [Bergert et al., 2015]. Increasing levels of con-
finement seemto favor adhesion-independentmigration inmanycell types [Friedl et al., 2001],
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and can trigger transitions from integrin-based towards low-adhesive migration modes.
However, too strong confinement decreases and even prevents migration [Wolf et al., 2013],
due to cell stiffness and nucleus volume. If in the last decade adhesion-independent migra-
tion has emerged as a possibly commonmigration mode, the mechanisms of cell propulsion
in this case are still poorlyunderstood. So far in the literature, there is onlyoneknownalterna-
tive to lamellipodialmigration: membraneblebs [Blaser et al., 2006,Charras and Paluch, 2008].
These blebs are cellular extensions free of actin filaments, and generated by intracellular
hydrostatic pressure [Tinevez et al., 2009]. Once generated, these blebs grow until a new
actin cortex is reassembled inside, which eventually contract and allow the cell to move
[Yin Lim et al., 2013]. However, numerous studies display cells migrating in an adhesion-
free manner without bleb formation.

Several physical mechanisms have been proposed for force transmission between cell
and substrate during migration without focal adhesions: (i) cell migration by swimming
(by creation of blebs, [Yin Lim et al., 2013]), (ii) force transmission based on cell-substrate
intercalations of lateral protrusions into gaps in the matrix, (iii) chimneying force transmis-
sion where cells push against the obstacles [Hawkins et al., 2011, Malawista et al., 2000] or
again (iv) flow-friction driven force transmission. In this last case, mechanisms based on
non-specific friction between the cell and the substrate have been investigated to account for
adhesion-independent migration [Hawkins et al., 2011]. Here, intracellular forces generated
by the cytoskeleton are transmitted to the substrate via non-specific friction which has been
experimentally measured in [Bergert et al., 2015, Lämmermann et al., 2008]. The molecular
origin of nonspecific friction has not been experimentally investigated. Friction could result
from interactions between molecules at the cell surface and the substrate, and unveiling the
microscopic origin of nonspecific friction will be an important question for future studies.

In this paper, we propose a simplified 2D model for focal adhesion-independent cell
migration, based on the mechanisms (iv). We aim to develop a simplified framework to
study whether adhesion-free migration could be primarily driven by simple mechanical
features.

Our model is focused on the cell’s cortex, which is assumed to be an elastic material
confined in thehorizontal plane. Becauseof the cytoplasmicpressure, it is subject to outwards
pressure forces. Mathematically, this takes the formof a systemof parabolic equations, where
the polymerization process leads to an advection-type term. This continuous formulation
also allows to properly define the reaction forces compensating mass displacement due to
membrane renewal. With this very simple model, we are able to trigger cell migration, with
speed depending on the geometrical characteristics of the obstacles. Our results seem to
be in qualitative agreement with the biological observations. In Section 2, we present the
biological observation of leukocyte migrating cells and the experimental setting. Section 3 is
concerned with the mathematical model which is analyzed in Section 4. Section 5 presents
our numerical results.

2 Leukocyte migration in artificial microchannels
Toaddress the question of adhesion-independentmigration of leukocytes, we took advantage
of a T cell line, that allows for genetic modifications. In order to remove the link between the
adhesion complexes and the substrate, we deleted talin, a cytosolic adaptor protein essential
for integrin functionality, using the CRISPR/Cas9 system [Shalem et al., 2014]. In addition,
weusedwell-establishedmicrofabricated channels [Vargas et al., 2014] tomimic the confined
invivo environment, coupled to ahome-mademicrofluidic set-up [Reversat et al., 2018]. This
set-up allows us to observe that talin KO cells are completely unable to adhere andmigrate in
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confinement and in smooth-walled channels [Reversat et al., 2018]. Strikingly, their motility
is restored in ratchet-baring channels (see Fig. 1).

Figure 1: Leukocyte (in red) migrating from left to right in a ratchet channel. The channel
has three sections with wave lengths 6µm, 12µm, and, respectively, 24µm.

3 The mathematical model
Since the mechanisms producing the behavior described in the previous section are not
known, we propose a rather simple model for the essential components. The essential idea is
that, guided by a chemotactic signal, the cell polarizes with increased actin polymerization
near the front end. This is assumed to induce a flow of the cell cortex from front to rear,
where depolymerization dominates. The cortex is assumed to be an elastic material with a
tendency to equidistribute actin along the cell periphery. This mechanism, together with a
constant cytoplasmic excess pressure (actually the pressure difference between cytoplasmic
and extracellular pressure), determines the cell shape.

The most critical model ingredient are the forces between the cell and its environment.
We assume an unspecific friction with the extracellular liquid, assumed at rest, counteracted
by a compensating force, which can be seen as a consequence of the intracellular transport
of actin from rear to front. This compensation is chosen such that the cell does not move in
an unconstrained environment.

2
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Figure 2: Schematic description of the cell. The cortex is subject to the a number of physical
effects: 1 pressure forces, 2 linear elasticity forces, 3 - 4 de-/polymerization, 5 reaction
forces due to transport. Depolymerized actin is transported from the back of the cell (blue
region) to the front (green region) where it becomes part of the cortex again via polymer-
ization. The transport inside the cell —in white— is not modeled, but by conservation of
the center of mass, it results in a reaction force on the cortex 5 . The inlet show that at
the discrete level (for numerical experiments), on can consider the cortex as a chain of mass
points, linked by linear springs.

In accordance with the experimental data we choose a two-dimensional model, which
seems reasonable for the experimental situation, where the cell is confined between two flat
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surfaces. Fig. 2 illustrates a discrete version of the model, where the cell cortex is described
by mass points. We return to this description in Section 5 for simulation purposes, but here
we shall formulate a continuous version of the model, where at time t ≥ 0 the cortex is
represented by a Jordan curve

Γ(t) �
{
X(s , t) : s ∈ T1} ⊂ R2 .

The one-dimensional torus T1 will be represented by intervals of length 1, and the variable
s measures the amount of actin material with the total amount normalized to 1. The interior
of Γ(t) is denoted by Ω(t), such that Γ(t) � ∂Ω(t). Assuming that Γ(t) is smooth enough, we
denote by τ(t , s) and n(t , s) the unit tangent and unit outward normal vectors. Assuming
positive orientation of the parametrization, we have

τ �
∂sX
|∂sX | , n � −τ⊥ ,

with the convention (a , b)⊥ � (−b , a). The notation is illustrated in Figure 3.

τ �
∂s X
|∂s X |

n � −τ⊥

∂sX⊥

Figure 3: The parameterization and associated vector quantities

The cortex is assumed to be elastic and in equilibrium if |∂sX | � 1, such that 1 represents
the scaled total equilibrium length of the cortex. An elastic resistance against stretching, but
not against compression, is described by the potential energy functional

Eel(X) �
1
2

∫
T1
(|∂sX | − 1)2+ ds . (1)

Neglecting resistance against compression can be seen as a convexification of the elastic
energy, which facilitates the analysis of Section 4. Actually, we expect the cortex to be always
under tension, such that this assumption should not be relevant from a modeling point of
view.

This expectation relies on another model ingredient, a cytoplasmic pressure exceeding
the extracellular pressure by a constant amount p > 0. The associated potential energy
contribution is given by

Ep(X) � −p |Ω(t)| �
p
2

∫
T1

X · ∂sX⊥ ds . (2)

The assumption of a prescribed constant value of p can be seen as a model simplification.
Possibly more precise would be the assumption of a fixed prescribed cell volume, measured
by the area |Ω(t)|. In this case p would become a time dependent unknown with the
mathematical interpretation of a Lagrange multiplier.
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The channel walls and other obstacles are modelled by requiring Ω(t) ⊂ Ωc , where the
domain Ωc ⊂ R2 denotes the admissible region. For analysis purposes the obstacles will be
softened by introducing the energy contribution

Eobst,δ(X) �
∫
T1

Wδ(X)ds , Wδ �
(
δ + ρδ ∗ 1Ωc

)−1
, (3)

where 1Ωc denotes the indicator function of the admissible region, the small parameter
δ > 0 measures the softness of the obstacle, and ρδ is a positive regularization kernel,
approximating the Delta-distribution as δ→ 0. The formal limit of Eobst,δ as δ→ 0 takes the
value 1, when the constraint Ω ⊂ Ωc is satisfied, and the value infinity, when it is violated.

The active component of the model comes from actin polymerization and depolymeriza-
tion in the cortex. We assume that cell polarization manifests itself by local imbalances of
this process producing a net increase of actin close to the cell front and a decrease close to
the rear of the cell. For simplicity wemake the equilibrium assumption that the total amount
of actin in the cortex does not change.

We introduce the arclength l, which is given by

l(s , t) �
∫ s

0
|∂sX(σ, t)|dσ . (4)

This relation between the arc length l and the Lagrangian variable s can be inverted in terms
of the actin density ρ(l , t) per arc length:

s(l , t) �
∫ l

0
ρ(λ, t)dλ ,

implying |∂sX | � ρ−1. We denote by f (l , t) the rate of actin increase ( f > 0) or decrease
( f < 0) per time unit and per arc length, so that ρ satisfies

∂tρ � f .

The above mentioned equilibrium assumption translates to∫
Γ

f dl �
∫
T1

f (l(s , t))|∂sX(s , t)|ds � 0 , t ≥ 0 . (5)

We then obtain the material derivative for functions of s:

D
Dt

� ∂t +

(∫ l(s ,t)

0
f (λ, t)dλ

)
∂s , (6)

which has to be understood relative to the arc length along Γ, measured from the point
X(0, t). In particular, the velocity of the cortex relative to the laboratory coordinates is given
by DX/Dt.

With the prescription of f (l , t) the total amount of relocated actin is not controlled, since
the arclength of the cortex varies with the dynamics. Therefore we shall consider

g(s , t) � f (l(s , t), t)|∂sX(s , t)| , (7)

the rate of change of actin mass per actin mass along the cortex, as given. This roughly
assumes growth and decay rates given per actin filament. This leads to

D
Dt

� ∂t +

(∫ s

0
g(σ, t)dσ

)
∂s , (8)
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Frictionbetween the cell surface and the surroundingfluid,which is assumednonmoving,
is modeled by the L2-gradient flow for the total energy with the contributions (1), (2), and
(3), where the friction force is given in terms of the material derivative:

DX
Dt

� −E′el(X) − E′p(X) − E′obst,δ(X)

� ∂s

(
(|∂sX | − 1)+

∂sX
|∂sX |

)
− p ∂sX⊥ − ∇Wδ(X) .

Note that the friction coefficient has been eliminated by an appropriate choice of the time
scale. This is however not yet the final form of the model. It would predict movement of
freely floating cells in the absence of any confinement, as can easily be seen by integrating
the equation in the absence of the last term with respect to s:

d
dt

∫
T1

X ds � −
∫
T1

(
∂sX

∫ s

0
g(σ, t)dσ

)
ds �

∫
T1

X g ds .

Since the right hand side will in general be different from zero, the center of mass will move.
An explanation is the force, used to move depolymerized G-actin from regions with g < 0
to regions with g > 0. By the action-reaction principle it seems reasonable to introduce a
compensating counterforce with density Fcomp(s , t), acting on the cortex:

∂tX + ∂sX
∫ s

0
g dσ � ∂s

(
(|∂sX | − 1)+

∂sX
|∂sX |

)
− p ∂sX⊥ − ∇Wδ(X) + Fcomp . (9)

It can be chosen arbitrarily, except that the total force is fixed:∫
T1
Fcomp ds � −

∫
T1

X g ds . (10)

We do not make a choice for Fcomp at this point, the precise choice made for our numerical
experiments will be discussed in Section 5. One can note that Fcomp is roughly directed from
the front towards to back of the cell, since g is negative (respectively positive) where the
depolymerization (respectively polymerization).

4 Existence results

4.1 Formulation of the main results
We shall prove a global existence result for the initial value problem for (9) and a convergence
result for the limit δ→ 0 of hard channel walls.

Since the terms describing the cortical flow are chosen to have a vanishing integral with
respect to s, we introduce Sflow, which is chosen such that

∂sSflow[X] � ∂sX
∫ s

0
g dσ − Fcomp .

The initial value problem can then be written in the form

∂tX + ∂s(Sflow[X]) � ∂s

(
(|∂sX | − 1)+

∂sX
|∂sX |

)
− p ∂sX⊥ − ∇Wδ(X) , (11)

X(s , 0) � X0(s) . (12)
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For function spaces we use the abbreviations L B L2(T1)2 andH B H1(T1)2 with the norms
‖ · ‖2 and, respectively, ‖ · ‖1,2, where the torus T1 is represented by the s-interval (0, 1), and
also ‖ · ‖p for the Lp(T1)-norm, p ≥ 1, and 〈·, ·〉2 for the L-scalar product. For the data we
shall use the following assumptions:

(A1) p < 2π,

(A2) ‖Sflow[X]‖2 ≤ cflow‖X‖2, ‖∂s(Sflow[X])‖2 ≤ cflow‖X‖1,2.

(A3) Wδ is given by (3), where the domainΩc ⊂ R2 has a smooth boundary, and x ·∇Wδ(x) ≥
0 for x ∈ R2 and for δ small enough.

(A4) X0 ∈ H and {X0(s) : s ∈ (0, 1)} ⊂ Ωc .

Assumption (A1) can be motivated by looking at the simplified problem without cor-
tical flow and without obstacles, i.e. ∇Wδ � Sflow � 0. In this case the expected circular
equilibrium state Xequ exists only under Assumption (A1) and is given by

Xequ(s) �
1

2π − p
(
cos(2πs), sin(2πs)

)
.

Assumption (A2) is somewhat restrictive compared to the models discussed in Section 3. It
can be satisfied for bounded actin growth rate g. The inequality in Assumption (A3) means
roughly that the allowed domain Ωc is star shaped (and that its center has been taken as
the origin). Finally, Assumption (A4) on the initial cortex shape implies that the elastic and
pressure energies are finite and that the cell lies in the admissible region. It might be noted
that we do not assume that X0 parametrizes a simple curve. We do not refer to this property
since our results do not guarantee that it is preserved globally in time.

Theorem 1. (Global existence for the penalized problem) Let the Assumptions (A1)–(A4) hold and
let δ > 0 be small enough. Then there exists a solution Xδ of (11), (12), such that

Xδ ∈ H1
loc(R+;L) ∩ L∞loc(R+;H) ,

uniformly with respect to δ→ 0.

Remark 1. By theMorrey inequality proved in the appendix, Xδ is Hölder continuous with exponent
1
2 in terms of s and 1

4 in terms of t, again uniformly in δ.

The proof will be carried out in the following three sections. It relies on methods for
gradient flows, although they cannot be applied in a straightforward way. The terms on
the right hand side of (11) are the L2-gradients of the energy functionals Eel, Ep, and Eobst,δ
(see Section 3), the first of which is convex. The second and third are treated as continuous
perturbations. The cortical flow term on the left hand side is nonvariational.

Our approach is based on a semi-implicit time discretization, where the cortical flow
term is evaluated at the old time step. This allows to solve the discrete problem by energy
minimization. A priori estimates for the discrete solution allow to pass to the continuous
limit.

These estimates are also uniform in the penalization parameter δ for the potential, so we
can also carry out the high penalization limit:

Theorem2. (Limit of hard channelwalls)With the assumptions of Theorem1, the family {Xδ : δ > 0}
of solutions of (11), (12) contains a sequence, converging (as δ → 0) uniformly on bounded time
intervals to

X ∈ H1
loc(R+;L) ∩ L∞loc(R+;H) ,
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which satisfies X ∈ Ωc on R+ × T1, (12), and

∂tX + ∂s(Sflow[X]) � ∂s

(
(|∂sX | − 1)+

∂sX
|∂sX |

)
− p ∂sX⊥ , (13)

for all (s , t) such that X(s , t) ∈ Ωc .

The properties of X stated in the theorem are not a complete formulation of the obstacle
problem. Information on the behavior at the edges of contact regions is missing. Since the
equation is degenerately parabolic, this is not so obvious. Under the additional assumption of
convexity of the permissible setΩc , one could expect that X solves the variational inequality〈

∂tX + ∂s(Sflow[X]) − ∂s

(
(|∂sX | − 1)+

∂sX
|∂sX |

)
+ p ∂sX⊥,Y − X

〉
2
≥ 0 ,

for all Y ∈ H such that Y(s) ∈ Ωc , s ∈ T1.
For the numerical experiments, the obstacle is not modeled by a potential. For any

X(s , t) ∈ Γ(t), the total resulting force is rather restricted to the tangent cone toΩc at X(s , t).
In other words, our numerical simulations will be based on the formulation

∂tX(s , t) � Pc

(
∂s

(
(|∂sX | − 1)+

∂sX
|∂sX |

)
− p ∂sX⊥ − ∂s(Sflow[X])

)
, (14)

where the potential Wδ does not appear. The Pc is the projection on the tangent cone:

Pc(F(s , t)) �
{
(F(s , t) · τc(s , t))τc(s , t) for X ∈ ∂Ωc , F(s , t) · nc(s , t) > 0 ,
F(s , t) else , (15)

where τc and nc are a normalized tangent vector and, respectively, the normalized outward
normal along ∂Ωc .

4.2 The energy functional and its properties
We introduce the total energy functional

Eδ(X) B Eel(X) + Ep(X) + Eobst,δ(X)

�

{∫
T1

(
1
2 (|∂sX | − 1)2+ +

p
2 X · ∂sX⊥ + Wδ(X)

)
ds if X ∈ H

+∞ otherwise,

and prove its coercivity:

Lemma 1 (Coercivity). For p < 2π and for all X ∈ L

Eδ(X) ≥
1
2

(
1 −

p
2π

)
‖∂sX‖22 − ‖∂sX‖2 ≥ −

π
2π − p

. (16)

Proof. W.l.o.g. we assume X ∈ H and denote byΩ the enclosed domain and by L the length
of its boundary. Then the isoperimetric and the Cauchy-Schwarz inequalities imply

Ep(X) � −p |Ω| ≥ −p
L2

4π � −
p

4π ‖∂sX‖21 ≥ −
p

4π ‖∂sX‖22 .
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For the elastic energy again the Cauchy-Schwarz inequality is used:

Eel(X) �
1
2

∫
T1
(|∂sX | − 1)2ds − 1

2

∫
|∂s X |<1

(|∂sX | − 1)2ds ≥ 1
2

(
‖∂sX‖22 − 2‖∂sX‖1 + 1

)
− 1

2

≥ 1
2 ‖∂sX‖22 − ‖∂sX‖2 ,

which completes the proof, since Eobst,δ ≥ 0. �

Remark 2. This result shows that the definition of Eδ has been appropriate, since finiteness of Eδ(X)
implies membership of X inH .

Lemma 2. With respect to the weak topology inH , the functional Eel is convex and lower semicon-
tinuous, and the functionals Ep and Eobst,δ are continuous.

Proof. The semicontinuity of Eel follows from [Giaquinta, 1983, Theorem 2.5]. The other
properties are straightforward. �

4.3 Time discretization
Choose τ > 0 and Xn−1 ∈ H . Then, by the results of the preceding section, the functional

Φ(τ,Xn−1; Y) B
‖Y − Xn−1‖22

2τ + Eδ(Y) + 〈Y, ∂s(Sflow[Xn−1])〉2

is weakly lower semicontinuous onH . It is also bounded from below since Eδ is, and since

‖Y − Xn−1‖22
2τ + 〈Y, ∂s(Sflow(Xn−1)〉2 ≥ −

τ
2 ‖∂s(Sflow[Xn−1])‖22 − ‖Xn−1‖2‖∂s(Sflow[Xn−1])‖2

≥ −
(τ

2 c2
flow + cflow

)
‖Xn−1‖21,2 .

Furthermore, sublevel sets are bounded in H . This is sufficient for the minimum of
Φ(τ,Xn−1; ·) to be assumed inH , and we choose

Xn ∈ argminY∈H Φ(τ,Xn−1; Y) , n ≥ 1 .

We define Xτ ∈ C0,1
loc(R+,H) as the piecewise linear interpolation of the Xn , n ≥ 0. More

precisely, we have

Xτ(t) B Xkt +
(t − ktτ)

τ
(Xkt+1 − Xkt ) , (17)

where kt ∈ N is such that ktτ ≤ t < (kt + 1)τ.

Lemma 3 (Uniform estimates for the interpolation). Let Assumptions (A1)–(A4) hold. Then

Xτ ∈ H1
loc(R+,L) ∩ L∞loc(R+,H) ,

uniformly with respect to small enough τ and δ.

Proof. Denoting the duality bracket with 〈·, ·〉, the variation ofΦ in the direction Y ∈ H gives

〈Xn − Xn−1,Y〉2
τ

+ 〈∂Eδ(Xn),Y〉 − 〈∂sY, Sflow[Xn−1]〉2 � 0 , (18)
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with the formal gradient of the energy determined from

〈∂Eδ(Xn),Y〉2 �

∫
T1

(
(|∂sXn | − 1)+

∂sXn · ∂sY
|∂sXn | + Y ·

(
p∂s(Xn)⊥ + ∇Wδ(Xn)

) )
ds

With Y � Xn and with Assumptions (A1) and (A3) we get, similarly to the proof of Lemma
1,

〈∂Eδ(Xn),Xn〉2 ≥
∫
T1
(|∂sXn | − 1)+ |∂sXn |ds − 2p |Ωn | ≥

(
1 −

p
2π

)
‖∂sXn ‖22 − ‖∂sXn ‖2 −

1
4 ,

and we observe
〈Xn − Xn−1,Xn〉2 ≥

1
2

(
‖Xn ‖22 − ‖Xn−1‖22

)
.

Finally, we use

|〈∂sXn , Sflow[Xn−1]〉2 | ≤ γ‖∂sXn ‖22 +
c2

flow
4γ ‖X

n−1‖22

with 0 < γ < 1 − p/(2π). This implies the existence of positive constants A1,A2,A3 (inde-
pendent from n, τ and δ) such that

‖Xn ‖22 + τA1‖∂sXn ‖22 ≤ (1 + τA2)‖Xn−1‖22 + τA3 .

A discrete Gronwall estimate now gives

‖Xn ‖22 ≤ ‖X0‖22 eA2nτ
+

A3
A2

(
eA2nτ − 1

)
,

and, as a consequence,

τ
n∑

k�1
‖∂sXk ‖22 ≤ C(nτ) . (19)

From the last two bounds we get for any t1, t2 > 0

sup
t∈[t1 ,t2]

‖Xτ(t)‖2 ≤ ‖X0‖22 eA2k2τ +
A3
A2

(
eA2k2τ − 1

)
,

and

‖∂sXτ‖2L2([t1 ,t2]) ≤
k2∑

k�k1

τ
(
‖∂sXk ‖22 + ‖∂sXk+1‖22

)
≤ 2C(k2τ) ,

where k2τ ≤ t2 < (k2 + 1)τ. In other words, we have shown Xτ ∈ L∞loc(R+,L) ∩ L2
loc(R+,H)

uniformly in τ and δ.
From the minimization we get

‖Xn − Xn−1‖22
2τ + Eδ(Xn) + 〈Xn , ∂s(Sflow[Xn−1])〉2 ≤ Eδ(Xn−1) + 〈Xn−1, ∂s(Sflow[Xn−1])〉2 .

With the velocity ∂tXn
τ �

Xn−Xn−1

τ of the linear interpolant this reads
τ
2 ‖∂tXn

τ ‖22 + Eδ(Xn) ≤ Eδ(Xn−1) − τ〈∂tXn
τ , ∂s(Sflow[Xn−1])〉2

With the Young inequality and Assumption (A2) we obtain
τ
4 ‖∂tXn

τ ‖22 + Eδ(Xn) ≤ Eδ(Xn−1) + τc2
flow‖∂sXn−1‖22

Using (19), summation over n and an application of Lemma 1 complete the proof. �
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4.4 The continuous and high penalization limits
Considering the time discrete solution (Xn)n≥0, we recall the definition (17) of Xτ and define
two additional piecewise constant continuous-time approximations:{

Xold
τ (t , s) B Xkt (s) ,

Xnew
τ (t , s) B Xkt+1(s) , where ktτ < t < (kt + 1)τ ,

Then (18) implies

∂tXτ + ∂Eel(Xnew
τ ) + p∂s(Xnew

τ )⊥ + ∇Wδ(Xnew
τ ) + ∂sSflow[Xold

τ ] � 0 , (20)

where ∂Eel(X) is the subdifferential of the elastic energy, given by thedistributional derivative
with respect to s of −(|∂sX | −1)+ ∂s X

|∂s X | . The equality only holds in the dual space ofH a priori,
but thanks to Lemma 3, it also holds in L. It is our goal to pass to the limit τ → 0 in this
equation. By the results of the previous section, there exists a sequence τk → 0 such that

lim
k→∞

Xτk � lim
k→∞

Xnew
τk

� lim
k→∞

Xold
τk

� X in L2
loc(R+,L) .

Wealso have that all the terms in (20) except ∂Eel(Xnew
τ ) are bounded in L2

loc(R+,L) uniformly
in τ and δ. In all these terms we can pass to the limit in the sense of distributions, but also
weakly in L2

loc(R+,L).
This also implies weak convergence of ∂Eel(Xnew

τk
) to some η ∈ L2

loc(R+,L), and we obtain

∂tX + η + p∂sX⊥ + ∇Wδ(X) + ∂sSflow[X] � 0 .

It remains to identify η.
Since the subdifferential is a maximal monotone operator, we shall apply the Minty

trick [Hungerbühler, 2000, Theorem 2.2], [Minty, 1963]. Testing (20) against Xnew
τ , its strong

convergence immediately implies

lim
k→∞

∫ T

0
〈∂Eel(Xnew

τk
),Xnew

τk
〉2dt �

∫ T

0
〈η,X〉2dt ,

which is sufficient for η ∈ ∂Eel(X) and, thus,

η � −∂s

(
(|∂sX | − 1)+

∂sX
|∂sX |

)
,

to be understood as the weak derivative of an L2-function, since X ∈ L∞loc(R+,H). This
completes the proof of Theorem 1.

For the proof of Theorem2,wenote that by the results of Theorem1 and followingRemark
1 the uniform convergence of a subsequence to X is immediate. The uniform boundedness
of Eobst,δ implies X ∈ Ωc by its continuity and by the uniform convergence, since Wδ(x) → ∞
for x < Ωc .

Similarly, since ∇Wδ(x) → 0 for x ∈ Ωc , the weak formulation of (13) can be derived by
using test functions vanishing away from {(s , t) : X(s , t) ∈ Ωc}. The convergence of the
various terms is handled exactly as for the continuous limit.
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5 Numerical results

5.1 Discretization
We start with the situation without obstacles and introduce N ∈ N grid-points for the
discretization of s such that si � i∆s, ∆s �

1
N for i considered on a discrete torus, meaning

that i is identified with i + N . The time step is ∆t > 0 and tn � n∆t, n ≥ 0. The numerical
approximation for X(si , tn) is denoted by Xn

i .
We assume a cell which is polarized in the fixed direction ω ∈ R2, |ω | � 1 and define in

0
and in

1 such that
ω · Xn

in
0
� max

i
ω · Xn

i , ω · Xn
in
1
� min

i
ω · Xn

i . (21)

Actin is added to the cortex at the leading end Xn
in
0
and removed at the trailing end Xn

in
1
,

corresponding to s0(tn) � in
0∆s, s1(tn) � in

1∆s in the notation of Section 3.
We use the explicit Euler scheme for the time discretization and symmetric finite differ-

ences for the discretization in the s-direction:

Xn+1
i − Xn

i

∆t
� F[Xn]i B v 1i1≤i≤i0

Xn
i+1 − Xn

i−1
2∆s

+

Gn
i+1/2 − Gn

i−1/2
∆s

− p
(Xn

i+1 − Xn
i−1)
⊥

2∆s
+ Fn

comp,i ,

where the spring forces are given by

Gi+1/2 �

(
|Xi+1 − Xi |
∆s

− 1
)
+

Xi+1 − Xi

|Xi+1 − Xi |
, (22)

and the compensating force by

Fn
comp,i �

v
2

(
Xn

in
1−1 + Xn

in
1

2 −
Xn

in
0 +1 + Xn

in
0

2

) (
δ̃a(i − in

0 ) + δ̃a(i − in
1 )

)
.

Here δ̃a(i) is a mollification of the Dirac Delta in si , with smoothing parameter a such that∑
i δ̃a(i)∆s � 1. The approximation for the compensating force has been chosen such that the

discrete center of mass
∑

i Xn
i ∆s is independent of time (in the absence of obstacles).

The restriction to the admissible domain Ωc is enforced by an approximation of the
formulation (14), (15):

Xn+1
i − Xn

i

∆t
� Pc ,ε(F[Xn]i) ,

where
Pc ,ε(F[X]i) �

{
(F[X]i · ®t)®t for dist(Xi , ∂Ωc) < ε , F[X]i · ®n > 0 ,
F[X]i else ,

with the tangent and normal vectors evaluated at the orthogonal projection of Xi to ∂Ωc (see
Fig. 4). The width ε of the tube, where the projection is applied, is coordinated with the
choice of the time step such that the admissible domain is not left.
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Figure 4: Sketch of the projection of the forces acting on the cell cortex close to the walls.

5.2 Dimensionalisation of the model parameters
We denote by κS the spring force and by µ the internal friction coefficient in front of the time
derivative. Note that all these quantities have been set to 1 so far in the model, without loss
of generality. We recover them here for the sake of computing their dimensions, Eq. (14)
reads:

µ∂tX � Pc

(
κS∂s

(
(|∂sX | − 1)+

∂sX
|∂sX |

)
− p ∂sX⊥ − 1

µ
∂s(Sflow[X])

)
.

We denote by x0 and t0 the space and time units of the model. The space unit is chosen to
be half the cortex length of leucocytes L � 2x0, i.e x0 ≈ 47.6µm. The polymerization speed
in leukocytes is around 12µm.min−1 and the dimensionless polymerization speed writes
v � 2 x0

t0
therefore 1 time unit of the model corresponds to t0 ≈ 8min. The elastic properties

of the human red blood cell have been studied via micropipette aspiration experiments in
[Waugh and Evans, 1979] where the authors show that the stiffness constant of leukocytes
membrane is of order kS � 7pN.µm−1. In our model kS

µ �
1
t0

� 0.1265min−1 therefore we
can deduce that the internal friction coefficient µ ≈ 55pN.µm−1.min. Finally, we chose the
pressure constant p � 3.2. We deduce p

µ � 3.2 1
t0

� 0.4min−1 and therefore p ≈ 22pN.µm−1

which is in biological range. All the model parameters are summarized in Table 1.
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Parameters
Symbol Numerical Value Biological value Description

Numerical parameters

∆t 4.10−2 N/A Time step
∆s 5.10−3 N/A Discretization step
N 200 N/A Number of nodes
ε 0.1 N/A Distance to the obstacle for the projection
a adapted N/A Length of the polymerization zone

Model parameters
L 1 48µm Reference membrane length

Le f f 2 94 µm Effective membrane length -In biological range
κS 1 7 µpN.µm−1 Stiffness constant -[Waugh and Evans, 1979]
p 3.2 22 pN.µm−1 Pressure force -In biological range
v 2 12 µm.min−1 Polymerization speed -In biological range
µ 1 55 pN.µm−1.min Internal friction coefficient In biological range

Table 1: Numerical and model parameters for the simulations of the paper.

5.3 Simulations without Obstacle
In Fig. 5 we show computed equilibrium shapes of the cortex in the absence of obstacles.
The polarization of the cell is always to the left (i.e. ω � (−1, 0) in (21)).

Fig. 5 (A) shows a simulation without compensating force. As expected, the cell mi-
grates in the direction of the leading end with a speed slightly less than the polymeriza-
tion/depolymerization speed. The equilibrium shape is a circle.

Figs. 5 (B,C,D) show the equilibrium shapes obtained for different values of h �
a
L , where

we recall that a measures the spread of the compensating force and L is the equilibrium
circumference. The most important observation is that migration has been turned off suc-
cessfully by including the compensating force. The deviation of the equilibrium shape from
a circle is stronger for more concentrated compensating forces (smaller values of a therefore
σ̃, compare Figs. (D) to (B)).

14



-10 0 10

-10

0

10

h= 0.01, speed= 1.0719e-14 m.min-1

-10 0 10

-10

0

10

h= 0.04, speed= 2.2e-15 m.min-1

-10 0 10

-10

0

10

h= 0.1, speed= 2.5277e-15 m.min-1

-60 -50 -40 -30

-10

0

10

= 0.01, speed= 7.6947 m.min-1
(A)

(B) (C) (D)

Figure 5: Different cell shapes obtained for different values of h: (A) Without compensating
force. (B,C,D, E) with compensating force: (B) h � 0.01, (C) h � 0.04, (D) h � 0.1. Solid: cell
cortex, dashed: circle with the same circumference.

5.4 Simulations of Migration in Channels
In order to reproduce the biological experiments, our protocol for simulations with channels
is started by putting the cell with an initially circular shape close to the opening of a channel.
Then we let it evolve to an equilibrium shape as in the preceding section, after which we turn
on a force pushing it into the channel. This is realized by turning off the pressure force in a
region around the trailing end. The pushing is removed as soon as the cell is entirely inside
the channel.
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Figure 6: Numerical simulations of cells pushed into channels with flat walls for h � 0.04 and
channel width 2.16µm (A) and for h � 0.8 and channel width 3.7µm (B). For each simulation,
we show in the top left corner the initial condition, and in the top right corner the final
position.

In channels with flat walls with varying widths and spreads of the compensating force,
nomigration is observed in the simulations in spite of polarization and corresponding cortex
flow (Fig.6). These results are in agreement with the experiments described in Section 2.

Ratchet channels are described by four parameters: (i) a wave length L0 of the width
variations, (ii) a minimal width 2w0, (iii) an amplitude of the width variations d0, and (iv)
an asymmetry parameter α. For the length x along the channel, the walls of the channel are
given by ± f (x), with the function

f (x) � d0(g(x) − 1) − w0 ,

where g(x) solves the fixed point equation:

g(x) � sin
(

2πx
L0

+ αg(x)
)
.

In all our numerical simulations we choose α � 0.4. Note that for α � 0, the walls would be
sinusoidal functions of x, i.e. symmetric with respect to the reflection x ↔ −x. As in the
experiments, in each simulated channelwe combine threewavelengths, L0 � 3.9, 7.6, 11.7µm,
increasing in the migration direction. Fig. 7 (I) shows four examples with 2w0 � 1.4µm (A
and C) and 2w0 � 3.7µm (B and D), with d0 � 0.78µm (A and B) and d0 � 3.1µm (C and
D). As further illustration, Fig. 7 (II) shows a cell at equilibrium before being pushed into a
ratchet with L0 � 7.6µm, 2w0 � 3.7µm, and d0 � 1.54µm.
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Period 1Period 2Period 3

Period 1Period 2Period 3

Width = 1.36 μm

Period 1Period 2Period 3

Depth = 0.76 μm

Period 1Period 2Period 3
Depth = 3 μm

Width = 3.7 μm
(A) (B)

(C) (D)

Period 2 (7.6 μm/ratchet)

(II)

(I)

Width = 3.7 μm
R=15 μm

Figure 7: (I) Examples of the different obstacle geometries used in the simulations: we
explore narrow obstacles of minimal width 1.4µm (A and C) or wide obstacles of minimal
width 3.7µm (B and D), smooth ratchets of amplitude 0.78µm (A and B) or larger ratchets of
amplitude 3.1µm (C and D). (II) Example of a stationary cell (at equilibrium), before being
pushed into a ratchet channel of wavelength 7.6µm, minimal width 3.7µm and amplitude
1.54µm.

Results of a typical simulation are shown in Fig. 8. In this situation the cell is able to
migrate in all three different wavelengths. It seems that the average speed is highest in the
part with the intermediate wavelength. Within each wavelength region, the behavior seems
to be periodic related to the periodicity of the channel walls. The bigger the wavelength, the
more we observe a jump-like migration pattern indicated by peeks in the cell speed.

17



Period 1

Period 2
Period 3

Figure 8: Numerical simulation of a cell in a ratchet channel of minimal width 1.4 µ m,
amplitude 2.7 µ m, and variable wave lengths (3.9, 7.6, and 11.7 µ m), for h � 0.1. Top left:
initial condition. Top right: at time 2h. Bottom left: circumference vs. time. Bottom right:
Speed of the center of gravity vs. time.

A study of the dependence of the mean cell speed on the various parameters has been
carried out (Fig.9). Not surprisingly, increasing the channel width decreases the cell speed
and can prevent cell migration. For ratchets of the smallest wavelength 3.9 µ m, the cell is
unable tomigrate for large amplitudes. In this situation the cell is unable to enter the ratchets,
thus reducing its contact to the wall. The channel acts in these cases as if it had flat walls.
For period 7.6µm ratchets, the optimal speed is obtained for large enough amplitude. This
is expected, since for small amplitude the ratchet again acts as a flat walled channel. This
fact is reinforced in channels of period 11.6 µm, where only ratchets with large amplitude
can induce cell migration.

To sum up, cell speed is directly linked to the cell compression induced by the channel
geometry and to the possibility for the cell to push against parts of the channel wall facing
towards the migration direction.
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(A)

(B)

(C)

(D)

Figure 9: Average cell speeds (µm.min−1) in channels of different minimal widths w0: 1.4µm
(A), 2.2µm (B), 2.9µm (C) and 3.7µm (D). In each case, the cell speed is represented in
dependence of the spread h ∈ [0.04, 0.8] of the compensating force (vertical direction) and
of the amplitude d0 ∈ [0.78, 3.1]µm (horizontal direction). We consider channel walls with
wave lengths 3.8µm (left figures), 7.6µm (middle figures) and 11.7µm (right figures).

6 Conclusions
This study has been motivated by the experimental results described in Section 2, where
adhesion-free migration of leukocytes in artificial, structured micro-channels has been ob-
served.

A mathematical model for this process has been formulated. Migration is assumed to
be due to cortex flow, driven by a local imbalance of polymerization and depolymerization
in a polarized cell. Cell shape is stabilized by cytoplasmic pressure and elastic behavior
of the cortex. An undesired tangential friction, caused by the cortical flow, is balanced by
a compensating force, which can be attributed to the internal transport of depolymerized
actin.

19



The model has the form of an obstacle problem for a strongly nonlinear degenerate
parabolic system. Global existence of solutions has been proven under natural assumptions
on the data. The analysis relies on ideas from the theory of gradient flows, employing the
structure of the dominating elastic and pressure terms. The results are complete for an
approximate system with ’softened’ obstacles. The limit for hard obstacles can be carried
out, however with an incomplete characterization of the limiting problem.

For numerical simulations, a conservative, explicit-in-time discretization has been in-
troduced. Under appropriate time step restrictions, simulations are stable and (at least
qualitatively) reproduce the behavior observed in the experiments. In particular, migration
needs both confinement and sufficiently structured channelwalls. A parametric study shows
the expected dependencies on geometric properties of the channel.

From a modeling point of view, this study has to be seen as a first step. Reliable ex-
perimental information on cell cortex structure and dynamics is still scarce. The fact that
in our model migration strongly depends on the force compensating excess polymerization
and depolymerization, is rather questionable. In ongoing work, the model is extended by
a viscous resistance against cortex bending. This effect seems to be a reasonable alternative
providing the necessary pushing force against the channel walls. However, its inclusion
poses formidable new challenges both from an analytic and from a numerical point of view.
The extended model will be parametrized with the goal of quantitative agreement with
experimental data.

A Appendix: A modified Morrey inequality
Lemma 4. Let u ∈ L∞((0, T); H1(0, 1)) ∩ H1((0, T); L2(0, 1)) �: L∞t H1

s ∩ H1
t L2

s . Then

|u(s1, t1)−u(s0, t0)| ≤ 8
(
‖∂s u‖L∞t L2

s
+ ‖∂t u‖L2

s ,t

)
(|s1−s0 |1/2+|t1−t0 |1/4) , (s0, t0), (s1, t1) ∈ (0, 1)×(0, T) .

Proof. We introduce ∆s B |s1 − s0 | and ∆t B |t1 − t0 | and consider a rectangle W ⊂ (0, 1) ×
(0, T), containing the points (s0, t0), (s1, t1)with sides parallel to the t-axis of lengths ∆t and
parallel to the s-axis of lengths ∆s +

√
∆t, such that |W | � ∆t(∆s +

√
∆t). We have

u(s1, t1) − u(s0, t0) �
1
|W |

∫
W
(u(s1, t1) − u(σ, τ))d(σ, τ) + 1

|W |

∫
W
(u(σ, τ) − u(s0, t0))d(σ, τ) .

(23)
For estimating the second term, we introduce the curve {(s0 + (σ− s0)

√
p , t0 + (τ− t0)p) : 0 ≤

p ≤ 1}, whence it can be estimated by

1
|W |

∫ 1

0

1
2√p

∫
W
|σ − s0 | |∂s u |d(σ, τ) dp +

1
|W |

∫ 1

0

∫
W
|τ − t0 | |∂t u |d(σ, τ) dp ,

where the derivatives of u are evaluated along the curve. Employing the Cauchy-Schwarz
inequality, this can be estimated further by

∆s +
√
∆t√

|W |

∫ 1

0

1
2√p

√∫
W
|∂s u |2d(σ, τ) dp +

∆t√
|W |

∫ 1

0

√∫
W
|∂t u |2d(σ, τ) dp .

In the second integral over W we introduce the new coordinates (s , t) � (s0 + (σ− s0)
√

p , t0 +
(τ − t0)p); in the first one we first estimate the integrand by its supremum with respect to t
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and then make the coordinate transformation only in s:√
∆s +

√
∆t

∫ 1

0

dp
2p3/4 ‖∂s u‖L∞t L2

s
+

√
∆t

∆s +
√
∆t

∫ 1

0

dp
p3/4 ‖∂t u‖L2

s ,t

≤
(
2‖∂s u‖L∞t L2

s
+ 4 ‖∂t u‖L2

s ,t

)
(∆s1/2

+ ∆t1/4) .

Ananalogous treatment of thefirst termon the right hand side of (23) completes theproof. �
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