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We consider a distribution equation which was initially studied by Bertoin [2]:

where {M k } k≥1 are i.i.d. copies of M and independent of ( ν, ν) ∈ R + × N. We obtain the tail behaviour of the solution of a generalised equation in a different but direct method by considering the joint tail of ( ν, ν).

Introduction to questions

For a random variable ν ∈ N, we consider the following equation of distributions on N:

(1.1) M d = max{ν, max 1≤k≤ν M k }
where M k are i.i.d. copies of M ∈ N and independent of ν. In fact, for a Galton-Waston tree T with offspring ν, let M := sup u∈T ν u be the largest offspring. Clearly M satisfies the equation (1.1). Note that if E[ν] ≤ 1 then M < ∞ a.s. and that if E[ν] > 1, P(M = ∞) = P(T = ∞).

In this paper, we only consider the critical case when E[ν] = 1. If E[ν] < 1, the tail distribution of M is of the same order as ν. For two sequences (a n ) n≥1 and (b n ) n≥1 , we write a n ∼ b n Theorem 1.1 (Bertoin). For M whose distribution satisfies the equation (1.1), 1. if P(ν > n) = n -α (n) with α ∈ (1, 2) and (•) a slowly varying function at infinity, then as n → ∞,

(1.2) P(M > n) ∼ C α n ,
where C α ∈ (0, ∞) is a constant which depends only on α;

2. if σ 2 := Var(ν) < ∞, then (1.3) 
P(M > n) ∼ 2 
σ 2 P(ν > n).
We will reprove this theorem by direct calculations, using the generating function of ν.

More generally, for a random vector ( ν, ν) which takes values in R + × N such that E[ν] = 1, let us consider the following equation of distribution:

(1.4) M d = max{ ν, max 1≤k≤ν M k }
where M k are i.i.d. copies of M ∈ R + and independent of ( ν, ν). The distribution of M differs according to the joint distribution of ( ν, ν). We first consider some special cases in the following.

Theorem 1.2. For M whose distribution satisfies the equation

(1.4), if E[ν] = 1 and E[ν 2 ] < ∞, then as r → ∞, (1.5 
)

P(M > r) ∼ 2 
σ 2 P( ν > r);
where σ 2 = Var(ν)

For random vector ( ν, ν) where ν has infinite variance, we need to consider multivariate regularly varying condition. One can refer to Chapter 6 in [START_REF] Resnick | Heavy-Tail Phenomena: Probability and Statistical Modelling[END_REF] for more details.

For a d-dimensional random vector X ∈ R d , its law is regularly varying of index α ∈ (0, ∞) if for some norm || • || on R d , there exists a random vector θ on the unit sphere S d-1 = {x ∈ R d |||x|| = 1} such that for any u ∈ (0, ∞) and as x → ∞, (1.6)

P(||X|| > ux, X ||X|| ∈ •) P(||X|| > x) weak --→ u -α P(θ ∈ •)
where the convergence is on weak topology of finite measures, i.e. for C b (R d ).

The equivalent characterization of multivariate regular variations is as follows. Recall that a measurable function

V : (0, ∞) → (0, ∞) is regularly varying of index ρ ∈ R if as x → ∞, V(xy)/V(x) → y ρ , ∀y ∈ (0, ∞).
A d-dimensional random vector X is then regularly varying of index α ∈ (0, ∞) if and only if there exists a regularly varying function V of index -α and a nonzero Radon measure µ on R d such that, as x → ∞,

(1.7) 1 V(x) P(x -1 X ∈ •) vague ---→ µ(•)
where vague convergence is for all functions in

C + K (R d ).
Here the measure µ is homogeneous of order -α. A choice for the function V is that V(x) = P(||X|| > x) in which case the vague convergence in (1.7) is also weak convergence, and for all u ∈ (0, ∞), by (1.6),

µ({x ∈ R d : ||x|| > u, x/||x|| ∈ •}) = u -α P(θ ∈ •).
Then the restriction of µ on {x : ||x|| > 1} is a probability measure. Hence, for any f ∈

C b (R d ), E[ f (x -1 X) ||X|| > x] x→∞ ---→ f (y)1 ||y||>1 µ(dy).
Now we state the following theorem for jointly regularly varying setting. Theorem 1.3. For M whose distribution satisfies the equation (1.4) and for X = ( ν, ν), suppose that X is regularly varying of index α ∈ (1, 2) associated with V(x) = P(||X|| > x) and µ given in (1.7) such that

µ({y = (y 1 , y 2 ) ∈ R 2 + : y 1 > 0, y 2 > 1}) > 0 and µ({y = (y 1 , y 2 ) ∈ R 2 + : y 2 = 1 < ||y||}) = 0.
Suppose moreover that there exist c 1 , c 2 ∈ (0, ∞) such that

P(ν > x) P(||X|| > x) x→∞ ---→ c 1 , and P( ν > x) P(||X|| > x) x→∞ ---→ c 2 .
Then, as r → ∞,

(1.8) P(M > r) ∼ C α,µ r where C α,µ is the unique positive solution of c 1 αΓ(-α)x α -R 2 + e -xy 2 1 y 1 >1 µ(dy) = 0.
Remark: Instead of the vector ( ν, ν), if these assumptions hold for the vector ( ν γ , ν) for some γ > 0, these arguments still work for M γ . In this case, the distribution of ( ν, ν) is called non-standard regularly varying according to [START_REF] Resnick | Heavy-Tail Phenomena: Probability and Statistical Modelling[END_REF].

Let us state the following corollary by assuming the joint tail of ( ν, ν).

Corollary 1.4. For the random vector ( ν, ν) with E[ν] = 1, assume that there exist a non-increasing function γ : R + → R * + and α > 0 such that for any b ∈ R + , as r → ∞,

P( ν ≥ r, ν ≥ br) ∼ γ(b)r -α ,
and P(ν ≥ r) ∼ cr -α with some c ∈ (0, ∞). For random variable M satisfying the equation (1.4),

1. if α ∈ (1, 2), then (1.9) P(M > r) ∼ C α,γ,c r , as r → ∞. 2. if α = 2, then (1.10) P(M > r) ∼ C α,γ,c r log r , as r → ∞. 3. if α > 2, then (1.11) 
P(M > r) ∼ 2 E[ν 2 ] -1 P( ν > r), as r → ∞.
Remark: One can refer to [START_REF] Chen | The most visited edges of randomly biased random walks on a supercritical Galton-Watson tree (I)[END_REF] for an application and the motivation of this corollary. Note that Theorem 1.1 is a special case of Theorems 1.3 and 1.2 by taking ν = ν. We only need to prove the last two theorems. Let us explain the main idea of proof here, especially for Theorem 1.3 when ( ν, ν) is regularly varying of index α ∈ (1, 2).

In fact, let f (s) := E[s ν ] be the generating function of ν. Observe from (1.4) that for any r > 0,

P(M ≤ r) =P( ν ≤ r; max 1≤i≤ν M k ≤ r) =P max 1≤i≤ν M k ≤ r -P ν > r; max 1≤i≤ν M k ≤ r = f (1 -P(M > r)) -E (1 -P(M > r)) ν ; ν > r
where the last equality follows from the independence between ( ν, ν) and all M k . Write x r := P(M > r) for convenience, we obtain that

(1.12) 1 -x r = f (1 -x r ) -E[(1 -x r ) ν ; ν > r].
Inspired by this equation, we define for any r > 0 and for any x ∈ [0, r]:

Φ r (x) := [ f (1 - x r ) -(1 - x r )] -E[(1 - x r ) ν ; ν > r].
Apparently, one sees that Φ r (rx r ) = 0. On the one hand, we show the tightness of rx r . On the other hand, for some positive deterministic sequence (γ r ), we will show that γ r Φ r converges to some continuous function Φ uniformly on any compact of [0, ∞) and that the limit function Φ has one unique zero in [0, ∞). This implies that rx r converges to the unique zero of Φ.

If ν has finite variance, the proof will be similar by changing the rescaling term.

The paper is organised as follows. In Section 2, we study the tail of M when ν has finite variance and prove Theorem 1.2. In Section 3, we prove Theorem 1.3 and Corollary 1.4.

We write f (x) g(x)

as x → x 0 if 0 < lim inf x→x 0 f (x) g(x) ≤ lim sup x→x 0 f (x) g(x) < ∞.
2 Theorem 1.2:

(1.4) when E[ν 2 ] < ∞
We begin with the simpler case when ν has finite second moment. Note that (1.3) is a special case of (1.5) by taking ν = ν. So it suffices to prove (1.5) in Theorem 1.2.

Recall that for x r = P(M > r), we have the equation (1.12). We first show that x r P( ν > r).

For the upper bound, one sees that

f (1 -x r ) -(1 -x r ) = E[(1 -x r ) ν ; ν > r] ≤ P( ν > r).
For the generating function f of ν with f (1) = 1, let b(s) be the function on [0, 1) such that

(2.1) b(s) = 1 1 -f (s) - 1 f (1)(1 -s) = 1 1 -f (s) - 1 1 -s .
Then as proved in Lemma 2.1 of [START_REF] Geiger | The survival probability of a critical branching process in a random environment[END_REF], if Var(ν) < ∞, one has

(2.2) 0 ≤ b(s) ≤ σ 2 , ∀0 ≤ s < 1, and lim s↑1 b(s) = σ 2 /2.
Plugging s = 1x r in (2.1) then using (2.2) gives us that

f (1 -x r ) -(1 -x r ) = x r -( 1 x r + b(1 -x r )) -1 = x 2 r b(1 -x r ) 1 + x r b(1 -x r ) ≥ b(1 -x r ) 1 + σ 2 x 2 r .
It follows that

x 2 r ≤ P( ν > r) 1 + σ 2 b(1 -x r ) . Note that P(M < ∞) = 1 as E[ν] = 1. Apparently x r ↓ 0 as r ↑ ∞. So, lim r↑∞ b(1 -x r ) = σ 2 /2 by (2.1
). Then for r sufficiently large, b(1x r ) ≥ σ 2 /4 > 0. As a result, for r large enough,

x r ≤ 2 1 + σ 2 σ 2 P( ν > n).
For the lower bound, as (1x) k ≥ 1kx for any k ∈ N and x ∈ [0, 1], we have

f (1 -x r ) -(1 -x r ) = E[(1 -x r ) ν ; ν > r] ≥E[(1 -νx r ); ν > r] =P( ν > r) -x r E[ν; ν > r]. (2.3)
Note that for the generating function f , we have f (1) = 1 and f "(1) = σ 2 . So,

f (1 -x r ) -(1 -x r ) = f (1 -x r ) -f (1) + f (1)x r ≤ f (1) 2 x 2 r .
It follows that

σ 2 2 x 2 r ≥ P( ν > r) -x r E[ν; ν > r]
By Cauchy-Schwartz inequality,

(2.4)

E[ν1 { ν>r} ] ≤ E[ν 2 1 { ν>r} ]P( ν > r).
Observe that

E[ν 2 1 { ν>r} ] → 0 as r → ∞. Hence, E[ν1 { ν>r} ] ≤ P( ν > r) for r large enough. This yields that σ 2 2 x 2 r + x r P( ν > r) ≥ P( ν > r).
Consequently, for all sufficiently large r,

x r ≥ -P( ν > r) + √ 1 + 2σ 2 P( ν > r)

σ 2 = 2 1 + √ 1 + 2σ 2 P( ν > r).
Therefore, we obtain that

x r P( ν > n).
Next, let γ r := P( ν > r). We define for any r > 0 and x ∈ [0, 1/γ r ],

Φ r (x) := f (1 -x √ γ r ) -(1 -x √ γ r ) -E (1 -x √ γ r ) ν ; ν > r
By (1.12), one has Φ r ( x r √ γ r ) = 0. We are going to show that

(2.5) 1 γ r Φ r (x) r→∞ ---→ φ(x) := σ 2 2 x 2 -1, uniformly in any compact K ⊂ [0, ∞). The pointwise convergence is trivial for x = 0. We treat f 1 -x √ γ r -1 -x √ γ r and E 1 -x √ γ r ν ; ν > r separately.
First, for any

x ∈ (0, ∞), by (2.1) and (2.2),

n 2 [ f (1 - x n ) -(1 - x n )] = b(1 -x n ) 1 + x n b(1 -x n ) x 2 → σ 2 2 x 2 , as n → ∞. As f (1 -x n ) -(1 -x n ) is monotone for x, Dini's theorem shows that this conver- gence is uniform in any compact K ⊂ [0, ∞). Note that γ r ↓ 0 as r ↑ ∞. Replacing n by 1/ √ γ n , we get 1 γ r [ f (1 -x √ γ r ) -(1 -x √ γ r )] → σ 2 2 x 2 .
uniformly for x in a compact K ⊂ [0, ∞). It remains to show that for any x ≥ 0

(2.6) E (1 -x √ γ r ) ν ; ν > r ∼ γ r .
It is immediate that

E (1 -x √ γ r ) ν ; ν > r ≤ P( ν > r) = γ r . Similarly as (2.3) and (2.4), E (1 -x √ γ r ) ν ; ν > r ≥P( ν > r) -x √ γ r E[ν; ν > r] ≥γ r -xγ r E[ν 2 1 { ν>r} ].
This implies that

E (1 -x √ γ r ) ν ; ν > r -γ r ≤ xγ r E[ν 2 1 { ν>r} ].
where lim r→∞ γ r E[ν 2 1 { ν>r} ] = 0. Moreover, we also have the uniform convergence

E (1 -x √ γ r ) ν ; ν > r -γ r → 0
in any compact set on R + . We hence deduce that

1 γ r Φ r (x) → φ(x).
uniformly in any compact set on R + . Now let us prove the convergence of x r √ γ r by showing that any convergent subsequence converges towards the same limit. In fact, note that for any subsequence of {x r } such that as

k → ∞, x r k √ γ r k → x * ∈ R + ,
the uniform convergence (2.5) and the continuity of φ yield that

lim k→∞ 1 γ r k Φ r k x r k √ γ r k = φ(x * ).
By (1.12), φ(x * ) = 0. So, x * = √ 2/σ 2 and

x r ∼ 2 σ 2 P( ν > r).

Theorem 1.3: (1.4) in the jointly regularly varying case

In this section, we study the tail of M given in the equation

M d = max{ ν, max 1≤k≤ν M k },
where X = ( ν, ν) is independent of M k , k ≥ 1, and has multivariate regularly varying tail. For x r = P(M > r) with r > 0, we first show that

x r 1 r , as r → ∞.

According to the assumptions of Theorem 1.3, we can write V(r) = r -α (r) for some α ∈ (1, 2) and slowly varying function, then (3.1) P(ν > r) = r -α 1 (r), and

P( ν > r) = r -α 2 (r)
where 1 and 2 are two slowly varying function at infinity such that 1 (r) ∼ c 1 (r) and 2 (r) ∼ c 2 (r) as r → ∞. We first show that x r = O( 1 r ). In fact, by (1.12), one has

(3.2) x r = 1 -f (1 -x r ) + E[(1 -x r ) ν ; ν > r] ≤ 1 -f (1 -x r ) + P( ν > r).
Note that f is the generating function of ν, thus,

f (1 -x r ) = E[(1 -x r ) ν ] ≥E[(1 -x r ) ν ; ν ≤ r] ≥E[(1 -νx r ); ν ≤ r] =P(ν ≤ r) -x r E[ν; ν ≤ r].
Plugging it into (3.2) yields that

x r ≤1 -P(ν ≤ r) + x r E[ν; ν ≤ r] + P( ν > r) =P(ν > r) + x r E[ν; ν ≤ r] + P( ν > r). Recall that 1 = E[ν], so x r (1 -E[ν; ν ≤ r]) = x r E[ν; ν > r] ≤ P(ν > r) + P( ν > r).
By (3.1), P( ν > r) ∼ c 2 c 1 P(ν > r). Moreover, the tail of ν is regularly varying of index α ∈ (1, 2), then Karamata's theorem implies that E[ν; ν > r] ∼ α α-1 P(ν > r)r. Consequently, x r = O( 1 r ). Apparently, 0 ≤ x r r ≤ C < ∞ for some constant C > 0. This means the tightness of {rx r } r>0 . Now we turn to the uniform convergence of Φ r defined as follows:

(3.3) Φ r (x) = f (1 - x r ) -(1 - x r ) -E[(1 - x r ) ν ; ν > r], ∀r > x ≥ 0.

Proof of Corollary 1.4

It is clear that when α > 2, (1.11) follows from Theorem 1.2 and that when α ∈ (1, 2), (1.9) follows from Theorem 1.3. We only need to prove (1.10) for α = 2. First note that P(v ≥ r) ∼ cr -α and P( ν ≥ r) ∼ γ(0)r -α . By Theorem 1.5 in [START_REF] Chen | Favorite sites of randomly biased random walks on a supercritical Galton-Watson tree[END_REF], one has for r sufficiently large, p r := P(M ≥ r) 1 r log r .

For r ≥ e and x ∈ [0, r log r], define

Φ r (x) = f (1 - x r log r ) -(1 - x r log r ) -E 1 - x r log r ν ; ν ≥ r .
Similarly, one has for any x ≥ 0, as r → ∞,

f (1 - x r log r ) -(1 - x r log r ) ∼ C 2 x r log r 2 log r log r x ∼ C 2 x 2 r 2 .
For any ε ∈ (0, 1) and r 1, E e -ε xν r ; ν ≥ r ≤ E 1 -x r log r ν ; ν ≥ r ≤ P( ν ≥ r) Apparently r 2 P( ν ≥ r) → c as r → ∞. For the lower bound, we see that for any x > 0, 

r 2 E 0 e

 20 1e -ε xν r ; ν ≥ r = ∞ 0 e -u r 2 P( ν ≥ r, ν ≥ r u εx )du ≤ ∞ -u du r 2 P( ν ≥ r) As P( ν ≥ r) ∼ cr -α and P( ν ≥ r, ν ≥ br) ∼ γ(b)r -α , by dominated convergence theorem, lim r→∞ r 2 E 1e -ε xν r ; ν ≥ r =Here one can show that γ(b) ↓ 0 as b ↑ ∞. In fact, for any b > 0, we haver 2 P( ν ≥ r, ν ≥ br) ≤ r 2 P(ν ≥ br).Taking limit shows that γ(b) ≤ cb -α . Consequently,lim r→∞ r 2 E e -ε xν r ; ν ≥ r = ∞ 0 [γ(0)γ( u εx )]e -u du ≥ ∞ 0[γ(0) -cε 2 x 2 u 2 ∧ γ(0)]e -u du.

Clearly, Φ r (0) ∼ -c 2 r -α (r).

On the one hand, by Bingham et al . [START_REF] Bingham | Regular Variation[END_REF]Theorem 8.1.6; P 333], as P(ν > r) = r -α 1 (r), we get that for x > 0, (3.4) f (1

On the other hand, we study the convergence of 1

For the lower bound, note that for any ε ∈ (0, 1) and x > 0, there exists r(x, ε) > 0 such that for all r ≥ r(x, ε), one has (1

The multivariate regularly tail of the random vector X implies the weak convergence of

by the assumption. As a consequence, for any x > 0,

is non-increasing in x. So, by Dini's theorem, both the convergences (3.4) and (3.5) are uniform on any compact in [0, ∞). Going back to (3.3), one obtains that

uniformly on any compact in [0, ∞). Note that by dominated convergence theorem, Φ is continuous for x ≥ 0. Moreover, Φ is strict increasing on R + . The zero C α,µ > 0 of Φ exists and is unique because

The equation (1.12) means that Φ r (rx r ) = 0. So we conclude that rx r → C α,µ .

Note that by dominated convergence theorem,

We end up with r 2 Φ r (x) → φ(x) := C 2 x 2γ(0).

One can check the uniform convergence in any compact set on R + by Dini's theorem. We hence conclude that r log rp r converges to γ(0)