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Abstract. Electroporation is a complex phenomenon that occurs when biological tissues are subjected

to electric pulses. The clinical interest for the phenomenon has constantly increased for the last decades.

Indeed, electroporation makes it possible to either kill directly the cells in the target region (tumor) or to
introduce molecules into living cells. However, one of the main limitation of using electroporation in the

clinical routine comes from the technical difficulties raised by such therapies, in particular it is difficult to
well determine the treated zone. Numerical modeling of the electric field magnitude could provide a powerful

strategy to assess the treatment efficacy: thanks to well-designed models, the computation of the distribution

of the electric field is achievable, providing a numerical evaluation of the treatment. The main objective
of this work is to go further on the patient-adapted numerical modeling of the electric field magnitude by

laying the ground of the possible electroporation models – which will be compared qualitatively – and their

calibrations. This will be done in the framework of bioelectrical measurements on rabbit livers that come
from the literature.

Contents

1. Introduction 2
2. Electroporation models 2
2.1. The standard static model 2
2.2. The electric circuit approach of Voyer et al. 3
2.3. The static bidomain model 4
3. Data measurements 5
4. Numerical discretization and qualitative comparison between the models 7
4.1. Discretization and numerical approximation 7
4.2. Qualitative comparison between the models 9
5. Estimation strategy: illustrations on the standard static model 9
5.1. Parameters estimation algorithm 10
5.2. Estimations on synthetic data 12
5.3. Estimations on the data set of Sel et al. 12
6. Conclusion and perspectives 16
Acknowledgements 16
References 16

1RICAM - Austrian Academy of Sciences, Postgasse 7-9, 1170, Wien, Austria
2Univ. Bordeaux, IMB, UMR 5251, F-33400, Talence, France
3INRIA Bordeaux-Sud-Ouest, F-33400,Talence, France
4Bordeaux INP, IMB, UMR 5251, F-33400,Talence, France

E-mail addresses: gaspard@math.janko.fr.

1



1. Introduction

Electroporation (EP) is a complex phenomenon that occurs when biological tissues are subjected to
short, high intensity electric pulses. The physical rationale of EP at the cell scale consists of the increase
of membrane permeability when the cell is subjected to an electric field strong enough. More precisely,
when the cell transmembrane voltage (the difference of the electric potential across the cell membrane)
reaches around 1V, then defects are created in the membrane, which thus becomes permeant to extracellular
molecules [16, 15].

The clinical interest for the phenomenon has constantly increased for the last decades. Indeed, EP makes
it possible to either kill directly the cells in the target region (tumor) by a nonthermal mechanism named
irreversible electroporation (IRE) [5, 8, 6, 11], or to introduce non permeant molecules (ions, cytotoxic drugs
like bleomycin, DNA plasmids, etc.) into living cells, which is referred to as reversible electroporation [17,
10, 9]. The clinical interests in electroporation-based ablation therapies (EPAs) – either IRE alone or
electroporation combined with drug delivery, which is referred to as electrochemotherapy (ECT) – have
dramatically increased recently, after publications showing that EPAs provide interesting alternatives to
standard non surgical ablative techniques –radiation therapy, radiofrequency ablation (RFA), or cryoablation
(CrA)– to treat deep-seated non resectable tumors.

However EPAs are currently mainly limited to cutaneous and subcutaneous tumors. One the main reason
of the limitation in the clinical routine use of EPAs comes from the technical difficulties raised by such
therapies. Unlike standard ablative techniques which mainly deal with one needle, EPAs need at least two
and usually three to four needles (even more for complex tumor shapes): the a priori determination of the
treated zone is thus trickier than for standard ablative techniques. Moreover unlike thermal based ablation
therapies, as RFA or CrA, for which the monitoring of the temperature in the tumor gives to physician an
instantaneous assessment of the treatment, for EPAs the treated region is linked to the amplitude of the
electric field, which cannot be monitored instantaneously since the pulse durations are very short (several
tens of microseconds per pulse).

Electroporation is tightly linked to the electroquasistatic description of the electric field in the tissue.
Therefore numerical modeling of the electric field magnitude provides a powerful strategy to assess the
treatment efficacy: thanks to well-designed simulations, the numerical distribution of the electric field is
achievable, providing a numerical evaluation of the treatment. However the choice of the model and the
patient-dependent calibration, and particularly the patient-dependent organ conductivity, are crucial chal-
lenges which are still open.

The aims of the project is to compare the solutions of the different electroporation models found in the
literature and to investigate their calibrations for electrostatic descriptions of a tissue from bioelectrical
measurements on rabbit livers performed by Sel et al. [19]. After a presentation of 3 different static and 1
dynamical models of electroporation performed in Section 2, Section 3 presents the experimental set-up of
Sel et al. and shows how to link the models outputs to the data. After the presentation of numerical schemes
used to solve the models, Section 4 proposes a comparison of the solutions in the framework of Sel et al..
Section 5 is devoted to the investigation of parameters estimation from data measurements.

2. Electroporation models

In this section, we present three static models and one dynamical model, which provide the electrical
description of tissue. To compare the different models, the following simple configuration is considered (see

Figure 1). The domain Ω̃ is a connected, open smooth subset of Rd, d ∈ {2, 3}, and consists of two non
intersecting subsets: Ω, which corresponds to the tissue under consideration (rabbit liver for instance in the
experiment of Sel et al.) and the needles, represented by two parallel cylinders E±. The needles are set at
the isopotential ±g respectively. The outer boundary is denoted by Γout := ∂Ω \ E±.

2.1. The standard static model. The most used model to describe tissue electroporation consists of the
phenomenological electrostatic problem. The tissue is described as a conductive medium, whose conductivity
tensor σ depends on the amplitude of the electric field −∇u. The model reads then

−∇ · (σ(‖∇u‖)∇u) = 0, in Ω,(1a)

∂nu|Γout
= 0, u|E± = g±,(1b)
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Figure 1. The typical geometrical configuration consists of the tissue domain Ω in gray,
deprived of the two needles E±, in white. The outer boundary Γout is represented in bold.

The tissue conductivity consists of a 4 parameters sigmoid function. Typically

(2) ∀λ ≥ 0, σ(λ) = σ0 +
σ1 − σ0

2
(1 + erf(kep(λ− Eth))) ,

where σ0 is the conductivity of the non electroporated tissue, σ1 is the tissue conductivity of the fully porated
tissue, Eth is the threshold amplitude for electroporation, and kep is the slope of the nonlinearity. Here, erf
is the Gauss error function. The qualitative behaviour of σ is depicted in Figure 2.

Eth

σ1

σ0

λ

σ
(λ
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Figure 2. The shape of the conductivity σ

Remark 1. It should be noted that this choice of σ is largely phenomenological, and as shown in [12], the
available experimental data does not seem sufficient to characterize the dependence of the conductivity on
the electric field.

2.2. The electric circuit approach of Voyer et al. In [20], Voyer et al. proposed a biphasic dynamical
model based on the description of an individual cell and surrounding matrix as an electric circuit. The ODEs
at the cell level are formally generalized to PDEs at the tissue level. It describes the electric potential outside
cells φe and the electric field inside cells Jc. The parameters are the extracellular and intracellular electric
conductivities, respectively σe and σc. The conductivity of the cell membrane σm depends on time in a way
which mimics the effects of poration, i.e. the appearance of holes on the membrane, and permeabilisation,
that is the degradation of membrane molecules. Both phenomena increase the conductivity. The resulting
system reads

∇ · (σe∇φe + Jc) = 0,(3a)

εm∂tJc + (σm(t, ‖Em‖) + σc)Jc = σcσm∇φe,(3b)

∂nφe|Γout
= 0, φe|E± = g±, J|Γout

= 0 ,(3c)

where Em = ∇φe − σ−1
c Jc, and

σm(t, ‖Em‖) = σm0 + σm1 X1(t, ‖Em‖) + σme X2(t, ‖Em‖).(3d)
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The functions X1 and X2 are the respective degrees of poration and degrees of permeabilisation. They satisfy

Ẋ1 =
β1(‖Em‖)−X1

τ1
, and Ẋ2 =

β2(X1)−X2

τ2
,(4)

where β1 and β2 are 2-parameters sigmoid functions of the form

βi(x) =
1

2

(
1 + erf(ki

(
x− xtrans

i

)
)
)
,

where ki is the stiffness of the sigmoid and xtrans
i the transition threshold.

A simplified static version of this model allows to compare it with the standard model. Indeed, the static
version of this model writes

∇ · (σe∇φe + Jc) = 0,

(σm(‖Em‖) + σc)Jc = σcσm(‖Em‖)∇φe,
∂nφe|Γout

= 0, φe|E± = g±, J|Γout
= 0.

where σm is a sigmoid function similar to (2). Written in φe and Em, the equations become

∇ ·
(

(σe + σc)∇φe − σcEm
)

= 0, in Ω,(5a)

(σm(‖Em‖) + σc)Em = σc∇φe, in Ω,(5b)

∂nφe|Γout
= 0, φe|E± = g±, Em|Γout

= 0.(5c)

Problem (5) makes it possible to define the equivalent tissue conductivity. Actually, thanks to (5b), the
potential φe satisfies

∇ ·
((

σe +
σcσm(‖Em‖)
σc + σm(‖Em‖)

)
∇φe

)
= 0.

The equivalent tissue conductivity can thus be defined as

σeq(‖Em‖) = σe +
σcσm(‖Em‖)
σc + σm(‖Em‖)

.(6)

A simplified version of the problem consists in assuming that σm depends on ‖∇φe‖ instead of ‖Em‖. Then
the simplified problem reads

∇ ·
((

σe +
σcσm(‖∇φe‖)
σc + σm(‖∇φe‖)

)
∇φe

)
= 0, in Ω,(7a)

∂nφe|Γout = 0, φe|E± = g±,(7b)

which is similar to the standard model (1) since the function σeq defined by

∀λ ≥ 0, σeq(λ) = σe +
σcσm(λ)

σc + σm(λ)
,

is a sigmoid function.

2.3. The static bidomain model. In electrocardiology, the so-called bidomain model has been proven to
be the homogenisation limit of the cell scale electric potential. It consists of 2 electric potentials, ue and v,
which satisfy the following PDE system proposed in [7]:

∇ ·
(

(σe + σc)∇ue − σc∇v
)

= 0,(8a)

Sm(‖∇ue‖)v −∇ · (σc∇v) +∇ · (σc∇ue) = 0,(8b)

σe∇ue · n|Γout
= 0, ue|E± = g±, σc∇v · n|∂Ω = σc∇ue · n|∂Ω,(8c)

where Sm = AmS̃m, with Am (m−1) the ratio of membrane area by unit volume and S̃m (S.m−2), is the
conductance of the cell membranes. This model enables to link rigorously the membrane conductance Sm
to the electric potential thanks to an homogenization procedure presented in [3, 4]. In this sense, it is more
physiological than the previous phenomenological models (see Remark 1). To account for the electroporation
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phenomenon – that is the increase of the membrane conductance – we assume that S̃m follows a sigmoid
function of the norm of the outer electric field −∇ue

S̃m(‖∇ue‖) = S̃0
m +

1

2
(S̃1
m − S̃0

m) [1 + erf(kep(‖∇ue‖ − Eth))] .

Remark 2 (On the nonlinearity). In cardiac electrophysiology, the nonlinearity usually depends on the
homogenised transmembrane voltage ue − uc. However such a nonlinearity is inconsistent with the electro-
poration phenomenon. Actually, assuming that g− = −g+ is constant, the symmetry along the axis (Oy)
implies that ue, uc and the transmembrane voltage vanishes along (Oy), which is inconsistent with the fact
that electroporation occurs between the needles. For this reason, a nonlinearity depending on ‖∇ue‖ is chosen,
which is relevant with the nonlinearity of the static nonlinear model.

Remark 3 (On the boundary conditions on v). The Neumann boundary condition satisfied by v states the
electric field does not go out of the cell phase, and thus uc given by uc = ue − v satisfies ∂nuc|∂Ω = 0.

3. Data measurements

The experimental set-up of Sel et al. consists of an ex-vivo cubic piece of rabbit liver in which two
needles are inserted (see Figure 3). Square pulses of different amplitudes are applied on the needles and the

ŠEL et al.: SEQUENTIAL FINITE ELEMENT MODEL OF TISSUE ELECTROPERMEABILIZATION 817

influences the field distribution in tissue [17]–[19]. Electrode
configurations used for tissue permeabilization are parallel
plates, wire and contact plate electrodes as well as needle
electrodes and needle arrays [19]–[21].

Theory and experiments have shown that the extent of cell
membrane permeabilization depends on electric field intensity,
cell size, shape and interaction with surrounding cells [14], [15].
Several factors related topermeabilizedcells suchascellsvolume
fraction, conductivity of medium, membrane conductivity, cell
orientation and critical transmembrane potential (TMP) affect
effective tissue conductivity. The relationship between these
factors and the effective conductivity of cells in suspension has
been described previously [16]. Besides effective conductivity
the key parameter of permeabilization on a tissue level is the
local electric field intensity. As the field results from a voltage
applied between the electrodes, the electrode configuration
influences the field distribution in tissue [17]–[19]. Electrode
configurations used for tissue permeabilization are parallel
plates, wire and contact plate electrodes as well as needle
electrodes and needle arrays [19]–[21].

Theory and experiments have shown that the extent of cell
membrane permeabilization depends on electric field intensity,
cell size, shape and interaction with surrounding cells [14], [15].
Several factors related topermeabilizedcells suchascellsvolume
fraction, conductivity of medium, membrane conductivity, cell
orientation and critical transmembrane potential (TMP) affect
effective tissue conductivity. The relationship between these
factors and the effective conductivity of cells in suspension has
been described previously [16]. Besides effective conductivity
the key parameter of permeabilization on a tissue level is the
local electric field intensity. As the field results from a voltage
applied between the electrodes, the electrode configuration
influences the field distribution in tissue [17]–[19]. Electrode
configurations used for tissue permeabilization are parallel
plates, wire and contact plate electrodes as well as needle
electrodes and needle arrays [19]–[21].

In most applications of tissue permeabilization it is required
to expose the volume of tissue to E intensities between the
two thresholds, i.e., to choose in advance a suitable electrode
configuration and pulse parameters for the effective tissue
permeabilization. Therefore, electric field distribution in tissue
has to be estimated before the treatment, which can be achieved
by combining results of rapid tests [18], [24] with models of
electric field distribution. However, modeling of electric field
distribution in tissue is demanding due to heterogeneous tissue
properties and usually complex geometry. Analytical models
can be employed only for simple geometries. Usually they
are developed for two-dimensional problems and tissue with
homogenous electrical properties [25]. Therefore, in most cases
numerical modeling techniques are still more acceptable as
they can be used for modeling three-dimensional geometries
and complex tissue properties. For that purpose mostly finite
element method (FEM) and finite difference method are applied.
Both numerical methods have been successfully applied and
validated by comparison of computed and measured electric
field distribution [17], [18], [22]. However, non of the previously
reported work took into consideration also tissue conductivity
increase due to tissue or cell permeabilization.

Fig. 1. Needle electrodes used in experiments: (a) side view; (b) top view.

In this paper, we present the first model which describes
tissue permeabilization by taking into account tissue conduc-
tivity change. The model consists of a sequence of static models
(steps), which describe E distribution in discrete time intervals
during permeabilization. In this way model presents dynamics
of electropermeabilization since in each step the tissue con-
ductivity is changed according to distribution of electric field
intensities from the previous step. For that purpose tissue con-
ductivity in the model is expressed as a function of electric field
intensity. Sigmoid dependency between specific conductivity
and electric field intensity is used. Estimation of the sigmoid
function parameters is based on current measurements. Namely
current indicates the extent of permeabilization [26], [27]
through the change in the tissue conductivity [28], [29], [46].
The proposed model of tissue electropermeabilization is then
validated on experimentally obtained total current measure-
ments and areas of reversibly and irreversibly permeabilized
rabbit liver tissue.

II. MATERIALS AND METHODS

A. Experiments

In vivo experiments were performed at the Institute Gustave-
Roussy, France on rabbit liver tissue in accordance with Euro-
pean Commission Directives and French legislation concerning
animal welfare. Three rabbits were used in the experiments. Ani-
mals were kept anaesthetised for the whole duration of the exper-
iments. A subxypoid incision was made and the liver was gently
exteriorised and exposed to electrical treatment. For that purpose
two parallel needle electrodes as shown in Fig. 1 were inserted
perpendicularly to tissue surface approximately 7 mm in depth.
In experiments three different needle diameters were used:

, and . The inner distance be-
tween the needles was always 8 mm as in [22]. Eight rectangular
monophasic pulses of 100 duration and 1 Hz repetition fre-
quency were applied. Pulses were delivered by pulse generator
Jouan GHT 1287B, St.Herblain, France. Applied pulse ampli-
tudes were in the range of 200 V–1200 V. The applied voltage and
resultingcurrentwereacquiredbyhighvoltageandcurrentprobes

Figure 3. Experimental set-up for electroporation measurements as performed by Sel et
al. 3 electrodes diameter are considered. The piece of rabbit liver is located below the
plexiglass on a thickness of 7 mm [19].

corresponding intensities are recorded. The data set consists of the measurements of the electric intensity
that flows through one needle, say E+ for instance.

Taking advantage of the symmetries of Figure 4, the computation domain is restricted to a quadrant with
homogeneous Neumann conditions on the right, top and bottom borders, homogeneous Dirichlet condition
on the left boundary and the non homogeneous Dirichlet condition on the needle.

5



E�������������� ��� ������ ��������� M����������� ������ E��������� ������� N�������� �������

M�������� ��������

�

E+E�

�|out
I Electrostatic type

phenomenon
I Starting point: classical

electrostatic equation:
8>>>><>>>>:

r · (�(x)rV(x)) = 0 x 2 �
rV · n = 0 x 2 �out
V = g± x 2 E±

I V: electric potential (rV electric field)
I �: conductivity
I I± =

R
E± �rV · n ds: intensity

7/38

CHAPTER 2. MODELS OF TISSUE ELECTROPORATION

ary of this domain, and the potential is forced on the boundary of the electrodes,
which are positioned in the middle of the domain. Because of the symmetries, the
computational domain can be reduced to a quarter of the initial geometry with
the proper boundary conditions set (2.25) on the symmetric planes B1 and B2.

(
' = 0 on B1,

@n' = 0 on B2.

(2.25a)

(2.25b)

Figure 2.4: 2D full domain and final computational mesh obtained considering the
symmetry of the problem.

A discretization of the variables in the spatial domain is made using the finite
element method. Problem geometry was meshed (see Figure 2.4) and simulations of
electroporation are performed using Freefem++ [60]. To solve the elliptic equations
(2.2), (2.10) and (2.14), a discretization of the variables in the spatial domain is
made using the finite element method with Freefem++ [60]. For the static model,
the nonlinear model is solved using a modified fixed point method (see section
2.3.0.2). The discretization in time, when needed, is performed using a Runge
Kutta scheme of order 4 to solve equations (2.12), (2.13), (2.15), (2.19) and (2.21).

72

Figure 4. (Left): Symmetrical domain corresponding to the horizontal section of the ex-
perimental set-up. (Right): Computational domain restricted to a quadrant. Homogeneous
Dirichlet condition is set on the left border, homogeneous Neumann conditions are set on
the top, bottom and right borders, non homogeneous Dirichlet condition is set on the needle
boundary.

The expression of the numerical electric intensity depends on the choice of the models. Denoting by `E+
the length of the electrode in the perpendicular plane to the 2D simulation plane, one has

I1
E = `E+

∫

E+
σ (‖∇V ‖)∇V · n ds, where V is the solution to (1),

I2
E = `E+

∫

E+
σeq(‖Em‖)∇φe · n ds, where (φe,Em) is the solution to (5), or to (3)

I2,simp
E = `E+

∫

E+
σeq(‖∇φe‖)∇φe · n ds, where φe is the solution to (7),

I3
E = `E+

∫

E+
σe∇ue · n ds, where (ue, v) is the solution to (8).

The above definition of the electrical intensities of the models involve the gradient of the solution along
the needle. This is numerically unstable since the electric field is the most intense nearby the electrodes,
and thus numerical instabilities may appear. To smoothen this behavior, it is possible to introduce a specific
function w such that the surface integral is replaced by a volume integral. More precisely, let w be defined
by

−∆w = 0, in Ω,(9a)

w|E± = ±1, ∇w · n|Γout
= 0.(9b)

Then, thanks to appropriate integration by parts one has

I1
E =

`E+

2

∫

Ω

σ (‖∇V ‖)∇V · ∇w dx, where V is the solution to (1),(10a)

I2
E =

`E+

2

∫

Ω

σeq(‖Em‖)∇φe · ∇w dx, where (φe,Em) is the solution to (5),(10b)

I2,simp
E =

`E+

2

∫

Ω

σeq(‖∇φe‖)∇φe · ∇w dx, where φe is the solution to (7), or to (3)(10c)

I3
E =

`E+

2

∫

Ω

((σe + σc)∇ue − σc∇v) · ∇w dx, where (ue, v) is the solution to (8).(10d)
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4. Numerical discretization and qualitative comparison between the models

4.1. Discretization and numerical approximation. In this section, we present the discretizations that
have been used to solve the different models. All these strategies have been implemented using the Python
finite element library FEniCS [1].

4.1.1. Static models: illustration on the standard static model. We want to solve (1) which we recall here:

−∇ · (σ(‖∇u‖)∇u) = 0,

∂nu|Γout
= 0, u|E± = g±,(1b)

which is a non-linear problem since σ depends on ∇u. In Breton et al. [2] a modified fixed point has been
presented and the numerical convergence of this scheme has been shown. In this work, we compare two
other strategies. The first one consists in using iteration schemes coming from the time-discretization of the
following non-linear evolution equation

∂su−∇ · (σ(‖∇u‖)∇u) = 0 in Ω ,

with the same boundary conditions as above, and where s acts as the pseudo time variable. We follow the
same strategy for the static version of the biphasic model and for the bidomain model. Depending on the
eigenvalue of the linearised problem, one can expect that u behaves asymptotically as the static solution. We
explicit the strategy (which can be easily extended to the other static models) for the standard model. First,
we consider the decomposition u = v+ulin, where ulin solves the linear static problem associated to (1), that
is the Laplace equation on Ω with boundary conditions (1b). Thus, we obtain the following equation on v

∂sv −∇ · (σ(‖∇(v + ulin)‖)∇(v + ulin)) = 0,(11)

with homogeneous Dirichlet boundary conditions, since ulin carries the boundary conditions of (1). By
discretizing the s derivative by finite differences with step ∆s, multiplying this equation by a test function
ϕ ∈ C∞c (Ω) and integrating over Ω, we get

∫

Ω

vn+1 − vn
∆s

ϕ+

∫

Ω

σ(‖∇(vn + ulin)‖)∇vn+1 · ∇ϕ+

∫

Ω

σ(‖∇(vn + ulin)‖)∇ulin · ∇ϕ

−
∫

E±∪Γout

σ(‖∇(vn + ulin)‖)∇vn+1 · nϕ = 0.

The term on Γout vanishes because of the homogeneous Neumann boundary conditions, and we can restrict
to test functions with zero trace on E± by integrating the Dirichlet data in the function space, see below.
Hence, the variational problem to solve reads A(vn+1, ϕ) = L(ϕ) where

A(vn+1, ϕ) :=

∫

Ω

vn+1ϕ+ ∆s

∫

Ω

σ(‖∇(vn + ulin)‖)∇vn+1 · ∇ϕ,

L(ϕ) :=

∫

Ω

vnϕ−∆s

∫

Ω

σ(‖∇(vn + ulin)‖)∇ulin · ∇ϕ.

This iterative method is initialized by taking v0 = ulin. We then proceed by approximating v, ulin using P2

finite elements, i.e. we have vh, uhlin ∈ V h with

V h =
{
w ∈ C0(Ω) : w|T ∈ P2 ∀T ∈ Th

}
,

where P2 is the space of polynomials in two variables, of degree at most 2 and Th is a triangulation of Ω.
We also introduce

V hψ :=
{
w ∈ V h : w|E± = ψ

}
.

We are left with the problem of finding vhn+1 ∈ V hg± such that

A(vhn+1, ϕ
h) = L(ϕh) , ∀ϕh ∈ V h0 ,

for n > 0, with vh0 = uhlin. This problem is well-posed according to standard finite element analysis arguments.
7



The second approach consists in using Newton’s method directly on the finite element system. Consider
the problem consisting in finding uh ∈ V hg± such that

A(uh, ϕh) = 0 , ∀ϕh ∈ V h0 ,

where A is given by

A(uh, ϕh) =

∫

Ω

σ(‖∇uh‖)∇uh · ∇ϕh ,

which is the discretized weak formulation of (1). Assuming that some uh0 satisfying the boundary conditions
is known, one can try to solve this system of non linear equations using the Newton’s method. Such a uh0 is
given by solving Laplace’s equation on Ω with boundary conditions (1b). In FEniCS, the computation of the
corresponding Jacobian can be performed automatically. For the models we consider, this approach is faster
and more stable compared to the evolution-based iterative method presented above, although it requires a
good guess for initialization. In practice, such a good guess can be found by starting from the solution to
the linear problem and increasing gradually the value of kep until the desired value is reached. The Newton’s
approach is also simpler, in the sense that is does not require a choice of a step size (∆s in the evolution
approach).

A qualitative comparison of the two methods can be seen in Figure 5. σ(‖∇u‖) is projected on piecewise
constant discontinuous elements. On the right of the domain, the profile given by the Newton’s method is
noticeably smoother.

Figure 5. Comparison of σ(‖∇u‖) for typical solutions of 1 given by the evolution-based
iterative method (left) and the Newton’s approach (right) for the standard model.

4.1.2. The dynamical biphase model. Concerning the dynamical biphase model, we use an iterative time
discretization method. We denote the time step by ∆t, so that tn = n∆t. At the nth step, we compute the
membrane electric field, and its amplitude

Enm = ∇une −
1

σc
Jnc , Anm = dc|Enm|,

where dc is the mean of the cell diameters. From there, we solve the differential equations for the degrees of
poration and permeabilization X1 and X2 using an explicit Euler scheme

Xn
1 = Xn−1

1 +
∆t

τ1

(
β1(Anm)−Xn−1

1

)
,

Xn
2 = Xn−1

2 +
∆t

τ2

(
β1(Xn−1

1 )−Xn−1
2

)
.

Then, we compute the membrane conductivity

σnm = σm0 + σ1X
n
1 + σ2X

n
2 .
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Similarly to the static models, we multiply (3) by the test functions ϕ1 ∈ C∞(Ω) and ϕ2 ∈ C∞0 (Ω)2

respectively and integrate by parts to obtain

−σe
∫

Ω

∇φn+1
e · ∇ϕ1 − σc

∫

Ω

Jn+1
c · ∇ϕ1 + σe

∫

E±∪Γout

∇φn+1
e · nϕ1 + σc

∫

E±∪Γout

Jn+1
c · nϕ1 = 0,

εm

∫

Ω

(
Jn+1
c − Jnc

)
· ϕ2 + ∆t

(∫

Ω

(σnm + σc)J
n+1
c · ϕ2 −

∫

Ω

σnmσc∇φn+1
e · ϕ2

)
= 0.

We discretize again on P2 finite elements and integrate the Dirichlet boundary conditions in the finite element
space. We then have to find φn+1,h

e ∈ V hg± , Jn+1
c ∈ (V h0 )2 such that

A(Φn+1,h,Ψh) = Ln(Ψh) ,

where Φh = (φn+1,h
e ,Jn+1,h

c ) and Ψh = (ϕh1 , ϕ
h
2 ) ∈ V h0 × (V h0 )2. The functionals A and L are given by:

A(Φn+1,h,Ψh) :=− σe
∫

Ω

∇φn+1,h
e · ∇ϕh1 − σc

∫

Ω

∇Jn+1,h
c · ∇ϕh1

+ εm

∫

Ω

Jn+1,h
c · ϕh2 + ∆t

(∫

Ω

(σnm + σc)J
n+1,h
c · ϕh2 −

∫

Ω

σnmσc∇φn+1,h
e · ϕh2

)
,

Ln(ϕ) :=εm

∫

Ω

Jnc · ϕh2 .

4.2. Qualitative comparison between the models. In this section we show the characteristic solution
of all three models presented in Section 2. We consider an electrode diameter of 0.7mm, a voltage of 800V.
Results for the standard, the bidomain and the dynamical biphase models are illustrated in Figures 6, 7 and
8 respectively. In all cases, the contour lines of u and ue look similar.
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Figure 6. Solution of the static standard model, using parameters Eth = 5.75× 104V/m,
kep = 10−3V −1, σ0 = 0.065S/m and σ1 = 0.1483S/m.

5. Estimation strategy: illustrations on the standard static model

As we have seen in the previous section, the solutions of the different models are realistic and can be
qualitatively compared. They allow to represent the electroporation phenomena. The aim of this section is
to investigate numerical calibration strategies of these models. We will focus for this work on the standard
static model.

First, the estimation strategy is introduced. Then, it is illustrated with synthetic data and finally, it is
applied on real data [19] presented in Section 3.
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Figure 7. Solution of the static bidomain model, using the parameters of [7, Table 3.2]
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Figure 8. Solution to the biphase model at around 8ms, using the parameters of [20, Table
1], with a 800V voltage step. It is easy to see that σm is mainly driven by the value of X1,
i.e. the poration process. At the lower left is the evolution of the current intensity flowing
through the electrodes, the spike qualitatively matches experiments, see [20].

5.1. Parameters estimation algorithm. We denote by θ ∈ Θ the vector which concatenates all the
parameters which have to be estimated. We denote by y ∈ Y the solution and by z ∈ Z the observations.
We denote by ‖ · ‖Θ,(P�)−1 and by ‖ · ‖Z,R the norms defined by

‖ · ‖2Θ,(P�)−1 = 〈 · , (P�)
−1 · 〉 and ‖ · ‖2Z,R = 〈 · , R · 〉.

The static problem can be rewritten as A(y, θ) = 0, where A corresponds to the model operator. We denote
by C the observation operator which relies y to z

z = C(y).
10



and we denote by O the following operator

O : θ 7→ y, such that A(y, θ) = 0.

Our objective is to inverse the operator Ψ = C ◦ O. In order to do that, the criterium that we want to
minimize is given by

J (θ) =
1

2
‖θ − θ�‖2Θ,(P�)−1 +

1

2
‖z −Ψ(θ)‖2Z,R,

where θ� corresponds to an a priori value of θ. This criterium corresponds to a likelihood functional where
all disturbances are assumed to be Gaussian

θ ∼ N (θ�, P
1/2
� ) and z ∼ N (Ψ(θ), R−1/2).

If we want to use Nz measurements denoted by (zk)1≤k≤Nz
associated to (Rk)1≤k≤Nz

, we have to consider
the following criterium

J (θ) =
1

2
‖θ − θ�‖2Θ,(P�)−1 +

1

2

Nz∑

k=1

‖zk −Ψ(θ)‖2Z,Rk
,

which can be rewritten as

J (θ) =
1

2
‖θ − θ�‖2Θ,(P�)−1 +

1

2

Nz∑

k=1

‖[z − [Ψ(θ)‖2[Z,[R,

with

[z =



z1

...
zNz


 , [Ψ =




Ψ
...
Ψ


 , [Z = Z × · · · × Z and [R =



R1

. . .

RNz


 .

It exists many methods to solve this kind of problem as for example as a non-exhaustive list: gradient
descent based methods ; stochastic strategies as for example Monte-Carlo based strategies or expectation-
maximization algorithm. In this work, we decided to use a stochastic algorithm based on an unscented
transform [14]. Let (ωi)1≤i≤p and (e(i))1≤i≤p be some weight parameters and directions in Θ such that

∑

1≤i≤p

ωie(i)(e(i))T =
1

ρ
.

This is called a set of sigma points and many different sets of sigma points have been proposed in the
literature. In this work, we will consider the simplex sigma points, which allow to consider only dimΘ+1
points [13]. The algorithm reads as follows:

• Initialisation: θ̂0 = θ� and P0 = P�.
• Generation of p particles of mean θ̂k and covariance Pk:

θ(i) = θ̂k +
√
ρPke

(i), 1 ≤ i ≤ p.
• Computation of the observations generated by the solution of the system for each particle:

[Zi = [Ψ(θ(i)).

• Computation of the mean and of the covariance of [Zi:

[Z∗ = E([Zi)
def
=
∑

ωi[Zi and P z = Cov([Zi)
def
=
∑

ωi([Zi − [Z∗)([Zi − [Z∗)T .

• Computation of the covariance between θ(i) and J(θ(i)) (sensitivity of the observations to the pa-
rameters):

P θz = Cov(θ(i), J(θ(i)))
def
=
∑

ωi(θ(i) − θ̂k)([Zi − [Z∗)T .

• Computation of the new value of the parameters and of their covariances

θ̂k+1 = θ̂k + P θz(P z +R−1)−1([z − [Z∗),

Pk+1 = Pk − P θz(P z +R−1)−1(P θz)T .

11



Parameter Real value Estimated value Number of iterations

Eth 10.96 10.95 13
σ0 -2.73 -2.74 20
σ1 -1.91 -1.91 3
kep -6.91 -9.20 ∞

Table 1. Individual estimation of the parameters (2 digits of precision). The true and
estimated values are given after the log-transformation.

Parameter Real value Estim. Estim., 1 elec.

Eth 10.96 10.95 10.95
σ0 -2.73 -2.76 -2.77
σ1 -1.91 -1.90 -1.88

Table 2. Coupled estimation of Eth, σ0 and σ1 (2 digits of precision). The true and
estimated values are given after the log-transformation. The third (resp. fourth) column
corresponds to the case where the 3 (resp. 1) electrode(s) are (resp. is) considered.

5.2. Estimations on synthetic data. As said previously, we focus on the standard static model in this
section. The parameters are then the parameters of the sigmoid function: Eth, σ0, σ1 and kep. We want
to validate on synthetic data the estimation strategy. To do that, we consider a framework close from
the real data. Following [19], we build synthetic data with intensity measurements for 5 different voltages
and 3 electrode sizes (the same of the article). The corresponding observation space has then dimension
Nz = 15. The synthetic data are obtained using Eth = 5.75 × 104 V/m, σ0 = 0.065 S/m, σ1 = 0.1483 S/m
and kep = 10−3. The parameters that we want to estimate are all positive which will be constrained by a
log-transformation during the estimation procedure. We assume that

logEth ∼ N (log(4.5× 104),
√

0.2), log σ0 ∼ N (log(0.2),
√

0.2),

log σ1 ∼ N (log(0.09),
√

0.2) and log kep ∼ N (log(10−4),
√

0.2).

Concerning the uncertainties quantification of the observations, we assume that [R−1/2 = 0.025 IdNz,Nz
which

corresponds to a noise standard deviation of approximately 20%: R−1/2 ≈ 20% 1
Nz

∑Nz

k=1 |zk|IdNz,Nz ≈ 0.025.
First of all, we start by an individual estimation of the parameters and the synthetic data are not noisy.
Table 1 presents the results (with 2 digits of precision). The algorithm stops when the convergence is reached.

As a conclusion, it is possible to estimate three parameters: Eth, σ0 and σ1. The sensitivity of σ0 is
weaker and more iterations are needed (compared to Eth and σ1). Then, kep is not identifiable: there is no
sensitivity associated to this parameter. As kep is not identifiable, we fix it at its true value and we make
a coupled estimation of the three other parameters, see the third column of Table 2. We consider also a
case where only one size of electrodes is considered. The results are very encouraging and show that it is
possible to estimate the three parameters together. The results are slightly better when three electrodes are
considered. Finally, we add a gaussian noise of standard deviation σn = 0.005, 0.01 (resp. 5% and 10%) on
the synthetic data to see the sensitivity of the estimation to measurement noise. In the case of σn = 0.01, we
also try to estimate using only one size of electrodes. The results are given in Table 3. As expected, the more
the noise on the data is important, the more it is difficult to well estimate the parameters but the results
are still encouraging. More precisely, with noisy data, it is crucial to consider measurements performed with
different size of electrodes.

5.3. Estimations on the data set of Sel et al. We now turn to the problem of parameter estimation for
real data.

12



Parameter Real value Estim. σn = 0.005 Estim. σn = 0.01 Estim. σn = 0.01, 1 elec.

Eth 10.96 10.94 10.83 10.86
σ0 -2.73 -2.75 -2.72 -2.59
σ1 -1.91 -1.91 -1.94 -1.98

Table 3. Coupled estimation of Eth, σ0 and σ1 (2 digits of precision). The true and
estimated values are given after the log-transformation. The third (resp. fourth) column
corresponds to σn = 0.005 (resp. σn = 0.01). The last column is for σn = 0.01 and only one
electrode is considered.

Parameter Initial value Estim. 0.3mm Estim. 0.7mm Estim 1.1mm Estim all 3

Eth 10.96 10.9 9.59 9.60 9.75
σ0 -2.73 -1.88 -5.78 -4.23 -9.06
σ1 -1.909 -0.37 -0.58 -0.77 -0.65

Table 5. Initial values and results of the 4 estimations, one for each electrode diameter,
and one with all diameters combined.

5.3.1. Dataset. The dataset used is the one provided by [19], the corresponding experimental setup is recalled
in Figure 3. It provides intensity measurements for 5 different voltages and 3 electrode sizes, which are
collected in Table 4. As for the synthetic data, the corresponding observation space has then dimension
Nz = 15.

Electrode diameter Applied voltage

200V 400V 600V 800V 1000V

0.3mm 0.104 0.275 0.571 0.877 1.260
0.7mm 0.170 0.412 0.850 1.389 1.663
1.1mm 0.168 0.437 0.776 1.315 1.533

Table 4. Intensity (A) of the cur-
rent flowing through the electrodes
measured by [19]

200 400 600 800 1,000
0

0.5

1

1.5

Applied voltage/V

In
te

n
si

ty
/A

0.3mm
0.7mm
1.1mm

5.3.2. Estimation and validation. As was made clear in Section 5.2, the sensivity on kep in the case of a
4-parameter sigmoid is very low. Trying to estimate this parameter would most likely result in an unreliable
value. To avoid having to choose an arbitrary value for kep, we consider a 3-parameter sigmoid instead, of
the form

σ(‖∇V ‖) = σ0 + (σ1 − σ0) exp

(
E2
th

‖∇V ‖2
)
.

The remaining three parameters, Eth, σ0 and σ1 have to be estimated jointly, since we have no a priori value
for them. We assume that the parameters are centered around the values given in Section 5.2, i.e.:

(12) logEth ∼ N (log(5.75× 104), 2), log σ0 ∼ N (log(0.065), 0.2), log σ1 ∼ N (log(0.1483), 0.5) .

The noise on the measurements is modeled by [R−1/2 = 0.2, which corresponds to a noise of 25%.
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When all electrodiameters are considered together, the convergence of the estimation procedure
is shown in Figure 9. As is the synthetic data case, the convergence of σ0 is much slower than the other two
parameters, which requires a large number of iterations.
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Figure 9. Estimation of Eth, σ0 and σ1, after log-transformation. All voltages and all
electrodes diameters are considered simultaneously. The thin dashed green and blue lines
denote the standard deviation of the uncertainty on the estimation.

For each individual electrode size, the convergence of the estimation procedure is shown in Figure 10.
The estimated values differ significantly from one electrode diameter to the next, and σ0 converges again
slower than Eth and σ1.

0 2000 4000
Iterations

6

7

8

9

10

11

Et
h

0.3mm
0.7mm
1.1mm
all 3 (20k iters)

0 2000 4000
Iterations

9

8

7

6

5

4

3

2

1

0

0 2000 4000
Iterations

0.9

0.8

0.7

0.6

0.5

0.4

1

Figure 10. Estimation of Eth, σ0 and σ1, after log-transformation. All voltages are consid-
ered, but electrode diameters are considered separately. The thin lines denote the standard
deviation of the uncertainty on the estimation.

As we can see, the estimated parameters differ significantly between electrode diameters, especially for
0.3mm. We solve the direct problem with parameters estimated for each diameter individually ; and for
the parameters estimated when considering all diameters simultaneously, see Figure 11. We can see the
resulting distribution of σ(‖∇u‖) for the three electrode diameters and for voltages of 200V and 1000V .
The distribution is very different, especially for 1000V . Table 6 presents the maximum relative error on the
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intensity, and shows that the best results are obtained when estimating the parameters only on the electrode
of diameter 1.1mm. This is not surprising regarding to the relatively low values for the current for a diameter
of 0.3mm, the quasi-equivalent values for diameters of 0.7 and 1.1mm and also the relatively low values for
low voltages (see Table 4).

Maybe, better results could be achieved by understanding better the impact on the measurement noise
using for example synthetic data. One strategy could be for example to consider different values of the
standard deviations of the observations in order to give less importance to the most noisy data.
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Figure 11. σ(‖∇u‖) in S/m for applied voltages 200V and 1000V and the three geome-
tries, for the parameters estimated separately on each geometry (top 2 lines) and for the
parameters estimated on all geometries simultaneously (bottom 2 lines).
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maxV |Icomputed(V )− Imeasured(V )|/Imeasured(V )

Geometry for estimation Geometry for validation

0.3mm 0.7mm 1.1mm

0.3mm 3% 33% 26%
0.7mm 52% 24% 31%
1.1mm 27% 24% 15%

all 31% 34% 26%

Table 6. Maximum relative error on the intensity across voltages, for each set of esti-
mated parameters (one for each electrode diameter plus one for the estimated on all three
simultaneously).

6. Conclusion and perspectives

In this paper, we have compared different models of electroporation: the standard static model, the
dynamical biphase model and the bidomain model in the same framework built using bioelectrical measure-
ments on rabbit livers proposed by Sel et al. [19]. The solutions of the different models are realistic and
can be qualitatively compared. Then we investigate a numerical calibration of the parameters only on the
standard model. The strategy is based on a stochastic algorithm using an unscented transform for estimating
parameters of static systems. The results on synthetic data are convincing. Finally, the estimation strategy
is applied on the rabbit measurements and the attempt is promising even if the best fit is not achieved using
all geometries simultaneously. As explained previously, this could be due to the measurements noise. This
work allows to lay the ground of the calibration of electroporation models but many improvements have to
be studied. The work on synthetic data has to be continued in order to better understand the estimation
difficulties due to the measurements noise. Furthermore, the parameters estimation has to be applied on the
bidomain model. Finally, concerning the dynamical biphase model, a dynamical version of the estimation
strategy has to be written. The main difficulty lies in the fact that we need an efficient strategy which does
not involve prohibitive computational times. To address this issue, Reduced-order Kalman filter method,
introduced by Moireau and Chapelle [18], will be investigated in a near future.

Acknowledgements

The authors would like to thank very warmly Philippe Moireau and Sébastien Impériale from the Inria
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