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Abstract. We present a method for synthesising control strategies for continuous dynami-
cal systems. We use Uppaal Tiga for the synthesis in combination with a set-based Euler
method for guaranteeing that the synthesis is safe. We present both a general method and a
method which provides tighter bounds for monotone systems. As a case-study, we synthesize
a guaranteed safe strategy for a simplified adaptive cruise control application. We show that
the guaranteed strategy is only slightly more conservative than the strategy generated in the
original adaptive cruise control paper which uses a discrete non guaranteed strategy. Also,
we show how reinforcement learning may be used to obtain optimal sub-strategies.

Keywords: Continuous systems · Euler method · Control synthesis · Timed games.

1 Introduction

The goal of this work is to introduce a new approach for the synthesis of correct-by-construction con-
trol strategies for continuous-time sampled switched systems, based on the synthesis tool Uppaal
Tiga [2]. Sampled switched systems constitute a sub-class of hybrid systems, and the synthesis
problem for such systems is still an important issue, particularly when considering safety critical
systems. The model of sampled switched systems has been used in various domains, such as power
electronics [9], green housing [17, 25], automotive industry [30, 23]. The approach we develop is
motivated by a cruise control application introduced in [18]. In a few words, the objective of the
case-study is to compute a controller choosing the acceleration of a car (through the throttle and
brake), in order to avoid hitting the car in front of it. Obviously, one does not control the front car,
and such a system can easily be modelled as a two-player game. Furthermore, an accurate modelling
of the dynamics of the cars should be done with differential equations. Our main goal is to ensure
safety properties for the controlled system, e.g., that the distance between the cars stays above a
given limit. The system can actually be formulated as a continuous-time switched system, how-
ever, the difficulty comes from uncontrollable components, which prevents us from using standard
switched control synthesis methods.

Control synthesis for switched systems has been extensively studied in the past years. One
of the current major approaches is symbolic methods, which basically aim at representing the
continuous and infinite state-space of the system with a finite number of symbols, e.g. discrete
points [11, 29], sets of states [21], etc. This type of approaches is particularly adapted for safety
critical systems, since it exhaustively ensures that an interest set is safe. However, dealing with
uncontrollable components in this setting is particularly difficult. One could cite robust approaches
[12], distributed computations [22], or contract-based design [31], but they usually consider the
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adversary as a bounded perturbation. In the case of the cruise control case-study, considering the
front car as a bounded perturbation would be overly conservative, the reachability computations
would lead to extremely pessimistic sets, and thus inapplicable controllers. Moreover, the state-
space to be considered in the cruise control example is too large to be handled by most symbolic
methods, using a discretisation or tiling based approach would be computationally infeasible.

The model of timed automata and games is particularly well suited for modelling the behaviour of
the car. The tool Uppaal Tiga allows to compute strategies for such systems, but for computability
reasons, requires integers in the guards of the models. Thereby, the dynamics of the system should be
described using only integers. A naive way of doing so is to discretise the system, for example with a
numerical scheme, properly scaled or approximated so that the discrete approximation is described
with integers. This is the approach which was used in [18]. The problem of this approach is that the
properties are guaranteed only at discrete times, which compromises the safety of the controlled
system. This is illustrated in Figure 1, in which the true continuous distance can be compared to
the integer approximation used in [18]. We clearly observe that the continuous distance between
the cars goes below the integer approximation between two time steps. The safety property is not
guaranteed in this case, since the cars could hit each other between two time steps.

Fig. 1: The problem of using a discrete approximation for the dynamics as in [18]: the continuous
distance (rDistance) can go below the integer approximation (distance) between the time steps.

We present an approach based on the synthesis tool Uppaal Tiga, which allows to compute
guaranteed safe strategies for timed game models of continuous dynamical systems. By merging safe
reachability computations based on guaranteed numerical schemes, with state-of-the-art verification
of timed automata and games, we extend the field of application of both continuous reachability
computations, and timed game verification tools. The guaranteed solution of ordinary differential
equations have been widely studied in the last decades. The main approaches rely on interval
arithmetic, in the framework of Taylor series in [26, 27], and Runge-Kutta schemes in [4, 10, 3].
In this paper, we choose to use a guaranteed Euler method, introduced in [20], because of its
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simplicity of implementation which allows its use directly in Uppaal Tiga, without using any
external libraries.

The principle of our approach is the following: instead of using a standard scheme or discretisa-
tion for computing successor states in the timed game model, we use a guaranteed set-based Euler
scheme. Since we use a set-based approach, we need to use lower and upper over-approximations,
this allows us to keep the continuous state in a convex set. The set-based approach is implemented
in functions which take integers as inputs, and return integers, thus ensuring that we keep the decid-
ability results of the verification tool. Since set-based methods usually lead to growing sets within
time, we develop a refinement method for monotone systems in order to keep a tight approximation
during long simulations. We then demonstrate the usability of the method by further exploring the
safe strategies computed. In our case, we use a learning method implemented in the tool Uppaal
Stratego [7] to optimise the controller while keeping the strategy safe.

The paper is divided as follows. In Section 2, we present the synthesis tool Uppaal Tiga, its
underlying limitations, and the gap to be filled in order to synthesize safety controllers for continous-
time switched systems. We present a set-based reachability method for continuous systems based
on the Euler method in Section 3. In Section 4, we combine the latter to functions that can be
handled by the Uppaal framework, maintaining the associated decidability results and ensuring
safety for the continuous system. We propose a refinement method for monotone systems in Section
5, allowing to tighten the reachability approximations. We further exploit the safe strategies in
Section 6, in which we optimise the strategy with a learning algorithm. We conclude in Section 7.

Problem statement

We are interested in continuous-time switched systems described by the set of nonlinear ordinary
differential equations:

ẋ = fj(x), (1)

where x ∈ Rn is the state of the system, and j ∈ U is the mode of the system. The finite set
U = {1, . . . , N} is the set of switching modes of the system. The functions fj : Rn −→ Rn, with
j ∈ U , are the vector fields describing the dynamics of each mode j of the system. The system can
be in only one mode at a time. We focus on sampled switched systems: given a sampling period
τ > 0, switchings will occur periodically at times τ , 2τ , . . .

For t ∈ [0, τ), we denote by φj(t;x0) the state reached by the system at time t from the initial
condition x0 at time t0 = 0 and under mode j ∈ U . A controller is a function C : R+ −→ U ,
constant on the intervals [kτ, (k+ 1)τ ] with k ∈ N, which associates to any time t ∈ R+ a switched
mode j ∈ U . Given a controller C, we denote by φC(t;x0) the state reached by the system at time
t ∈ R+ from the initial condition x0 and under controller C, i.e. the active mode at time t′ ≤ t is
C(t′). One should include the initial time t0 = 0 in the notation: φj(t; t0, x0), but in the remainder
of this paper, we omit it for the sake of simplicity.

We focus on synthesizing controllers for the class of system introduced, and we aim at ensuring
safety properties. The safety properties we consider is defined as follows.

Definition 1. Consider a switched system of the form (1). Consider a safety set S = [smin1 , smax1 ]×
· · · × [sminn , smaxn ] given as a box of Rn. Given a controller C, system (1) is said to be safe with
respect to S if, for any initial condition x0 ∈ S and for all time t ∈ R+, we have:

φC(t;x0) ∈ S.
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Case study

To illustrate our approach, we consider a cruise control application introduced in [18]. Two cars
Ego and Front are driving on a road shown in Figure 2. We are capable of controlling Ego but not
Front. Both cars can drive a maximum of 20 m/s forward and a maximum of 10 m/s backwards.
The cars have three different possible accelerations: -2m/s2, 0 m/s2 and 2m/s2, between which they
can switch instantly. For the cars to be safe, there should be a distance of at least 5 m between
them. Any distance less than 5 m between the cars is considered unsafe. Ego’s sensors can detect
the position of Front only within 200 meters. If the distance between the cars is more than 200
meters, then Front is considered to be far away. Front can reenter the scope of Ego’s sensor with
arbitrary velocity as it desires, as long as the velocity is smaller or equal to that of Ego.

Fig. 2: Distance, velocity and acceleration between two cars [18].

In this example, the aim is to synthesize a strategy for controllable car Ego such that it always
stays far enough from uncontrollable car Front. The continuous dynamics of the resulting system
is as follows:

v̇f = af (2)

v̇e = ae (3)

ḋ = vf − ve (4)

where af and ae can take the values −2, 0, and 2, resulting in an 8-mode switched system of the
form (1). The safety set to consider is thus S = [−10, 20]× [−10, 20]× [5, 200]. We suppose that the
switching period of the system is τ = 1. Note that the dynamics of this system is linear, therefore,
given a controller C, we can analytically compute the exact trajectory of the system.

2 From continuous switched systems to stochastic priced timed games

2.1 Modeling of the system

We model the system as a timed game in Uppaal Tiga, later, in Section 6 we annotate the model
with continuous behaviour and probabilities in Uppaal Stratego [7] to be able to do performance
optimisation. The system has two players, Ego and Front, with two different behaviors. We use an
already existing model for these players, and we refer the reader to [18] for more information on
this model. We see the two players in Figures 4 and 5. We see that these two do not do anything
except when they get a synchronisation call chooseEgo respectively chooseFront. In Figure 3 we
see a system component which waits one time unit and then sends the two signals. The fact that
the controller only makes choices once every time unit means the system is a switched system as
defined above.
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Fig. 3: Model of the system component.

Fig. 4: Model of Ego.

Fig. 5: Model of Front.
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In Figure 3 we see that once every time unit we call updateDiscrete(). This function can
be seen in Appendix A. A remaining question is the computation of function updateDiscrete(),
which, given the current state of system (1) at time t, returns the successor state at time t + τ .
Using a proper scaling of the system, we can approximate system (1) by a discrete-time discrete-
state system, where the state and time is described with integers. The approximate discrete system
can be written

x(t+ τ) = Fj(x(t)), (5)

where x ∈ Nn is the state, t ∈ N (with τ = 1) and Fj(x(t)) = x(t) +
∫ τ
0
fj(x(t))dt.

2.2 Synthesis using Uppaal Tiga

As shown above, we model the system using only integers, and as shown in Figure 1 this is not
always safe as the continuous trajectory is not taken into account between discrete points. In
Section 3 we introduce a method for calculating a tube in the state space, which we can guarantee
the system will stay in. In the Uppaal model we update the updateDiscrete() (see Appendix A)
function to do the computation of this tube. We add the bounds of the tube to the state space
in the form of arrays (vectors) containing the lower and upper guaranteed integer approximations.
The function internally uses doubles. Generally, if real numbered variables (which are not clocks)
are used, synthesis of strategies in timed games is undecidable. However, the doubles are only used
in the calculation of the transition and the result of the function is integers1. This means the state
space only contains integers, and as the model guarantees bounds on these integers the synthesis is
possible.

As we now have guaranteed lower and upper bounds for the continuous state, we can ask Uppaal
Tiga to synthesize a strategy which ensures that the guaranteed lower and upper bounds always
stay in the safety set S. It is clear that this is a conservative approach and if the guaranteed bounds
are not reasonably tight, it might not be possible to synthesize a strategy. We will see in Section 5
how to tighten these bounds and in Section 6 we will explore the generated strategy using Uppaal
Stratego.

3 Reachability tubes using the Euler method

3.1 Lipschitz and one-sided Lipschitz condition

We make the following hypothesis:

(H0) For all j ∈ U , fj is a locally Lipschitz continuous map on S.

We recall the definition of locally Lipschitz:

Definition 2. A function f : A ⊂ Rn −→ Rm is locally Lipschitz at x0 ∈ A if there exist constants
η > 0 and M > 0 such that

‖x− x0‖ < η → ‖f(x)− f(x0)‖ ≤M‖x− x0‖

1 The method described actually calculates a box which is specified using reals, we then round these to
obtain integers to make it possible to do the synthesis.
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As in [13], we make the assumption that the vector field fj is such that the solutions of the
differential equation (1) are defined, e.g. by assuming that the support of the vector field fj is
compact.

We denote by T a compact overapproximation of the image by φj of S for 0 ≤ t ≤ τ and j ∈ U ,
i.e. T is such that

T ⊇ {φj(t;x0) | j ∈ U, 0 ≤ t ≤ τ, x0 ∈ S}.

The existence of T is guaranteed by assumption (H0) and the compactness of S. We know fur-
thermore by (H0), Definition 2 and the compactness of the support of fj that, for all j ∈ U , there
exists a constant Lj > 0 such that:

‖fj(y)− fj(x)‖ ≤ Lj ‖y − x‖ ∀x, y ∈ S. (6)

Let us define Cj for all j ∈ U :

Cj = sup
x∈S

Lj‖fj(x)‖ for all j ∈ U. (7)

We make the additional hypothesis that the mappings fj are one-sided Lipschitz (OSL) [8].
Formally:

(H1) For all j ∈ U , there exists a constant λj ∈ R such that

〈fj(y)− fj(x), y − x〉 ≤ λj ‖y − x‖2 ∀x, y ∈ T, (8)

where 〈·, ·〉 denotes the scalar product of two vectors of Rn. Constant λj ∈ R is called one-sided
Lipschitz (OSL) constant, and can also be found in the literature as Dahlquist’s constant [32]. Note
that in practice, hypotheses H0 and H1 are not strong. Hypothesis H0 just ensures the existence of
solutions for the system, and constants Lj and λj can always be found if the state of the system
stays in a compact set (e.g. the set T ).

Computation of constants λj, Lj and Cj In the general case, computation of constants Lj , Cj , λj
(j ∈ U) can be realised with constrained optimisation algorithms such as the “sqp” algorithm of
Octave, applied on the following optimisation problems:

– Constant Lj :

Lj = max
x,y∈S, x 6=y

‖fj(y)− fj(x)‖
‖y − x‖

– Constant Cj :
Cj = max

x∈S
Lj‖fj(x)‖

– Constant λj :

λj = max
x,y∈T, x 6=y

〈fj(y)− fj(x), y − x〉
‖y − x‖2

We could point out that such algorithms do not guarantee that an underapproximation of the
constants is computed. However, some works have been done for computing over and under approx-
imation of Lipschitz constants in [28], and could be used here. This approach can be extended to
the OSL constant. Yet, for linear systems, constants Lj , Cj , λj (j ∈ U) can be computed exactly,
such as in [19], and we use this approach for the cruise control example.
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3.2 Euler approximate solutions

Having defined OSL conditions, we now present the method introduced in [20], allowing to compute
reachability sets and tubes, relying on the Euler method. The introduction of OSL conditions actu-
ally allows to establish a new global error bound, permitting the computation of overapproximation
of reachability sets and tubes, precise enough to be used for control synthesis. In the remainder
of this section, we consider, without loss of generality, that t0 = 0, and omit its notation in the
trajectory φj .

Given an initial point x̃0 ∈ S and a mode j ∈ U , we define the following “linear approximate
solution” φ̃j(t; x̃0) for t on [0, τ ] by:

φ̃j(t; x̃0) = x̃0 + tfj(x̃0). (9)

Note that formula (9) is nothing else but the explicit forward Euler scheme with “time step” t. It is
thus a consistent approximation of order 1 in t of the exact trajectory of (1) under the hypothesis
x̃0 = x0.

We define the closed ball of center x ∈ Rn and radius r > 0, denoted B(x, r), as the set
{x′ ∈ Rn | ‖x′ − x‖ ≤ r}.

Given a positive real δ, we now define the expression δj(t) which, as we will see in Theorem 1,

represents (an upper bound on) the error associated to φ̃j(t; x̃0) (i.e. ‖φ̃j(t; x̃0)− φj(t;x0)‖).

Definition 3. Let us consider a switched system verifying hypotheses (H0) and (H1), associated to
constants λj, Lj and Cj for each mode j ∈ U , such that equations (6), (7) and (8) hold. Let δ be
a positive constant. We define, for all 0 ≤ t ≤ τ , function δj(ρ, t) as follows:

– if λj < 0:

δj(ρ, t) =

(
ρ2eλjt +

C2
j

λ2j

(
t2 +

2t

λj
+

2

λ2j

(
1− eλjt

))) 1
2

– if λj = 0 :

δj(ρ, t) =
(
ρ2et + C2

j (−t2 − 2t+ 2(et − 1))
) 1

2

– if λj > 0 :

δj(ρ, t) =

(
ρ2e3λjt +

C2
j

3λ2j

(
−t2 − 2t

3λj
+

2

9λ2j

(
e3λjt − 1

))) 1
2

Note that δj(ρ, t) = ρ for t = 0.

Theorem 1. Given a sampled switched system satisfying (H0-H1), consider a point x̃0 and a pos-
itive real ρ. We have, for all x0 ∈ B(x̃0, δ), t ∈ [0, τ ] and j ∈ U :

φj(t;x0) ∈ B(φ̃j(t; x̃0), δj(ρ, t)).

See proof in [20]

Remark 1. In Theorem 1, we have supposed that the step size h used in Euler’s method was equal
to the sampling period τ of the switching system. Actually, in order to have better approximations,
it is sometimes convenient to consider a uniform subdivision of [0, τ ] and apply the Euler’s method
for a time step h equal to e.g. h = τ

k , where k ∈ N is the number of sub-steps used in the interval
[0, τ ].
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Corollary 1. Given a sampled switched system satisfying (H0-H1), consider a point x̃0 ∈ S, a real
ρ > 0 and a mode j ∈ U such that:

1. B(x̃0, ρ) ⊆ S,

2. B(φ̃j(τ ; x̃0), δj(ρ, τ)) ⊆ S, and

3.
∂2δj(ρ,t)
∂t2 > 0 for all t ∈ [0, τ ].

Then we have, for all x0 ∈ B(x̃0, ρ) and t ∈ [0, τ ]: φj(t;x0) ∈ S.

Proof. By items 1 and 2, B(φ̃j(t; x̃0), δj(ρ, t)) ⊆ S for t = 0 and t = τ . Since δj(ρ, ·) is convex

on [0, τ ] by item 3, and S is convex, we have B(φ̃j(t; x̃0), δj(ρ, t)) ⊆ S for all t ∈ [0, τ ]. It follows

from Theorem 1 that φj(t;x0) ∈ B(φ̃j(t; x̃0), δj(ρ, t)) ⊆ S for all 0 ≤ t ≤ τ .

Note that condition 3 of Corollary 1 on the convexity of δj(ρ, ·) on [0, τ ] can be established again
using an optimisation function. Since we have an exact expression for δj(·), its second derivative
(w.r.t. time) can be computed using a computer algebra software. Using an optimisation algorithm
then allows to verify that its minimum is positive. Nevertheless, we believe that the convexity of
δj(ρ, ·) with respect to time could be shown analytically. For the remainder of this paper, we state
this condition as a hypothesis:

(H2) For all j ∈ U , ρ > 0,
∂2δj(ρ,t)
∂t2 > 0 for all t ∈ [0, τ ].

4 Guaranteed synthesis using the Euler method

Before stating the main result of this section, let us extend the definitions of the floor and ceiling
functions to the n-dimensional setting as follows:

Definition 4. Let x = (x1, . . . , xn)> ∈ Rn. The floor function maps a vector x ∈ Rn to a vector
of Zn, denoted by bxc, with the following coefficients:

bxc = (max{m ∈ Z | m ≤ x1}, . . . ,max{m ∈ Z | m ≤ xn})> (10)

Similarly, the ceiling function maps a vector x ∈ Rn to a vector of Zn, denoted by dxe, with the
following coefficients:

dxe = (min{m ∈ Z | m ≥ x1}, . . . ,min{m ∈ Z | xn ≤ m})> (11)

In the following, we denote by 1 the vector of Rn which coefficients are all one. We also consider
the ordering of Rn with the relation ≤ defined as follows, for two vectors x = (x1, . . . , xn)> ∈ Rn
and y = (y1, . . . , yn)> ∈ Rn:

x ≤ y if and only if xi ≤ yi ∀i = 1, . . . , n. (12)

We now introduce the main functions allowing to compute safe approximations of the state of the
continuous system using integers:
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Definition 5. Let j ∈ U be the active mode for the time interval [t, t+ τ ]. Consider a given initial
condition x0 ∈ S and initial radius ρ0 > 0, let h = τ/k be the step size of the Euler method, k thus
being the number of time steps used for the interval. For i ∈ {0, . . . , k}, we define the sequence of
radiuses of the Euler method as follows:

ρj0 = ρ0 (13)

ρji+1 = δj(ρ
j
i , h) (14)

Similarly, we define the sequence of points computed by the Euler method as:

xj0 = x0 (15)

xji+1 = φ̃j(h;xji ) = xji + hfj(x
j
i ) (16)

We define the integer under-approximation function Hk
j (x0, ρ0) over time time interval [t, t+ τ ]

as follows:
Hk
j (x0, ρ0) = min

i∈{0,...,k+1}
bxji − ρ

j
i1c (17)

We define the low integer successor state function hkj (x0, ρ0) as follows:

hkj (x0, ρ0) = bxjk+1 − ρ
j
k+11c (18)

Similarly, we define the integer over-approximation function Gkj (x0, ρ0) over time time interval
[t, t+ τ ] as follows:

Gkj (x0, ρ0) = max
i∈{0,...,k+1}

dxji + ρji1e (19)

We define the high integer successor state function gkj (x0, ρ0) as follows:

gkj (x0, ρ0) = dxjk+1 + ρjk+11e (20)

Theorem 2. Suppose that system (1) satisfies (H0), (H1), (H2). Consider a given initial condition
x0 ∈ S and initial radius ρ0 > 0, let h = τ/k be the step size of the Euler method, k thus being
the number of time steps used for the interval. Functions H and G return safe integer under and
over-approximations of the continuous state of system (1) on the time interval [t, t+ τ ], for initial
conditions in ball B(x0, ρ0) at time t. I.e., for any initial condition x ∈ B(x0, ρ0) ⊆ S at initial
time t, for all mode j ∈ U and any k ∈ N>0, we have:

Hk
j (x0, ρ0) ∈ S ∧Gkj (x0, ρ0) ∈ S ⇒ φj(t

′;x) ∈ S ∀t′ ∈ [t, t+ τ ]. (21)

If Hk
j (x0, ρ0) ∈ S ∧Gkj (x0, ρ0) ∈ S holds, we furthermore have:

Hk
j (x0, ρ0) ≤ φj(t′;x) ≤ Gkj (x0, ρ0), ∀t′ ∈ [t, t+ τ ]. (22)

Proof. The proof relies on Corollary 1. Because of the convexity with respect to time of function
δ(·, ·), it is sufficient to verify that a reachability tube stays inside safety set S only by verifying
that balls B(xi0, ρ

i
0) belong to S at each discrete instant t+ iτ

k with i = 0, . . . , k + 1. Functions H
and G return integer vectors which bound the Euler tubes on the whole time interval [t, t+ τ ], thus
containing all the possible trajectories issued from B(x0, ρ0).
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Theorem 2 allows to compute under and over-approximations of the minimum and maximum
integer visited by the system on a given time-interval. If it allows to ensure safety properties, one
also needs an accurate way of computing the successor state. The following corollary gives a general
way to compute this successor state:

Corollary 2. Suppose that system (1) satisfies (H0), (H1) and (H2). Consider a given initial
condition x0 ∈ S and initial radius ρ0 > 0, let h = τ/k be the step size of the Euler method,
k thus being the number of time steps used for the interval. We have, for any initial condition
x ∈ B(x0, ρ0) ⊆ S at initial time t, for all mode j ∈ U and any k ∈ N>0:

Hk
j (x0, ρ0) ∈ S ∧Gkj (x0, ρ0) ∈ S ⇒ hkj (x0, ρ0) ≤ φj(t+ τ ;x) ≤ gkj (x0, ρ0) (23)

The main result allowing to compute safety controllers is the following:

Theorem 3. Consider system (1) satisfying (H0), (H1) and (H2), and an initial condition x0 ∈ S
at time 0.

– If x0 is an integer, let x′0 = x0
– Ohterwise, let x′0 = bx0c+dx0e

2

Let h = τ/k be the step size of the Euler method with k ∈ N>0. Given a controller C, let us compute
iteratively two sequences of integer states as follows:

ymin0 = bx′0c at t = 0

ymax0 = dx′0e at t = 0

and

ymini+1 = hkC(iτ)(
ymaxi + ymini

2
,

∥∥∥∥ymaxi − ymini

2

∥∥∥∥) at t = (i+ 1)τ

ymaxi+1 = gkC(iτ)(
ymaxi + ymini

2
,

∥∥∥∥ymaxi − ymini

2

∥∥∥∥) at t = (i+ 1)τ

If controller C verifies, for all t = iτ with i ∈ N:

Hk
C(t)(

ymaxi + ymini

2
,

∥∥∥∥ymaxi − ymini

2

∥∥∥∥) ∈ S ∧GkC(t)(
ymaxi + ymini

2
,

∥∥∥∥ymaxi − ymini

2

∥∥∥∥) ∈ S, (24)

then system (1) is safe with respect to S.

Proof. The main idea of Theorem 3 is that we compute two sequences of integers which bound the
continuous trajectory at discrete times, and functions H and G guarantee the correctness between
discrete times. Corollary 1 guarantees that the sequences ymini and ymaxi do bound the continuous
trajectory, since they are built as the bounds of the Euler tubes, but made wider using only integers.
Theorem 2 then ensures that H and G bound the continuous trajectory between the time steps. If,
for a controller C, they return values always belonging to S, we know that the controlled continuous
trajectory stays inside S .
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Note that functions H and G take integers as inputs (the sequences ymini and ymaxi ), and return
integers. Thus, functions H and G can be implemented in Uppaal and used for computing guards
in the time automata models, and the decidability results still hold, which ensures the termination
of the computations. Due to the lack of space, we do not present how the strategy synthesis engine
of Uppaal Tiga works, and we refer the reader to [2]. In a nutshell, one has to exhaustively
explore all the possible transitions, and eliminate the controllable actions leading to unsafe states.
With the above theorem, we eliminate a transition as soon as (24) does not hold. Theorem 3
thus gives a general way of computing safety controllers for any system satisfying (H0)-(H1)-(H2),
which are weak hypotheses. However, the accuracy of the Euler method can lack on some systems,
particularly when looking far in the future, which leads us to the development of the refinement
technique presented in the following section.

5 Refinement for monotone systems

The monotonicity property has been widely used in symbolic methods and control synthesis [25, 1].
The monotonicity property can be expressed using an ordering of the state, of the input, or of a
perturbation. In our case, we only need to consider the state ordering, or, more precisely, that each
mode of the switched system is monotone with respect to the state. The monotonicity property is
then expressed as follows:

Definition 6 (Monotonicity). System (1) is monotone with respect to ordering ≤ if the following
implication holds for all j ∈ U :

x0 ≤ x′0 ⇒ ∀t > 0, φj(t;x0) ≤ φj(t;x′0) (25)

We refer the reader to [25, 24, 16] for more information on monotone control systems and applications
of the monotonicity property. If system (1) is monotone, we can refine Theorem 3 by computing
more accurate sequences of integer points as follows:

Corollary 3. Consider system (1) satisfying (H0), (H1), (H2) and the monotonicity property.
Consider an initial condition x0 ∈ S at time 0.

– If x0 is an integer, let x′0 = x0
– Ohterwise, let x′0 = bx0c+dx0e

2

Let h = τ/k be the step size of the Euler method with k ∈ N>0. Given a controller C, let us compute
iteratively two sequences of integer states as follows:

ymin0 = bx′0c at t = 0

ymax0 = dx′0e at t = 0

and

ymini+1 = bφC(iτ)(τ ; ymini )c at t = (i+ 1)τ

ymaxi+1 = dφC(iτ)(τ ; ymaxi )e at t = (i+ 1)τ
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If controller C verifies, for all t = iτ with i ∈ N:

Hk
C(t)(

ymaxi + ymini

2
,

∥∥∥∥ymaxi − ymini

2

∥∥∥∥) ∈ S ∧GkC(t)(
ymaxi + ymini

2
,

∥∥∥∥ymaxi − ymini

2

∥∥∥∥) ∈ S, (26)

then system (1) is safe with respect to S.

Proof. Let us consider a controller C. We first show by induction on i ∈ N that for any initial
condition x0 ∈ S we have: ymini ≤ φC(iτ ;x0) ≤ ymaxi . This is trivially true for i = 0 (bx′0c ≤ x0 ≤
dx′0e). If this is true for i ∈ N, then, from the monotonicity hypothesis with respect to ordering ≤,
we have:

φC(iτ)(τ ; ymini ) ≤ φC(iτ)(τ ;φC(iτ ;x0)) ≤ φC(iτ)(τ ; ymaxi )

i.e.:
bφC(iτ)(τ ; ymini )c ≤ φC((i+ 1)τ ;x0) ≤ dφC(iτ)(τ ; ymaxi )e

ymini+1 ≤ φC((i+ 1)τ ;x0) ≤ ymaxi+1

which proves the induction. Thus, at every discrete time t = iτ , we have:

φC(iτ ;x0) ∈ B(
ymaxi + ymini

2
,

∥∥∥∥ymaxi − ymini

2

∥∥∥∥).

This allows us to apply Theorem 2 on each interval [iτ, (i+1)τ ]: under hypotheses (H0), (H1), (H2),
for any step size h = τ/k of the Euler method, if controller C verifies, for all t = iτ with i ∈ N:

Hk
C(t)(

ymaxi + ymini

2
,

∥∥∥∥ymaxi − ymini

2

∥∥∥∥) ∈ S ∧GkC(t)(
ymaxi + ymini

2
,

∥∥∥∥ymaxi − ymini

2

∥∥∥∥) ∈ S, (27)

then any (continuous) trajectory issued from B(
ymax
i +ymin

i

2 ,
∥∥∥ymax

i −ymin
i

2

∥∥∥) is safe with respect to S

in the time interval [iτ, (i + 1)τ ]. Since φC(iτ ;x0) does belong to B(
ymax
i +ymin

i

2 ,
∥∥∥ymax

i −ymin
i

2

∥∥∥), we

conclude that φC(t;x0) ∈ S for all t ∈ [iτ, (i+ 1)τ ], which is true for all i ∈ N.

Corollary 3 uses the fact that we can use tighter integer bounds than those used in Theorem 3
when computing the integer sequences. Indeed, in Theorem 3, the sequences ymini and ymaxi are
computed from the Euler tubes, which are quite pessimistic approximations of the trajectories. The
sequences computed here do bound the trajectories of the continuous system at discrete instants
because of the monotonicity property, but are this time computed from the exact solution.

Note that Corollary 3 requires the computation of the exact solution φC(·; ·). If the system
considered is subject to a linear dynamics, such as the cruise control example, the exact solution
can be computed analytically. In other cases, an accurate numerical method can be used, such as
a Runge-Kutta integration scheme with appropriate (fine) time-stepping. One could think about
computing functions H and G using a similar fine-stepped numerical method, but it would require
much more tests for each simulation step, or some numerically expensive optimisation methods,
making it irrelevant in terms of computation times.

A simulation of a safe strategy computed with the refinement method2 is given in Figure 6. We
observe a good accuracy of the integer bounds, the induced controller is thus not overly conservative.

2 In order to obtain a monotone system from the cruise control model, simply right (3) as −v̇e = −ae in
order to have an addition in (4) which will indeed verify the monotonicity hypothesis.
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It illustrates that the refinement method keeps the approximations very close to the exact solution.
Note that without the refinement method, it is be possible to obtain such accurate results if the
OSL constants are negative. Indeed, when an OSL constant is negative, it is possible to choose
a time step small enough to make the radius of the approximations decrease. This is due to the
fact that a system with negative OSL constant presents trajectories getting exponentially closer
together within time, and this behaviour can be captured with a time step small enough [19].

Fig. 6: Simulation of the real distance (red) and the guaranteed lower and integer distance (green
and blue respectively) within time, using the refinement procedure.

6 Exploration of the Guaranteed Safe Strategy

We showed above how we can compute a guaranteed safe strategy for our system. We can now
use Uppaal Stratego to explore this new strategy and compare it with the discrete strategy
computed in [18].

6.1 Model checking under the new guarenteed strategy

Using Uppaal’s model checker [5] we can explore which distances are possible at different relative
velocities between the two cars, in Figure 7 we see a plot of the different minimum possible distances
of the two cars at different relative velocities, one for the strategy computed in [18] and one for the
guaranteed safe strategy. We see that the two strategies are very similar, but the guaranteed safe
strategy is slightly more conservative than the old non-safe strategy.

6.2 Optimisation

Uppaal Stratego also enables us to optimise the safe strategies using a learning algorithm, with
the aim of minimising a given cost (e.g. fuel consumption, relative distance between the cars).
In a given state, the safe strategy enables different (safe) transitions for Egos, but some of them



Guaranteed control synthesis for continuous systems in Uppaal Tiga 15

 0

 20

 40

 60

 80

 100

 120

 140

-20 -10  0  10  20  30

in
fi
m

u
m

: 
d

is
ta

n
ce

v=(velocityFront - velocityEgo)

model
Quadratic regression
Qubic regression

(a) Strategy computed in [18]. Figure from [18].
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(b) Safe and guaranteed strategy.

Fig. 7: Smallest achievable distance under the (guaranteed) safe strategy as a function of the relative
velocity of the two cars.

might lead to a better cost. Reinforcement-learning techniques are used to create a sequence of
safe strategies converging to an optimal one (minimising the cost). Despite the lack of theoretical
guarantees on the speed of convergence to optimum, a near-optimal strategy is typically obtained
after a few iterations. We refer the reader to [7, 6] for more information on the tool and the learning
techniques used. This learning algorithm supports the use of continuous information. To use this
algorithm we annotate the model with the continuous information using differential equations as
seen in Figure 8.

Fig. 8: The monitor component defines a set of differential equation over real variables, these vari-
ables can then be used by the learning algorithm.

The learning algorithm also requires us to annotate the choices of Front with probabilities, in
this case we assume that Front always chooses the acceleration and any other choice from a uniform
distribution.

The measure we wish to optimise is the accumulated distance, we use the continuous variable D

defined using the differential equation D’ == rDistance, as seen Figure 8. Our goal is to minimize
this measure, which means to minimize the distance between the two cars. Clearly, just minimising
the distance between the cars would lead to the cars crashing, so what we do is to constrain
Egos allowed actions to only those which are safe according to the strategy computed above. In
Figure 9 we see ten simulations under respectively the optimised strategy from [18] and the optimised
guaranteed safe strategy. Again, we see that the guaranteed strategy is slightly more conservative
as it was not possible for the learning algorithm to optimise as well as it did in [18].
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(a) Optimised strategy computed in [18]. Figure
from [18].

(b) Optimised safe and guaranteed strategy.

Fig. 9: Distance over time for 10 simulations under the two different optimised strategies.

7 Conclusion

In this paper, we presented a guaranteed approach for the synthesis of control strategies for
continuous-time sampled switched systems. Our approach relies on the tool Uppaal Tiga, which
field of application can be extended with the use of guaranteed numerical schemes. This approach is
made effective by enforcing the numerical scheme to bound the continuous trajectory using integers.
We developed a refinement method for monotonic systems which allows to use a guaranteed Euler
scheme even when the error grows rapidly.

We illustrated that once a safe strategy in computed, the strategy can be refined with further
developments such as optimisation using learning algorithms. This showed that the safe strategy
is, as expected, more conservative than the approach previously used, but does not over-constrain
the system, leaving room for further optimisations. The safe strategies we compute thus constitute
a sound basis for more specific computations.

We plan on testing this approach on more case studies, and implementing all the presented
methods in the core of Uppaal’s analytical methods, which does not currently support continuous
dynamical systems. In this work, we did not explore time dependent specifications, for example with
a moving safety set, or an obstacle to avoid, but this approach could handle this kind of specifications
thanks to the timed game framework. This is a noticeable improvement from standard symbolic
control synthesis methods which should be explored.

Another issue which could be raised is the synchronisation of the players. In a real cruise control
application, we cannot guarantee that the two players choose their acceleration at the same time.
We plan on developing a time robust Euler scheme, which would guarantee that if the switch does
not occur simultaneously, safety is still ensured. Note that this issue has already been studied in
the literature in different frameworks, an interested reader might refer to [14, 15].
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A Uppaal functions

void updateDisc re te ( ) {

ve l o c i t yEgo gua evo l [ 0 ] = v e l o c i t y Ego gua evo l [ 0 ] + acce l e ra t i onEgo ;
v e l o c i t yEgo gua evo l [ 1 ] = v e l o c i t y Ego gua evo l [ 1 ] + acce l e ra t i onEgo ;
v e l o c i t y F r o n t g u a e v o l [ 0 ] = v e l o c i t y F r o n t g u a e v o l [ 0 ] + a c c e l e r a t i o n F r o n t
;
v e l o c i t y F r o n t g u a e v o l [ 1 ] = v e l o c i t y F r o n t g u a e v o l [ 1 ] + a c c e l e r a t i o n F r o n t
;

i f ( d i s t a n c e g u a e v o l [ 0 ] > maxSensorDistance ) {
d i s t a n c e g u a e v o l [ 0 ] = maxSensorDistance + 1 ;
d i s t a n c e g u a e v o l [ 1 ] = maxSensorDistance + 1 ;

} e l s e {
e u l e r D i s c r e t e ( ) ;
d i s t a n c e g u a e v o l [ 0 ] = d i s t a n c e g u a e v o l [ 0 ] + ( v e l o c i t y F r o n t g u a e v o l

[ 0 ] - a c c e l e r a t i o n F r o n t ) - ( v e l o c i t yEgo gua evo l [ 0 ] - a c c e l e r a t i onEgo ) + (
a c c e l e r a t i o n F r o n t - a c c e l e r a t i onEgo ) /2 ;

d i s t a n c e g u a e v o l [ 1 ] = d i s t a n c e g u a e v o l [ 1 ] + ( v e l o c i t y F r o n t g u a e v o l
[ 0 ] - a c c e l e r a t i o n F r o n t ) - ( v e l o c i t yEgo gua evo l [ 0 ] - a c c e l e r a t i onEgo ) + (
a c c e l e r a t i o n F r o n t - a c c e l e r a t i onEgo ) /2 ;

i f ( d i s t a n c e g u a e v o l [ 1 ] > maxSensorDistance ) {
d i s t a n c e g u a e v o l [ 1 ] = maxSensorDistance + 1 ;

}
}

}

Listing 1.1: The function updating the discrete variables.

void e u l e r D i s c r e t e ( ) {
// double velEgo , velFront ,
double d i s t , velEgo , velFront , d e l t a ;
double memdist min , memdist max , memVF min , memVF max, memVE min ,

memVE max;

i n t i ;

d i s t = ( d i s t a n c e g u a e v o l [0 ]+ d i s t a n c e g u a e v o l [ 1 ] ) /2 ;
ve lFront = ( v e l o c i t y F r o n t g u a e v o l [0 ]+ v e l o c i t y F r o n t g u a e v o l [ 1 ] ) /2 ;
velEgo = ( ve l o c i t yEg o gua evo l [0 ]+ ve l o c i t yEgo gua evo l [ 1 ] ) /2 ;

d e l t a = s q r t ( ( d i s t a n c e g u a e v o l [ 1 ] - d i s t a n c e g u a e v o l [ 0 ] ) ∗(
d i s t a n c e g u a e v o l [ 1 ] - d i s t a n c e g u a e v o l [ 0 ] ) /4 + ( v e l o c i t y F r o n t g u a e v o l
[ 1 ] - v e l o c i t y F r o n t g u a e v o l [ 0 ] ) ∗( v e l o c i t y F r o n t g u a e v o l [ 1 ] -
v e l o c i t y F r o n t g u a e v o l [ 0 ] ) /4 + ( ve l o c i t yEgo gua evo l [ 1 ] -
v e l o c i t yEgo gua evo l [ 0 ] ) ∗( v e l o c i t yEgo gua evo l [ 1 ] - v e l o c i t yEgo gua evo l
[ 0 ] ) /4) ;
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memdist min = d i s t - d e l t a ;
memdist max = d i s t + d e l t a ;
memVF min = velFront - d e l t a ;
memVF max = velFront + d e l t a ;
memVE min = velEgo - d e l t a ;
memVE max = velEgo + de l t a ;

f o r ( i =0; i<=e u l e r s u b s t e p ; i++){
d i s t = d i s t + tau ∗( ve lFront - velEgo ) ;
velEgo = velEgo + tau∗ acce l e ra t i onEgo ;
ve lFront = velFront + tau∗ a c c e l e r a t i o n F r o n t ;
d e l t a = delta mode ( de l ta , f ind mode ( acce l e ra t i onFront , a c c e l e ra t i onEgo )

) ;
memdist min = mini ( memdist min , d i s t - d e l t a ) ;
memdist max = maxi ( memdist max , d i s t+d e l t a ) ;
memVF min = mini (memVF min , velFront - d e l t a ) ;
memVF max = maxi (memVF max, ve lFront+de l t a ) ;
memVE min = mini (memVE min , velEgo - de l t a ) ;
memVE max = maxi (memVE max, velEgo+d e l t a ) ;

}

d i s t a n c e g u a e v o l [ 0 ] = f l o o r ( d i s t - d e l t a ) ;
d i s t a n c e g u a e v o l [ 1 ] = c e i l ( d i s t+d e l t a ) ;
v e l o c i t y F r o n t g u a e v o l [ 0 ] = f l o o r ( velFront - d e l t a ) ;
v e l o c i t y F r o n t g u a e v o l [ 1 ] = c e i l ( ve lFront+d e l t a ) ;
v e l o c i t yEgo gua evo l [ 0 ] = f l o o r ( velEgo - de l t a ) ;
v e l o c i t yEgo gua evo l [ 1 ] = c e i l ( velEgo+de l t a ) ;

d i s tance gua [ 0 ] = f l o o r ( memdist min ) ;
d i s tance gua [ 1 ] = c e i l ( memdist max ) ;
ve l o c i tyFront gua [ 0 ] = f l o o r (memVF min) ;
ve l o c i tyFront gua [ 1 ] = c e i l (memVF max) ;
ve loc i tyEgo gua [ 0 ] = f l o o r (memVE min) ;
ve loc i tyEgo gua [ 1 ] = c e i l (memVE max) ;

}

Listing 1.2: The function using the Euler method and returning the lowest integer part visited by
the continuous system.


