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On the tail distribution of the solution to some law
equation.

Xinxin CHEN∗ , Chunhua Ma†

March 22, 2019

Abstract

We consider a distribution equation which was initially studied by Bertoin [2]:

M d
= max{ν̃, max

1≤k≤ν
Mk}.

where {Mk}k≥1 are i.i.d. copies of M and independent of (ν̃, ν) ∈ R+ ×N. We obtain the
tail behaviour of the solution of a generalised equation in a different but direct method by
considering the joint tail of (ν̃, ν).

1 Introduction to questions

For a random variable ν ∈N, we consider the following equation of distributions on N:

(1.1) M d
= max{ν, max

1≤k≤ν
Mk}

where Mk are i.i.d. copies of M ∈ N and independent of ν. In fact, for a Galton-Waston tree
T with offspring ν, let

M := sup
u∈T

νu

be the largest offspring. Clearly M satisfies the equation (1.1).
Note that if E[ν] ≤ 1 then M < ∞ a.s. and that if E[ν] > 1, P(M = ∞) = P(T = ∞).
In this paper, we only consider the critical case when E[ν] = 1. If E[ν] < 1, the tail distribu-

tion of M is of the same order as ν. For two sequences (an)n≥1 and (bn)n≥1, we write an ∼ bn
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as n → ∞ if limn→∞
an
bn

= 1 and we write an � bn if K1bn ≤ an ≤ K2bn for some positive
constants K1, K2 > 0.

Bertoin [2] considered this equation (1.1) and by use of the link between critical Galton-
Watson tree and centred random walk, he proved the following theorem.

Theorem 1.1 (Bertoin). For M whose distribution satisfies the equation (1.1),

1. if P(ν > n) = n−α`(n) with α ∈ (1, 2) and `(·) a slowly varying function at infinity, then as
n→ ∞,

(1.2) P(M > n) ∼ Cα

n
,

where Cα ∈ (0, ∞) is a constant which depends only on α;

2. if σ2 := Var(ν) < ∞, then

(1.3) P(M > n) ∼
√

2
σ2 P(ν > n).

We will reprove this theorem by direct calculations, using the generating function of ν.
More generally, for a random vector (ν̃, ν) which takes values in R+ ×N such that E[ν] =

1, let us consider the following equation of distribution:

(1.4) M d
= max{ν̃, max

1≤k≤ν
Mk}

where Mk are i.i.d. copies of M ∈ R+ and independent of (ν̃, ν). The distribution of M
differs according to the joint distribution of (ν̃, ν). We first consider some special cases in the
following.

Theorem 1.2. For M whose distribution satisfies the equation (1.4), if E[ν] = 1 and E[ν2] < ∞, then
as r → ∞,

(1.5) P(M > r) ∼
√

2
σ2 P(ν̃ > r);

where σ2 = Var(ν)

For random vector (ν̃, ν) where ν has infinite variance, we need to consider multivariate
regularly varying condition. One can refer to Chapter 6 in [13] for more details.

For a d-dimensional random vector X ∈ Rd, its law is regularly varying of index α ∈ (0, ∞)
if for some norm || · || on Rd, there exists a random vector θ on the unit sphere Sd−1 = {x ∈
Rd|||x|| = 1} such that for any u ∈ (0, ∞) and as x → ∞,

(1.6)
P(||X|| > ux, X

||X|| ∈ ·)
P(||X|| > x)

weak−−→ u−αP(θ ∈ ·)
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where the convergence is on weak topology of finite measures, i.e. for Cb(R
d).

The equivalent characterization of multivariate regular variations is as follows. Recall that
a measurable function V : (0, ∞)→ (0, ∞) is regularly varying of index ρ ∈ R if as x → ∞,

V(xy)/V(x)→ yρ, ∀y ∈ (0, ∞).

A d-dimensional random vector X is then regularly varying of index α ∈ (0, ∞) if and only if
there exists a regularly varying function V of index −α and a nonzero Radon measure µ on
Rd such that, as x → ∞,

(1.7)
1

V(x)
P(x−1X ∈ ·) vague−−−→ µ(·)

where vague convergence is for all functions in C+
K (Rd). Here the measure µ is homogeneous

of order −α. A choice for the function V is that V(x) = P(||X|| > x) in which case the vague
convergence in (1.7) is also weak convergence, and for all u ∈ (0, ∞), by (1.6),

µ({x ∈ Rd : ||x|| > u, x/||x|| ∈ ·}) = u−αP(θ ∈ ·).

Then the restriction of µ on {x : ||x|| > 1} is a probability measure. Hence, for any f ∈
Cb(R

d),

E[ f (x−1X)
∣∣∣||X|| > x] x→∞−−−→

∫
f (y)1||y||>1µ(dy).

Now we state the following theorem for jointly regularly varying setting.

Theorem 1.3. For M whose distribution satisfies the equation (1.4) and for X = (ν̃, ν), suppose that
X is regularly varying of index α ∈ (1, 2) associated with V(x) = P(||X|| > x) and µ given in (1.7)
such that

µ({y = (y1, y2) ∈ R2
+ : y1 > 0, y2 > 1}) > 0 and µ({y = (y1, y2) ∈ R2

+ : y2 = 1 < ||y||}) = 0.

Suppose moreover that there exist c1, c2 ∈ (0, ∞) such that

P(ν > x)
P(||X|| > x)

x→∞−−−→ c1, and
P(ν̃ > x)

P(||X|| > x)
x→∞−−−→ c2.

Then, as r → ∞,

(1.8) P(M > r) ∼
Cα,µ

r

where Cα,µ is the unique positive solution of c1αΓ(−α)xα −
∫

R2
+

e−xy21y1>1µ(dy) = 0.

Remark: Instead of the vector (ν̃, ν), if these assumptions hold for the vector (ν̃γ, ν) for
some γ > 0, these arguments still work for Mγ. In this case, the distribution of (ν̃, ν) is called
non-standard regularly varying according to [13].

Let us state the following corollary by assuming the joint tail of (ν̃, ν).
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Corollary 1.4. For the random vector (ν̃, ν) with E[ν] = 1, assume that there exist a non-increasing
function γ : R+ → R∗+ and α > 0 such that for any b ∈ R+, as r → ∞,

P(ν̃ ≥ r, ν ≥ br) ∼ γ(b)r−α,

and P(ν ≥ r) ∼ cr−α with some c ∈ (0, ∞). For random variable M satisfying the equation (1.4),

1. if α ∈ (1, 2), then

(1.9) P(M > r) ∼ Cα,γ,c

r
, as r→ ∞.

2. if α = 2, then

(1.10) P(M > r) ∼ Cα,γ,c

r
√

log r
, as r → ∞.

3. if α > 2, then

(1.11) P(M > r) ∼
√

2
E[ν2]− 1

P(ν̃ > r), as r → ∞.

Remark: One can refer to [5] for an application and the motivation of this corollary.
Note that Theorem 1.1 is a special case of Theorems 1.3 and 1.2 by taking ν̃ = ν. We only

need to prove the last two theorems. Let us explain the main idea of proof here, especially for
Theorem 1.3 when (ν̃, ν) is regularly varying of index α ∈ (1, 2).

In fact, let f (s) := E[sν] be the generating function of ν. Observe from (1.4) that for any
r > 0,

P(M ≤ r) =P(ν̃ ≤ r; max
1≤i≤ν

Mk ≤ r)

=P
(

max
1≤i≤ν

Mk ≤ r
)
− P

(
ν̃ > r; max

1≤i≤ν
Mk ≤ r

)
= f (1− P(M > r))− E

[
(1− P(M > r))ν ; ν̃ > r

]
where the last equality follows from the independence between (ν̃, ν) and all Mk. Write xr :=
P(M > r) for convenience, we obtain that

(1.12) 1− xr = f (1− xr)− E[(1− xr)
ν; ν̃ > r].

Inspired by this equation, we define for any r > 0 and for any x ∈ [0, r]:

Φr(x) := [ f (1− x
r
)− (1− x

r
)]− E[(1− x

r
)ν; ν̃ > r].
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Apparently, one sees that Φr(rxr) = 0. On the one hand, we show the tightness of rxr. On the
other hand, for some positive deterministic sequence (γr), we will show that γrΦr converges
to some continuous function Φ uniformly on any compact of [0, ∞) and that the limit function
Φ has one unique zero in [0, ∞). This implies that rxr converges to the unique zero of Φ.

If ν has finite variance, the proof will be similar by changing the rescaling term.
The paper is organised as follows. In Section 2, we study the tail of M when ν has finite

variance and prove Theorem 1.2. In Section 3, we prove Theorem 1.3 and Corollary 1.4.
We write f (x) � g(x) as x → x0 if 0 < lim infx→x0

f (x)
g(x) ≤ lim supx→x0

f (x)
g(x) < ∞.

2 Theorem 1.2: (1.4) when E[ν2] < ∞

We begin with the simpler case when ν has finite second moment. Note that (1.3) is a special
case of (1.5) by taking ν̃ = ν. So it suffices to prove (1.5) in Theorem 1.2.

Recall that for xr = P(M > r), we have the equation (1.12). We first show that xr �√
P(ν̃ > r).
For the upper bound, one sees that

f (1− xr)− (1− xr) = E[(1− xr)
ν; ν̃ > r] ≤ P(ν̃ > r).

For the generating function f of ν with f ′(1) = 1, let b(s) be the function on [0, 1) such that

(2.1) b(s) =
1

1− f (s)
− 1

f ′(1)(1− s)
=

1
1− f (s)

− 1
1− s

.

Then as proved in Lemma 2.1 of [7], if Var(ν) < ∞, one has

(2.2) 0 ≤ b(s) ≤ σ2, ∀0 ≤ s < 1, and lim
s↑1

b(s) = σ2/2.

Plugging s = 1− xr in (2.1) then using (2.2) gives us that

f (1− xr)− (1− xr) = xr − (
1
xr

+ b(1− xr))
−1 =

x2
r b(1− xr)

1 + xrb(1− xr)
≥ b(1− xr)

1 + σ2 x2
r .

It follows that

x2
r ≤ P(ν̃ > r)

1 + σ2

b(1− xr)
.

Note that P(M < ∞) = 1 as E[ν] = 1. Apparently xr ↓ 0 as r ↑ ∞. So, limr↑∞ b(1− xr) = σ2/2
by (2.1). Then for r sufficiently large, b(1− xr) ≥ σ2/4 > 0. As a result, for r large enough,

xr ≤ 2

√
1 + σ2

σ2 P(ν̃ > n).
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For the lower bound, as (1− x)k ≥ 1− kx for any k ∈N and x ∈ [0, 1], we have

f (1− xr)− (1− xr) = E[(1− xr)
ν; ν̃ > r] ≥E[(1− νxr); ν̃ > r]

=P(ν̃ > r)− xrE[ν; ν̃ > r].(2.3)

Note that for the generating function f , we have f ′(1) = 1 and f ”(1) = σ2. So,

f (1− xr)− (1− xr) = f (1− xr)− f (1) + f ′(1)xr ≤
f ′′(1)

2
x2

r .

It follows that
σ2

2
x2

r ≥ P(ν̃ > r)− xrE[ν; ν̃ > r]

By Cauchy-Schwartz inequality,

(2.4) E[ν1{ν̃>r}] ≤
√

E[ν21{ν̃>r}]P(ν̃ > r).

Observe that E[ν21{ν̃>r}] → 0 as r → ∞. Hence, E[ν1{ν̃>r}] ≤
√

P(ν̃ > r) for r large enough.
This yields that

σ2

2
x2

r + xr

√
P(ν̃ > r) ≥ P(ν̃ > r).

Consequently, for all sufficiently large r,

xr ≥
−
√

P(ν̃ > r) +
√

1 + 2σ2
√

P(ν̃ > r)
σ2 =

2
1 +
√

1 + 2σ2

√
P(ν̃ > r).

Therefore, we obtain that
xr �

√
P(ν̃ > n).

Next, let γr := P(ν̃ > r). We define for any r > 0 and x ∈ [0, 1/γr],

Φr(x) := f (1− x
√

γr)− (1− x
√

γr)− E
[
(1− x

√
γr)

ν ; ν̃ > r
]

By (1.12), one has Φr(
xr√
γr
) = 0. We are going to show that

(2.5)
1
γr

Φr(x) r→∞−−−→ φ(x) :=
σ2

2
x2 − 1,

uniformly in any compact K ⊂ [0, ∞). The pointwise convergence is trivial for x = 0.
We treat f

(
1− x

√
γr
)
−
(
1− x

√
γr
)

and E
[(

1− x
√

γr
)ν ; ν̃ > r

]
separately. First, for any

x ∈ (0, ∞), by (2.1) and (2.2),

n2[ f (1− x
n
)− (1− x

n
)] =

b(1− x
n )

1 + x
n b(1− x

n )
x2 → σ2

2
x2,
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as n → ∞. As f (1− x
n )− (1− x

n ) is monotone for x, Dini’s theorem shows that this conver-
gence is uniform in any compact K ⊂ [0, ∞). Note that γr ↓ 0 as r ↑ ∞. Replacing n by 1/

√
γn,

we get
1
γr

[ f (1− x
√

γr)− (1− x
√

γr)]→
σ2

2
x2.

uniformly for x in a compact K ⊂ [0, ∞). It remains to show that for any x ≥ 0

(2.6) E
[
(1− x

√
γr)

ν ; ν̃ > r
]
∼ γr.

It is immediate that
E
[
(1− x

√
γr)

ν ; ν̃ > r
]
≤ P(ν̃ > r) = γr.

Similarly as (2.3) and (2.4),

E
[
(1− x

√
γr)

ν ; ν̃ > r
]
≥P(ν̃ > r)− x

√
γrE[ν; ν̃ > r]

≥γr − xγr

√
E[ν21{ν̃>r}].

This implies that ∣∣∣E [(1− x
√

γr)
ν ; ν̃ > r

]
− γr

∣∣∣ ≤ xγr

√
E[ν21{ν̃>r}].

where limr→∞ γr

√
E[ν21{ν̃>r}] = 0. Moreover, we also have the uniform convergence∣∣∣E [(1− x

√
γr)

ν ; ν̃ > r
]
− γr

∣∣∣→ 0

in any compact set on R+. We hence deduce that

1
γr

Φr(x)→ φ(x).

uniformly in any compact set on R+.
Now let us prove the convergence of xr√

γr
by showing that any convergent subsequence

converges towards the same limit. In fact, note that for any subsequence of {xr} such that as
k→ ∞,

xrk√
γrk

→ x∗ ∈ R+,

the uniform convergence (2.5) and the continuity of φ yield that

lim
k→∞

1
γrk

Φrk

(
xrk√
γrk

)
= φ(x∗).

By (1.12),
φ(x∗) = 0.

So, x∗ =
√

2/σ2 and

xr ∼
√

2
σ2 P(ν̃ > r).
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3 Theorem 1.3: (1.4) in the jointly regularly varying case

In this section, we study the tail of M given in the equation

M d
= max{ν̃, max

1≤k≤ν
Mk},

where X = (ν̃, ν) is independent of Mk, k ≥ 1, and has multivariate regularly varying tail.
For xr = P(M > r) with r > 0, we first show that

xr �
1
r

, as r → ∞.

According to the assumptions of Theorem 1.3, we can write V(r) = r−α`(r) for some
α ∈ (1, 2) and ` slowly varying function, then

(3.1) P(ν > r) = r−α`1(r), and P(ν̃ > r) = r−α`2(r)

where `1 and `2 are two slowly varying function at infinity such that `1(r) ∼ c1`(r) and
`2(r) ∼ c2`(r) as r → ∞.

We first show that xr = O(1
r ). In fact, by (1.12), one has

(3.2) xr = 1− f (1− xr) + E[(1− xr)
ν; ν̃ > r] ≤ 1− f (1− xr) + P(ν̃ > r).

Note that f is the generating function of ν, thus,

f (1− xr) = E[(1− xr)
ν] ≥E[(1− xr)

ν; ν ≤ r]
≥E[(1− νxr); ν ≤ r]
=P(ν ≤ r)− xrE[ν; ν ≤ r].

Plugging it into (3.2) yields that

xr ≤1− P(ν ≤ r) + xrE[ν; ν ≤ r] + P(ν̃ > r)
=P(ν > r) + xrE[ν; ν ≤ r] + P(ν̃ > r).

Recall that 1 = E[ν], so

xr(1− E[ν; ν ≤ r]) = xrE[ν; ν > r] ≤ P(ν > r) + P(ν̃ > r).

By (3.1), P(ν̃ > r) ∼ c2
c1

P(ν > r). Moreover, the tail of ν is regularly varying of index α ∈ (1, 2),
then Karamata’s theorem implies that E[ν; ν > r] ∼ α

α−1P(ν > r)r. Consequently, xr = O(1
r ).

Apparently, 0 ≤ xrr ≤ C < ∞ for some constant C > 0. This means the tightness of
{rxr}r>0. Now we turn to the uniform convergence of Φr defined as follows:

(3.3) Φr(x) = f (1− x
r
)− (1− x

r
)− E[(1− x

r
)ν; ν̃ > r], ∀r > x ≥ 0.
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Clearly, Φr(0) ∼ −c2r−α`(r).
On the one hand, by Bingham et al .[4, Theorem 8.1.6; P 333], as P(ν > r) = r−α`1(r), we

get that for x > 0,

(3.4) f (1− x
r
)− (1− x

r
) ∼ αΓ(−α)

(x
r

)α
`1

( r
x

)
∼ c1αΓ(−α)xαV(r), r → ∞,

On the other hand, we study the convergence of 1
V(r)E[(1− x

r )
ν; ν̃ > r] by use of the multi-

variate regularly varying tail of X = (ν̃, ν). Note that

1
V(r)

E[(1− x
r
)ν; ν̃ > r] =E[(1− x

r
)ν; ν̃ > r|||X|| > r]

≤E[e−x ν
r 1{ν̃>r}|||X|| > r]

For the lower bound, note that for any ε ∈ (0, 1) and x > 0, there exists r(x, ε) > 0 such that
for all r ≥ r(x, ε), one has (1− x

r ) ≥ e−(1+ε) x
r . Therefore,

1
V(r)

E[(1− x
r
)ν; ν̃ > r] ≥ E[e−(1+ε)x ν

r 1{ν̃>r}|||X|| > r].

The multivariate regularly tail of the random vector X implies the weak convergence of
P(( ν̃

r , ν
r ) ∈ ·|||X|| > r) towards µ+(·) := µ(· ∩ {y = (y1, y2) ∈ R2

+ : ||y|| > 1}). More-
over, for A := (1, ∞)×R+, µ+(∂A) = 0 by the assumption. As a consequence, for any x > 0,

lim
r→∞

P(ν̃ > r)
V(r)

=µ+(A) = c2

lim inf
r→∞

1
V(r)

E[(1− x
r
)ν; ν̃ > r] ≥

∫
e−(1+ε)xy21{y1>1}µ+(dy)

lim sup
r→∞

1
V(r)

E[(1− x
r
)ν; ν̃ > r] ≤

∫
e−xy21{y1>1}µ+(dy)

Letting ε > 0 yields that

(3.5) lim
r→∞

1
V(r)

E[(1− x
r
)ν; ν̃ > r] =

∫
e−xy21{y1>1}µ+(dy).

Note that f (1− x
r )− (1− x

r ) is non-decreasing in x and 1
V(r)E[(1− x

r )
ν; ν̃ > r] is non-increasing

in x. So, by Dini’s theorem, both the convergences (3.4) and (3.5) are uniform on any compact
in [0, ∞). Going back to (3.3), one obtains that

1
V(r)

Φr(x) r→∞−−−→ Φ(x) := c1αΓ(−α)xα −
∫

e−xy11{y2>1}µ+(dy),

uniformly on any compact in [0, ∞). Note that by dominated convergence theorem, Φ is
continuous for x ≥ 0. Moreover, Φ is strict increasing on R+. The zero Cα,µ > 0 of Φ exists
and is unique because

Φ(0) = −c2 < 0 and lim
x→∞

Φ(x) = ∞.

The equation (1.12) means that Φr(rxr) = 0. So we conclude that rxr → Cα,µ.
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4 Proof of Corollary 1.4

It is clear that when α > 2, (1.11) follows from Theorem 1.2 and that when α ∈ (1, 2), (1.9)
follows from Theorem 1.3. We only need to prove (1.10) for α = 2.

First note that P(v ≥ r) ∼ cr−α and P(ν̃ ≥ r) ∼ γ(0)r−α. By Theorem 1.5 in [6], one has
for r sufficiently large,

pr := P(M ≥ r) � 1
r
√

log r
.

For r ≥ e and x ∈ [0, r
√

log r], define

Φr(x) = f (1− x
r
√

log r
)− (1− x

r
√

log r
)− E

[(
1− x

r
√

log r

)ν

; ν̃ ≥ r

]
.

Similarly, one has for any x ≥ 0, as r → ∞,

f (1− x
r
√

log r
)− (1− x

r
√

log r
) ∼ C2

(
x

r
√

log r

)2

log

(
r
√

log r
x

)
∼ C2

x2

r2 .

For any ε ∈ (0, 1) and r � 1,

E
[
e−ε xν

r ; ν̃ ≥ r
]
≤ E

[(
1− x

r
√

log r

)ν

; ν̃ ≥ r

]
≤ P(ν̃ ≥ r)

Apparently r2P(ν̃ ≥ r)→ c as r → ∞. For the lower bound, we see that for any x > 0,

r2E
[
1− e−ε xν

r ; ν̃ ≥ r
]
=
∫ ∞

0
e−ur2P(ν̃ ≥ r, ν ≥ r

u
εx

)du

≤
∫ ∞

0
e−udu

(
r2P(ν̃ ≥ r)

)
As P(ν̃ ≥ r) ∼ cr−α and P(ν̃ ≥ r, ν ≥ br) ∼ γ(b)r−α, by dominated convergence theorem,

lim
r→∞

r2E
[
1− e−ε xν

r ; ν̃ ≥ r
]
=
∫ ∞

0
γ(

u
εx

)e−udu

Here one can show that γ(b) ↓ 0 as b ↑ ∞. In fact, for any b > 0, we have

r2P(ν̃ ≥ r, ν ≥ br) ≤ r2P(ν ≥ br).

Taking limit shows that γ(b) ≤ cb−α. Consequently,

lim
r→∞

r2E
[
e−ε xν

r ; ν̃ ≥ r
]
=
∫ ∞

0
[γ(0)− γ(

u
εx

)]e−udu ≥
∫ ∞

0
[γ(0)− cε2x2

u2 ∧ γ(0)]e−udu.
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Note that by dominated convergence theorem,∫ ∞

0

cε2x2

u2 ∧ γ(0)e−udu→ 0 as ε→ 0.

Therefore,

γ(0) + oε(1) ≤ lim inf
r→∞

r2E

[(
1− x

r
√

log r

)ν

; ν̃ ≥ r

]

≤ lim sup
r→∞

r2E

[(
1− x

r
√

log r

)ν

; ν̃ ≥ r

]
≤ γ(0)

We end up with
r2Φr(x)→ φ(x) := C2x2 − γ(0).

One can check the uniform convergence in any compact set on R+ by Dini’s theorem. We

hence conclude that r
√

log rpr converges to
√

γ(0)
C2

.
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