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Introduction

Non-normal modal logics are called in this way because they do not satisfy all the axioms and rules of the minimal normal modal logic K. They have been studied since the seminal work of C.I. Lewis, Scott, Lemmon, and Chellas (for an introduction see [START_REF] Chellas | Modal Logic: An Introduction[END_REF] and [START_REF] Hughes | A New Introduction to Modal Logic[END_REF]) and can be seen as generalisations of standard modal logics. Non-normal modal logics have found an interest in several areas such as epistemic and deontic reasoning, reasoning about games, and reasoning about probabilistic notions such as `truth in most of the cases'. In all these contexts the 2 modality is better understood as non-normal. For instance, an epistemic interpretation of 2A as `the agent knows A' for a non-omniscient agent would reject the rule of monotonicity (RM), that A → B implies 2A → 2B, and possibly the rule of necessitation, the latter meaning in this case that the agent would know every logical validity. In deontic logic, where 2A is interpreted as `A is obligatory', some paradoxes like the `gentle murder' can be avoided if 2 is non-normal. Furthermore, if we interpret 2A as `A is true in most of the cases' or `A is highly probable', the modality 2 will not be likely to satisfy axiom (C) (2A ∧ 2B) → 2(A ∧ B). Validity of this axiom would also fail in a gametheoretical interpretation, where 2A is interpreted as the agent's availability of a winning strategy to bring about A.

Non-normal modal logics have been studied essentially from a semantical point of view. The standard semantics (Chellas [START_REF] Chellas | Modal Logic: An Introduction[END_REF]) for these systems is dened in terms of neighbourhood models: these are possible world models, where each world w is equipped with a set of neighbourhoods N (w), each one of them being a set of worlds/states. The loose intuition is that each neighbourhood provides sucient or relevant evidence to establish the truth of a formula of type 2A. A formula 2A is forced by a world w if the truth-set of A belongs to N (w). By imposing further closure conditions on N (w), various non-normal modal logics can be obtained. The classical cube of non-normal modal logics is determined by considering any combination of the following three conditions: for any world w, (M) N (w) is closed under supersets, (C) it is closed under intersection, (N) it contains the whole set of possible worlds.

The study of proof systems for non-normal modal logics does not have a state of the art comparable with the one of proof systems for normal modal logics, for which there exist well-understood proof methods of many kinds.

There are several desiderata on proof systems:

1 they should be standard, that is, they should contain only a nite number of rules, each with a xed number of premisses; logical operators should be dealt with dual rules (for the antecedent and the succedent) that introduce a single occurrence of a formula; the rules should be analytic and allow for a syntactic proof of cut elimination; the calculi should be modular, with stronger systems obtained simply by adding rules to a basic system; nally, they should provide a decision procedure (possibly of optimal complexity) whenever the logic is decidable, and from a failed proof it should be possible to extract directly a countermodel of the formula the validity of which is being checked.

Cut-free sequent calculi for non-normal modal logics have been studied by Lavendhomme and Lucas [START_REF] Lavendhomme | Sequent calculi and decision procedures for weak modal systems[END_REF]; in their calculi, however, rules allow several formulas as principal and modularity does not obtain; further, a decision procedure is given but it is rather complicated in the non-monotonic case. Indrzejczak [START_REF] Indrzejczak | Sequent calculi for monotonic modal logics[END_REF] has further developed the calculi by Lavendhomme and Lucas [START_REF] Lavendhomme | Sequent calculi and decision procedures for weak modal systems[END_REF] extending them with standard axioms of normal modal logics (the non-normal counterpart of logics from K to S5). Gilbert and Maezioli [START_REF] Gilbert | Modular sequent calculi for classical modal logics[END_REF] investigate labelled calculi using three modalities, on the basis of the translation of non-normal modal logics into normal modal logics given by Gasquet and Herzig [START_REF] Gasquet | From classical to normal modal logics[END_REF] and Kracht and Wolter [START_REF] Kracht | Normal monomodal logics can simulate all others[END_REF]. As a bi-product of the general methodology employed, their calculi are also fully modular (i.e., modular with no exceptions) but computational issues are not discussed. Recently, Lellmann and Pimentel [START_REF] Lellmann | Proof search in nested sequent calculi[END_REF] have proposed linear nested sequent calculi for non-normal modal logics; their calculi are fully modular and allow for syntactic cut elimination, but it is not obvious how to get countermodels and a decision procedure out of them.

In this work, we propose labelled sequent calculi for the basic non-normal modal logics. Our calculi are based on bi-neighbourhood models, an alternative semantics more general than the standard one. Dierently from the standard 1 For general desiderata on proof systems see [START_REF] Indrzejczak | Natural Deduction, Hybrid Systems and Modal Logics[END_REF][START_REF] Wansing | Sequent systems for modal logics[END_REF]; for modularity see [START_REF] Negri | Proof analysis in modal logic[END_REF], and for the extraction of countermodels from failed proof search see [START_REF] Negri | Proofs and countermodels in non-classical logics[END_REF]. semantics, worlds in a bi-neighbourhood model are equipped with sets of pairs of neighbourhoods rather than single neighbourhoods. The intuition is that the two components of a pair provide independent positive and negative evidence (or support) for a proposition. Standard models correspond exactly to bi-neighbourhood models in which the two neighbourhoods of a pair are complement of each other. The bi-neighbourhood semantics is signicant mostly for logics without the monotonicity property, as it collapses into the standard one in the monotonic case. We show directly that this semantics characterises non-normal modal logics, being sound and complete with respect to them. Moreover, each bi-neighbourhood model gives rise (in an eective way) to a standard model, providing thereby a mutual correspondence between models of the two kinds.

The new semantics is the starting point for developing labelled sequent calculi for non-normal modal logics. Our aim is to dene calculi that satisfy all the above desiderata. The calculi presented in this work are standard (in the sense specied above) and are based on the same approach of Negri [START_REF] Negri | Proof theory for non-normal modal logics: The neighbourhood formalism and basic results[END_REF] of importing the semantics into the syntax by making use of labels; however, they dier signicantly from those for non-monotonic systems. The main dierence is that the calculi presented here make use of pseudo-complement neighbourhoods (corresponding to pairs in the bi-neighbourhood semantics) instead of the covering relation to express the inclusion of the truth-set of a formula in a neighbourhood. The new semantic element has the eect that the calculi presented here do not introduce relational formulas in the consequent of a sequent and thus avoid exponential branching in proof search. Departing from the standard neighbourhood semantics gives, as a further bonus, calculi that cover in a modular way the whole cube of non-normal modal logics.

We shall rst present a version of the calculi with good proof-theoretical properties, the most important being syntactic cut elimination, from which syntactic completeness of the calculi follows. We then present a second version of the calculi with optimised rules for closure under intersection. We show that proof search in these calculi is always terminating, just by adopting a very simple strategy (with no additional mechanism needed). We then prove semantic completeness with respect to bi-neighbourhood models, whence also with respect to the standard semantics by virtue of the correspondence mentioned above. This means that from a failed proof search it is possible to extract directly a countermodel both in the bi-neighbourhood semantics and in the standard one. Since the models obtained in this way are nite, the semantic completeness proof provides in itself also a constructive proof of the nite model property. We nally give a syntactic proof of the fact that bi-neighbourhood semantics coincides with the standard semantics: if we force the two neighbourhoods of each pairs to be complements of each other, we do not get more provable formulas.

2

Non-normal modal logics and bi-neighbourhood semantics

In this section, we present the modal logic E and its extensions. We also present its standard semantics in terms of neighbourhood models and a more general semantics in terms of bi-neighbourhood models. We show that bi-neighbourhood semantics characterises logic E and its extensions and is equivalent to the standard neighbourhood semantics.

Let L be a propositional modal language based on countably many propositional variables, the Boolean connectives, and 2. We use A, B, C and p, q as metavariables for arbitrary formulas and atoms of L. 3A is an abbreviation for ¬2¬A. Logic E is obtained by adding to classical propositional logic the rule of inference

RE

A W is a non-empty set, V is a valuation function and N is a function that assigns to each world w a subset of P(W Proof. It can be easily shown that each axiom is valid in the respective class of models and that all the rules preserve validity.

) × P(W ) such that if (α, β) ∈ N (w), then α ∩ β = ∅. Moreover, M is a N-model if for all w ∈ W , (W, ∅) ∈ N (w); it is a C-model if (α 1 , β 1 ), (α 2 , β 2 ) ∈ N (w) implies (α 1 ∩ α 2 , β 1 ∪ β 2 ) ∈ N (w); and it is an M-model if for all w ∈ W , (α, β) ∈ N (w) implies β = ∅.
Even if completeness of all logics E * with respect to bi-neighbourhood models follows from Theorem 2.1 and the fact that standard models are particular cases of bi-neighbourhood models, it can be interesting to prove it directly by the canonical model construction. In the proof we do not consider the case of M as we saw it is standard. First of all, for any logic L based on the language L and for any set X of formulas of L, we say that X is L-consistent if X L ⊥, and that it is L-maximal consistent if it is L-consistent and for any formula A ∈ L such that A ∈ X, X ∪ {A} is not L-consistent. We denote by M ax L the class of all L-maximal consistent sets of formulas of L, and for any formula A we denote by ↑A the set {Y ∈ M ax L | A ∈ Y }. Before dening canonical models, we recall some basic properties of L-maximal consistent sets.

Lemma 2.3. (a) Any L-consistent set of formulas Γ can be extended to an L-

maximal consistent set. (b) If Γ L A, there is X in M ax L such that Γ ⊆ X and X / ∈↑A. (c) If L B → A, there is X in M ax L such that X ∈↑B and X / ∈↑A.
Lemma 2.4. Let X be an L-maximal consistent set. The usual properties of maximal consistent sets hold, in particular: (a)

If L A, then A ∈ X; (b) if Y L A and Y ⊆ X, then A ∈ X; (c) if L A ↔ B and 2A ∈ X, then 2B ∈ X; (d) ↑(A ∧ B) =↑A∩ ↑B; and (e) ↑(A ∨ B) =↑A∪ ↑B. Lemma 2.5. Let the canonical model M c = W c , N c , V c for L be dened as follows: W c = M ax L ; for any p ∈ L, V c (p) = {X ∈ W c | p ∈ X}; for all X ∈ W , N c (X) = {(↑A, ↑¬A)|2A ∈ X}. Then for any formula B ∈ L we have M c , X |= B i B ∈ X. Moreover, (N ) if L contains axiom N, then M c is an N-model, and (C) if L contains axiom C, then M c is a C-model. Proof. By induction on B. If B is p the claim holds by denition of V c . If B is ⊥, we have ⊥ / ∈ X for every X, because X is consistent. If B is C • D,
the proof is immediate by applying the inductive hypothesis and properties of

maximal consistent sets. If B is 2C: (⇒) Assume M c , X |= 2C. Then for some (α, β) ∈ N c (X) and all Y ∈ W c , Y ∈ α implies M c , Y |= C and Y ∈ β implies M c , Y |= C. By denition of N c , there is a formula D such that α =↑D, β =↑¬D and 2D ∈ X. Since by inductive hypothesis [C] M c =↑C, it holds that for all Z ∈ W c , Z ∈↑D implies Z ∈↑C and Z ∈↑C implies Z ∈↑D (if M c , Z |= C, then Z / ∈↑¬D, then Z ∈↑D); that is ↑D =↑C. By the properties of maximal consistent sets, L D ↔ C. Since 2D ∈ X, by Lemma 2.4 we have 2C ∈ X. (⇐) Assume 2C ∈ X. By denition, (↑C, ↑¬C) ∈ N c (X). Since, by inductive hypothesis, ↑C = [C] M c , we have that for all Y ∈ W c , Y ∈↑C implies M c , Y |= C and Y ∈↑¬C implies M c , Y |= C (because Y ∈↑¬C i Y ∈↑C). Thus M c , X |= 2C. (N) Since L 2 , for all X ∈ W c we have 2 ∈ X. Thus by denition, (↑ , ↑¬ ) ∈ N c (X), and by Lemma 2.4, ([ ] M c , [¬ ] M c ) = (W c , ∅) ∈ N c (X). (C) Assume (α 1 , β 1 ), (α 2 , β 2 ) ∈ N c (X). Then, by denition, for some C, D ∈ L, α 1 =↑C, β 1 =↑¬C, α 2 =↑D, β 2 =↑¬D and 2C, 2D ∈ X. Thus by the properties of maximal consistent sets we have 2C ∧ 2D ∈ X and, since X contains axiom C, also 2(C ∧ D) ∈ X. Then (↑(C ∧ D), ↑¬(C ∧ D)) ∈ N c (X), where ↑(C ∧ D) = α 1 ∩ α 2 and ↑¬(C ∧ D) = β 1 ∪ β 2 . Theorem 2.6 (Completeness of E * ). A formula A is a theorem of E * if and
only if is valid in the corresponding class of bi-neighbourhood models.

We now show that from any bi-neighbourhood model we can build an equivalent standard model. As a matter of fact, we can relativise the construction and the equivalence to an arbitrary set of formulas S provided that it is closed under subformulas. In this way we have an eective procedure to transform a nite bi-neighbourhood model satisfying a given formula into a standard one satisfying the same formula. Because of the obvious equivalence of the two semantics in the monotonic case, the latter is not considered in the lemma. Lemma 2.7. Let M = W, N , V be a bi-neighbourhood model and S be a set of formulas of L closed under subformulas. We dene the standard model M S = W, N S , V with the same W and V and by taking, for all w ∈ W ,

N S (w) = {[C] M | C ∈ S and M, w |= 2C}.
Then for any formula A ∈ S and any world w ∈ W , M S , w 

|= A i M, w |= A. Moreover, (N ) if ∈ S and M is a N-model,
w ∈ W , N bi (w) = {(α, W \ α) | α ∈ N st (w)}. Moreover, M bi is a N-model if M st contains the unit, and M bi is a C-model if M st is closed under intersection. 3
The calculi LSE * In this section, we dene our labelled calculi LSE * . We rst present their language and rules, then prove soundness with respect to bi-neighbourhood semantics and syntactic completeness.

Let WL = {x, y, z, ...} and NL = {a, b, c, ...} be two innite sets, respectively of world labels and of neighbourhood labels. Positive neighbourhood terms (or just terms) are nite sets of neighbourhood labels, and are written [a 1 . . . a n ]. If t is a positive term, then t is a negative term. The term τ and its negative counterpart τ are neighbourhood constants. If a (positive or negative) term contains exactly one label or it is τ or τ , then it is atomic, otherwise it is complex.

Intuitively, a positive complex term represents the intersection of its constituents, whereas a negative complex term represents the union of the negative counterparts of its constituents. Moreover, t and t are the two members of a pair of neighbourhoods in bi-neighbourhood models. Observe that the operation of overlining a term cannot be iterated: it can be applied only once for turning a positive term into a negative one. Two operations over terms are dened as follows: (a) Composition of positive terms:

[a 1 . . . a n ][b] = [a 1 . . . a n ] if b = a i for some i, 1 ≤ i ≤ n; [a 1 . . . a n b] otherwise. [a 1 . . . a n ][b 1 . . . b m ] = (...([a 1 . . . a n ][b 1 ])...[b m-1 ])[b m ] (b) Substitution of a positive term for a neighbourhood label inside a term: [a](t/b) = t if b = a [a] if b = a [a 1 . . . a n ](t/b) = [a 1 ](t/b)...[a n ](t/b) s(t/b) = s(t/b)
Observe that these operations do not introduce multiple occurrences of the same label, thus their results are still neighbourhood terms. We write Γ(t/a) to indicate that the substitution applies to all formulas in Γ. As immediate consequences of the denition we have: τ (t/a) = τ and τ (t/a) = τ , (sr)(t/a) = s(t/a)r(t/a), and sr(t/a) = s(t/a)r(t/a).

Denition 3.1. The formulas of L ls are of the following kinds:

φ ::= x : A | x : t | x : t | t : A | t : A | t : x.
The semantic interpretation of formulas of L ls is given in Denition 3.3. Intuitively, x : A means that x forces A, x : t (resp. x : t) means that x is a world in neighbourhood t (resp. t), t : A (resp. t : A) means that every world in t (resp. some world in t) forces A, and t : x means that the pair (t, t) is a bi-neighbourhood of x.

We have chosen a polymorphic notation, in which the colon has a meaning that depends on the type of its arguments, because of its compactness. As we shall see the interpretation of a formula φ is uniquely determined.

Sequents are dened as usual as pairs Γ ⇒ ∆ of nite multisets of formulas, however they must satisfy some restrictions in order to assure cut admissibility. Initial sequents:

x : p, Γ ⇒ ∆, x : p x : ⊥, Γ ⇒ ∆ Γ ⇒ ∆, x :
Propositional rules: As for G3K.

x : t, x : A, t : A, Γ ⇒ ∆ l ∀ x : t, t : A, Γ ⇒ ∆ x : t, Γ ⇒ ∆, x : A r ∀ Γ ⇒ ∆, t : A x : t, x : A, Γ ⇒ ∆ l ∃ t : A, Γ ⇒ ∆ x : t, Γ ⇒ ∆, x : A, t : A r ∃ x : t, Γ ⇒ ∆, t : A [a] : x, [a] : A, Γ ⇒ ∆, [a] : A l2 x : 2A, Γ ⇒ ∆ t : x, Γ ⇒ ∆, x : 2A, t : A t : x, t : A, Γ ⇒ ∆, x : 2A r2 t : x, Γ ⇒ ∆, x : 2A M t : x, y : t, Γ ⇒ ∆ τ : x, Γ ⇒ ∆ Nτ Γ ⇒ ∆ Nτ x : τ , Γ ⇒ ∆ ts : x, t : x, s : x, Γ ⇒ ∆ C t : x, s : x, Γ ⇒ ∆ x : t, x : s, x : ts, Γ ⇒ ∆ dec x : ts, Γ ⇒ ∆ x : t, x : ts, Γ ⇒ ∆ x : s, x : ts, Γ ⇒ ∆ dec x : ts, Γ ⇒ ∆

Application conditions:

x is fresh in r ∀ and l ∃ , a is fresh in l2, and x occurs in the conclusion of Nτ . occurring in ∆ occur also in Γ. 3 (3) If Γ is empty, then ∆ contains only formulas of the kind x : A, and all these formulas are labelled by the same world label x. (4) If x : t is in Γ, then there is a world label y such that t : y is in Γ.

The calculi LSE * are dened by the rules in Figure 1. Observe that, in analogy with the calculi based on standard possible world semantics, the left-right rules are meaning conferring and directly derive from the semantic explanation of logical constants in terms of bi-neighbourhood semantics, whereas the rules that manipulate only labels provide modular extensions of the basic systems to yield all the systems of the modal cube.

In Figure 2, the derivations of rule RE and axioms M, N and C in the respective calculi will be shown (for RE we assume sequents y : A ⇒ y : B and y : B ⇒ y : A derivable for any label y). Observe that considering rule applications backwards, the restrictions on sequents of Denition 3.2 are necessarily satised: If the conclusion of an instance of a rule satises conditions (1)-( 4), then its premisses also satisfy (1)-( 4). On the other hand, if we consider forward applications of the rules, these must be obviously restricted in such a way that they satisfy (1)-( 4). Notice also that if rule M is added to the basic calculus, our rules l2 and r2 become interderivable with the rules for monotonic 2 given in [START_REF] Negri | Proof theory for non-normal modal logics: The neighbourhood formalism and basic results[END_REF]; the latter rules, rewritten with the present notation, are as follows:

[a] : x, [a] : A, Γ ⇒ ∆ l2 m (a fresh)

x : 2A, Γ ⇒ ∆ t : x, Γ ⇒ ∆, x : 2A, t : A r2 m t : x, Γ ⇒ ∆, x : 2A
It can be shown that these calculi are sound with respect to bi-neighbourhood semantics. For this purpose, we need to introduce the notion of realisation.

(RE) 

y : A, y : [a], [a] : x, [a] : A ⇒ : 2B, [a] : A, y : B l ∀ y : [a], [a] : x, [a] : A ⇒ x : 2B, [a] : A, y : B r ∀ [a] : x, [a] : A ⇒ x : 2B, [a] : A, [a] : B r2 [a] : x, [a] : A ⇒ x : 2B, [a] : A l2 x : 2A ⇒ x : 2B y : [a], y : B, [a] : x, [a] : A ⇒ x : 2B, [a] : A, y : A r ∃ y : [a], y : B, [a] : x, [a] : A ⇒ x : 2B, [a] : A l ∃ [a] : B, [a] : x, [a] : A ⇒ x : 2B, [a] : A (M) ..., y : A, y : B, y : [a], [a] : A ∧ B ⇒ y : A, ... ∧l ..., y : A ∧ B, y : [a], [a] : A ∧ B ⇒ y : A, ... l ∀ ..., y : [a], [a] : A ∧ B ⇒ y : A, ... r ∀ ..., [a] : A ∧ B ⇒ [a] : A, ... M ..., y : [a], y : A, [a] : x ⇒ ... l ∃ ..., [a] : A, [a] : x ⇒ ... r2 [a] : x, [a] : A ∧ B ⇒ x : 2A, [a] : A ∧ B l2 x : 2(A ∧ B) ⇒ x : 2A ( 
∃ ..., [a, b] : A ∧ B ⇒ [a] : A, [b] : B, ... r2 [a, b] : x, [a] : x, [b] : x, [a] : A, [b] : B ⇒ x : 2(A ∧ B), [a] : A, [b] : B C [a] : x, [b] : x, [a] : A, [b] : B ⇒ x : 2(A ∧ B), [a] : A, [b] : B l2 (2) x : 2A, x : 2B ⇒ x : 2(A ∧ B)
branch left to the reader M |= ρ,σ x : t i ρ(x) ∈ σ(t), and M |= ρ,σ x :

t i ρ(x) ∈ σ(t); M |= ρ,σ x : A i M, ρ(x) |= A; M |= ρ,σ t : A i for all w ∈ σ(t), M, w |= A; M |= ρ,σ t : A i there is a w ∈ σ(t) such that M, w |= A; M |= ρ,σ t : x i (σ(t), σ(t)) ∈ N (ρ(x)
). Then given a sequent Γ ⇒ ∆ we stipulate that M |= ρ,σ Γ ⇒ ∆ i whenever M |= ρ,σ φ for all formulas φ in Γ we also have M |= ρ,σ ψ for a formula ψ in ∆. Moreover, Γ ⇒ ∆ is valid in M i for all realisations (ρ, σ) we have M |= ρ,σ Γ ⇒ ∆, and it is valid in bi-neighbourhood (N,C,M)-models i it is valid in every model M of the corresponding class.

By an easy induction on derivations we can prove the soundness of the calculi. Observe that all rules are also sound in standard models in which t is interpreted as the real complement of t, with the exception of rule M which is incompatible with such an interpretation. In what follows, we prove the main structural properties of the calculus, most importantly admissibility of cut, from which we obtain the syntactic completeness of the calculus. We aim to prove admissibility of the following cut rule:

Γ ⇒ ∆, φ φ, Γ ⇒ ∆ cut Γ ⇒ ∆
where φ is any formula of L ls that can occur on both sides of a sequent. Observe that any application of cut respects the restrictions on sequents of Denition 3.2. In order to prove admissibility of cut we need to dene the weight of a labelled formula. Then by admissibility of cut it is easy to prove completeness of LSE * . Denition 3.4. The weight w(φ) of a formula φ of the form x : A, t : A or t : A is the pair w(f (φ)), w(l(φ)) , where f (φ) and l(φ) are, respectively, the L formula A and the world label or neighbourhood term occurring in φ; w(x) = 0 and w(t) = w(t) = card(t), where card(t) is the number of neighbourhood labels occurring in t; w(p) = 1, w(A • B) = w(A) + w(B) + 1, w(2A) = w(A) + 1. We consider weights of formulas lexicographically ordered. Proof. By double induction, with primary induction on the weight of the cut formula and subinduction on the cut height. Observe that, because of Denition 3.2, cut formulas can be only of the kinds x : A, t : A and t : A. We only show some signicant cases. (i) The last rule applied in derivation of the left premiss of cut is Nτ . The derivation on the left is converted into the one on the right (in this and in the other cases we implicitly use hp-admissibility of structural rules). Observe that the restrictions on sequents guarantee that in the right derivation the label condition on the application of Nτ is respected, i.e. it is not the case that φ contains the only occurrence of x.

τ : x, Γ ⇒ ∆, φ Nτ Γ ⇒ ∆, φ φ, Γ ⇒ ∆ cut Γ ⇒ ∆ τ : x, Γ ⇒ ∆, φ φ, Γ ⇒ ∆ wk τ : x, φ, Γ ⇒ ∆ cut τ : x, Γ ⇒ ∆ Nτ Γ ⇒ ∆ (ii)
The cut formula is x : 2A, principal in the last rule of the derivation of both premisses of cut:

t : x, Γ ⇒ ∆, x : 2A, t : A t : x, t : A, Γ ⇒ ∆, x : 2A r2 t : x, Γ ⇒ ∆, x : 2A D [a] : x, [a] : A, t : x, Γ ⇒ ∆, [a] : A l2 x : 2A, t : x, Γ ⇒ ∆ cut t : x, Γ ⇒ ∆
with a fresh in the application of l2. The derivation is converted into the following, with four applications of cut, each one having smaller height or a cut formula of smaller weight: Proof. Straightforward by showing that any instance of the axioms and all the rules of E * are derivable in LSE * (cf. Figure 2), using cut when needed.

4

The calculi TLSE *

In this section, we present the calculi TLSE * (where T stays for terms) which are renements of the calculi LSE * for the cases in which complex terms are present. We show that these calculi are terminating and thereby provide a decision procedure for the respective logics, and we prove semantic completeness of the calculi with respect to bi-neighbourhood semantics. By simulating derivations in LSE * , we also show that these calculi are syntactically complete, although, as explained below, a direct proof of cut elimination cannot be given, what justies a separate presentation of the two calculi.

Observe that in LSE * it may happen that if the starting sequent contains n atomic terms [a 1 ], ..., [a n ], a derivation branch -by application of rule C and repeated applications of dec -may take O(2 n ) steps to generate a complex term t containing an arbitrary subset of a 1 , ..., a n . To prevent this situation we reformulate the rules for terms as follows:

Simplied rules for C: x : [a1 . . . an], Γ ⇒ ∆ Since these rules are easily derivable in LSE * , it turns out that TLSE * is sound. The rules for decomposition of terms are modied as follows: a complex term can be decomposed only into its atomic components and is not copied into the premiss; moreover by the simplied rule for C complex terms can be formed only by joining atomic terms. However, the calculi with the restricted rules are complete only with respect to sequents of a special form, as described in the next denition. Denition 4.1. sequent Γ ⇒ ∆ of L ls is proper if it satises all the following additional conditions: [START_REF] Chellas | Modal Logic: An Introduction[END_REF] 

If t : A is in Γ, then t is atomic and dierent from τ ; (2) t : A is in Γ if and only if t : A is in ∆; (3) If [a] occurs in Γ ⇒ ∆, then there is exactly one formula A such that [a] : A is in Γ; (4) If [a 1 . . . a n ] : x is in Γ, then [a 1 ] : x, ..., [a n ] : x are in Γ.
It follows from Denition 4.1 that if a formula t : A occurs in the right-hand side of a proper sequent Γ ⇒ ∆, then t is atomic and dierent from τ , and t : A is the only formula of this kind labelled by t occurring in ∆. Trivially, since a sequent of the form ⇒ x 0 : A is proper, restricting consideration to proper sequents is sucient to prove the validity of any formula of E * .

It can be shown that the calculi TLSE * are syntactically complete as they can simulate LSE * derivations restricted to proper sequents. As a preliminary condition, observe that any sequent occurring in a derivation of a proper sequent in LSE * or TLSE * is proper, since whenever the conclusion of a rule of LSE * or TLSE * is proper its premisses are also proper. The need of such an indirect proof is due to the fact that proper sequents are not preserved by substitution of neighbourhood terms, as it is needed for a direct proof of cut elimination. Although we do not have a syntactic proof of cut admissibility, we have a semantic proof of it: by the completeness of the calculi, the cut rule turns out to be admissible in each system. By the restrictions of Denition 4.1 we obtain the following property, that will be needed in the proof of Theorem 4.8. x

: [a], x : [a], [a] : A, x : A, Γ ⇒ ∆ , [a] : A, x : A l ∀ x : [a], x : [a], [a] : A, Γ ⇒ ∆ , [a] : A, x : A r ∃ x : [a], x : [a], [a] : A, Γ ⇒ ∆ , [a] : A
The adequacy of rules C, dec and dec is proved by the following proposition. If the last rule applied is dec, then S has the form x : ts, Γ ⇒ ∆ and it was derived from the proper sequents x : t, x : ts, Γ ⇒ ∆ and x : s, : ts, Γ ⇒ ∆, that by inductive hypothesis are derivable in TLSE * . Let t and Then by an application of dec with all these sequents as premisses we derive

s be the terms [a 1 . . . a n ] and [b 1 . . . b m ]. Then ts is [a 1 . . . a n b 1 . . . b m ] (with- out possible repetitions). Consider the rst premiss, that is x : [a 1 . . . a n ], x : [a 1 . . . a n b 1 . . . b m ], Γ ⇒ ∆. By invertibility of dec in TLSE * , x : [a i ], x : [a 1 . . . a n b 1 . . . b m ], Γ ⇒ ∆ is derivable for all 1 ≤ i ≤ n. Again by invert- ibility of dec, x : [a i ], x : [a k ], Γ ⇒ ∆ and x : [a i ], x : [b l ], Γ ⇒ ∆ are derivable for all 1 ≤ k ≤ n, 1 ≤ l ≤ m.
x : ts, Γ ⇒ ∆.

We now show that by adopting a simple strategy, proof search in TLSE * always terminates in a nite number of steps, thereby providing a decision procedure for the corresponding logic. This is basically proved by showing that the set of labelled formulas which can occur in any sequent in any derivation branch is nite. In order to dene the strategy, we introduce saturation conditions associated to the rules and the notion of saturated branch. Denition 4.2. Let B = {Γ i ⇒ ∆ i } be a (nite or innite) branch in a proof search in TLSE * for Γ ⇒ ∆. We dene Γ * = Γ i and ∆ * = ∆ i . The saturation conditions associated to each rule of TLSE * are as follows: (I nit) for all i, there is no x :

p in Γ i ∩ ∆ i ; x : ⊥ is not in Γ i and x : is not in ∆ i . Standard for propositional rules (omitted). (l ∀ ) If t : A and x : t are in Γ * , then x : A is in Γ * . (r ∀ ) If t : A is in ∆ * , then for a label x, x : t is in Γ * and x : A is in ∆ * . (l ∃ ) If t : A is in Γ * , then for a label x, x : t and x : A are in Γ * . (r ∃ ) If t : A is in ∆ * and x : t is in Γ * , then x : A is in ∆ * . (l2) If x : 2A is in Γ * , then for a label a, [a] : x and [a] : A are in Γ * and [a] : A is in ∆ * . (r2) If x : 2A is in ∆ * and t : x is in Γ, then either t : A is in ∆ * or t : A is in Γ * . (Nτ ) For every world label x occurring in Γ * ∪ ∆ * , τ : x is in Γ * . (Nτ ) x : τ is not in Γ * . (M) t : x and y : t are not both in Γ * . (C) If [a 1 ] : x, ..., [a n ] : x are in Γ * , then [a 1 . . . a n ] : x is in Γ * . (dec) If x : [a 1 . . . a n ] is in Γ * , then x [a 1 ], ..., x : [a n ] are in Γ * . (dec) If x : [a 1 . . . a n ] is in Γ * , then x : [a 1 ] or, ..., or x : [a n ] is in Γ * .
We say that B is saturated with respect to an application of a rule if the corresponding condition holds, and it is saturated with respect to TLSE * if it is saturated with respect to all possible applications of any rule of TLSE * . The strategy for constructing a root-rst proof search tree in TLSE * of the sequent ⇒ x 0 : A obeys the following conditions: (i) No rule can be applied to an initial sequent; (ii) A specic application of a rule R to a formula φ (or to a pair of formulas φ and ψ) in a sequent Γ i ⇒ ∆ i is not allowed if the branch from ⇒ x 0 : A to Γ i ⇒ ∆ i already fullls the saturation condition for that application of R; (iii) If rules for N are present, as rst step apply Nτ to x 0 . We now show that for each sequent ⇒ x 0 : A this strategy produces either a proof of it or a nite tree in which all open branches are saturated.

Denition 4.3. Let B be a branch of a proof search in TLSE * for ⇒ x 0 : A, t a neighbourhood term and x, y world labels occurring in B, and let k

(x) = min{i ∈ N | x is in Γ i }. The relations → 1 ⊆ WL × NT, → 2 ⊆ NT × WL, and → w ⊆ WL × WL are dened as follows: → 1 ) (i) x → 1 t if t = τ and t : x is in Γ * ; (ii) x 0 → 1 τ ; (iii) y = x 0 implies y → 1 τ ; and (iv) x → 1 t if x → 1 t. → 2 ) t → 2 x if for a i ∈ N, k(x) = i and x : t is in Γ i (for t positive or negative).
→ w ) x → w y if for some (positive or negative) term t, x → 1 t and t → 2 y. Lemma 4.4. Given a branch B in a proof search tree for ⇒ x 0 : A built in accordance with the strategy we have that (a) the graph T w determined by x 0 and the relation → w is a tree with root x 0 , and (b) all the world labels occurring in B are nodes of T w . Lemma 4.5. Let for any world label x and any (positive or negative) term t, md(x) = max{md(A) | x : A is in Γ * ∪ ∆ * } and md(t) = max{md(A) | t : A is in Γ * ∪ ∆ * }, where md(A) is the modal degree of A dened in the standard way. Then for any x, y in T w we have that x → w y implies md(y) < md(x). Proposition 4.6. Given a branch B of a proof search for ⇒ x 0 : A, (a) any world label occurring in B generates at most nitely many terms, and (b) any term occurring in B generates at most nitely many world labels. Whence (c) T w is nite.

Proof. (a) Consider rst atomic terms: A world label x generates an atomic term [a] by an application of l2. By its saturation clause, l2 can be applied to each formula x : 2B at most once. Therefore the problem is reduced to counting how many dierent formulas x : 2B can occur in the branch. If x is x 0 , i.e. the label occurring in the sequent ⇒ x 0 : A at the root, then the number of these formulas is smaller than the length of A. If x is generated by a term t, then it is generated by an application of r ∀ with a formula [b] : C in ∆ * principal in the rule application (or by an application of l ∃ with a formula [b] : C in Γ * principal in the rule application). Thus all formulas 2B such that x : 2B is in the branch are subformulas of C or -if t is atomic and dierent from τsubformulas of D, where D is the only formula such that t : D is in Γ * (or t : D is in ∆ * ), whose existence is guaranteed by denition of proper sequents. For complex terms: If x generates n atomic (positive) terms, then -by means of C -it generates at most 2 n -1 positive Therefore the terms generated by x are in any case nitely many.

(b) A term t generates a world label y by an application of r ∀ or l ∃ . By the saturation clauses of these rules, every expression t : B produces at most one world label. Therefore the problem is reduced to counting how many dierent expressions t : B can occur in the branch. First assume t = τ and t generated by x. Then the number of these expressions depends directly on the number of formulas x : 2B in ∆ * , which -as shown in point (a) -are nitely many. If t = τ : By the properties of the calculus, if τ : B is in ∆ * , then B is a subformula of A, where A is the formula labelled by x 0 at the root. Thus the possible expressions τ : B in ∆ * are nitely many. Observe also that there is no τ : B in Γ * . In fact, by an application of l ∃ this would give a formula y : τ in Γ * , against the saturation clause for Nτ .

(c) By the decrease in modal depth stated stated by Lemma 4.5 it follows that any branch of T w has a nite length. Moreover, T w is nitary: if x w → y, then by denition there is a term t such that x → 1 t → 2 y; but by points (a) and (b) x is related to nitely many terms and t is related to nitely many world labels.

Theorem 4.7. Any branch B of a proof search for ⇒ x 0 : A built in accordance with the strategy is nite, therefore proof search for any sequent of the form ⇒ x 0 : A always comes to an end after a nite number of steps. Furthermore, each branch is either closed or saturated.

Proof. By Proposition 4.6, B contains nitely many world labels and neighbourhood terms. Moreover, by the properties of the calculus, in any formula x : B (or t : B, t : B) that can occur in B, B is a subformula of A, where A is the formula labelled by x 0 in the root sequent. Therefore only a nite number of labelled formulas can occur in B. Thus, since by the saturation conditions a rule is not applied more than once to the same labelled formula φ (or the same pair of formulas φ and ψ), there are always only nitely many possible rule applications.

We now prove semantic completeness of the calculi. This result shows that given an unprovable formula we can extract a nite countermodel of it in the bi-neighbourhood semantics. Moreover, by Lemma 2.7 we can also get a standard countermodel. Observe that this result, combined with the soundness of TLSE * , provides a constructive proof of the nite model property both in the bi-neighbourhood and in the standard semantics. Proof. Given a saturated branch B in a proof search in TLSE * for the proper sequent Γ ⇒ ∆, we build a bi-neighbourhood countermodel M to Γ ⇒ ∆ that makes all formulas in Γ * true and all formulas in ∆ * false. Model M = W, N , V is dened as follows

: W = {x ∈ WL | x occurs in Γ * ∪∆ * }; α [a1...an] = {x ∈ W | for all 1 ≤ i ≤ n, x : [a i ] is in Γ * }; α [a1...an] = {x ∈ W | for some 1 ≤ i ≤ n, x : [a i ] is in Γ * }; α τ = W ; α τ = ∅; for any x ∈ W , N (x) = {(α t , α t )
and we show that it is admissible in TLSE * . Moreover, we also show easily that by using this rule we can directly build countermodels in the standard semantics. As before, the analysis is restricted to proper sequents. Observe that the application of cmp respects (backwards) the constraints of proper sequents.

Proposition Rule cmp is admissible in TLSE * for derivations of proper sequents.

Proof. First of all, by induction on the height of the derivations one can prove that (a) if x : [a], [a] : B, x : B, Γ ⇒ ∆ is proper and derivable, then [a] : B, x : B, Γ ⇒ ∆ is proper and derivable with a derivation of the same height; and (b) if x : [a], Γ ⇒ ∆, [a] : B, x : B is proper and derivable and x is in Γ, then Γ ⇒ ∆, [a] : B, x : B is proper and derivable with a derivation of the same height. Then by induction on the height of the application of cmp it is possible to show how to remove all its applications. We only show the most signicant case, in which x : [a] and x : [a] are both principal in the last rule of the derivation of the respective premisses. The only possibility is that the applied rules are l ∀ for the left premiss and r ∃ for the right premiss:

x

: [a], x : B, [a] : B, Γ ⇒ ∆, [a] : C l ∀ x : [a], [a] : B, Γ ⇒ ∆, [a] : C x : [a], [a] : B, Γ ⇒ ∆, [a] : C, x : C r ∃ x : [a], [a] : B, Γ ⇒ ∆, [a] : C cmp [a] : B, Γ ⇒ ∆, [a] : C However, since [a] : B, Γ ⇒ ∆, [a] : C is a proper sequent, we have that B ≡ C.
Therefore the case under consideration is as follows:

x Proof. Let B be a saturated branch in a proof search in TLSE * for the proper sequent Γ ⇒ ∆ satisfying also the saturation condition for rule cmp: If x and [a] are in Γ * , then x : [a] is in Γ * or x : [a] is in Γ * . We then build a standard countermodel M to Γ ⇒ ∆ that makes all formulas in Γ * true and all formulas in ∆ * false. Let the realisation (ρ, σ) and the model M be dened as in Theorem 4.8 with the minor modication that for all x ∈ W , N (x) = {α t | t : x is in Γ * }. We only need to prove that M is now a standard model, that is σ(t) = W \ σ(t). We already know that σ(t) ∩ σ(t) = ∅; we show that σ(t) ∪ σ(t) = W . If t = τ , this holds by denition of σ(τ ). Assume t = [a 1 . . . a n ]. By saturation of cmp, for all 1 ≤ i ≤ n, x : [a i ] or x : [a i ] is in Γ * . If for some i, x : [a i ] is in Γ * , then by denition x ∈ α t . Otherwise x : [a i ] is in Γ * for all i, and by denition x ∈ α t . In addition observe also that by saturation of rules C and Nτ we have that if TLSE * contains the rules for C, then M is closed under intersection, and if TLSE * contains the rules for N, then M contains the unit.

: [a], x : B, [a] : B, Γ ⇒ ∆, [a] : B l ∀ x : [a], [a] : B, Γ ⇒ ∆, [a] : B x : [a], [a] : B, Γ ⇒ ∆, [a] : B, x : B r ∃ x : [a], [a] : B, Γ ⇒ ∆, [a] : B cmp
Example 5.1. This example shows how to obtain directly a standard countermodel from a failed branch of a proof search in TLSE which is saturated with respect to rule cmp. In the derivation below we extend the branch B of the proof search of Example 4.1 in order to get such a saturation.

x : [a], y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q, x : p

x : [a], y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q, x : q ∧r x : [a], y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q, x : p ∧ q r ∃

x : [a], y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q

x : [a], x : p, x : q, y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q ∧l

x : [a], x : p ∧ q, y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q l ∀

x : [a], y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q cmp y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q saturated branch C1 It is instructive to compare this example with the countermodels provided by the (rather complicated) decision procedure given by Lavendhomme and Lucas [START_REF] Lavendhomme | Sequent calculi and decision procedures for weak modal systems[END_REF] (Example pp. 137-139). The rst model they obtain is the following (after renaming variables): M = W, N , V where W = {x, y}, N (x) = {{x}}, N (y) = {{x, y}, {x}}, V (p) = {x, y} and V (q) = {x}. The second model is the same as M except for N (y) = {{x}}. Both models are very similar to our model M 1 , however M 1 is simpler as N 1 (y) = ∅. This is essentially due to the fact that we do not need to saturate worlds with respect to boxed subformulas as in the procedure given in [START_REF] Lavendhomme | Sequent calculi and decision procedures for weak modal systems[END_REF]. [START_REF] Indrzejczak | Sequent calculi for monotonic modal logics[END_REF] Conclusion

In this paper, we have proposed labelled calculi for the cube of basic non-normal modal logic. The calculi are based on bi-neighbourhood models, a variation of the standard neighbourhood models, where each world is equipped with a set of pairs of neighbourhoods. The two components of a pair provide separate positive and negative support for a formula. This semantics might be of independent interest, being perhaps more natural for logics without monotonicity. We have shown that this semantics characterises all non-normal modal logics and (in the non-monotonic case) a standard model can be directly built from a bineighbourhood one. The sequent calculi we propose are fully modular and standard. For logics containing axiom C we actually propose two versions of the calculi: the rst allows a syntactic proof of cut admissibility, whereas the second handles a more restricted form of sequents and comprises more ecient rules for handling intersections of neighbourhoods. In any case, the calculi provide a decision procedure for the respective logics and they are semantically complete: from any failed derivation of a formula one can eectively (and easily) extract a countermodel, both a bi-neighbourhood and a standard one, of the formula.

A number of issues deserve to be investigated: rst we aim to study how to get optimal decision procedures from the calculi. We then plan to study how our calculi are related to other proof systems known in the literature, in particular the calculi proposed in [START_REF] Lavendhomme | Sequent calculi and decision procedures for weak modal systems[END_REF] and the structural calculi proposed recently in [START_REF] Lellmann | Proof search in nested sequent calculi[END_REF]. We also intend to extend our approach, both the bi-neighbourhood semantics and the calculi, to stronger non-normal modal logics determined by the analogous ones of the normal cube from K to S5 and to logical systems below E. Finally, it might be useful to draw a detailed comparison between bineighbourhood semantics and bi-lattice semantics since there is a resemblance between the two and the latter has recently been provided with a display proof system in [START_REF] Greco | Bilattice logic properly displayed[END_REF]. All these topics will be object of our future work.

  then M S contains the unit; and (C) if S is closed under conjunction and M is a C-model, then M S is closed under intersection. Proof. By induction on the complexity of any formula B it can be easily shown that [B] M S = [B] M . Moreover it can be proved that (N) M S contains the unit whenever M is a N-model and ∈ S and (C) M S is closed under intersection whenever M is a C-model and S is closed under conjunction. Theorem 2.8. A formula A is valid in bi-neighbourhood models if and only if it is valid in the standard models satisfying the corresponding model conditions (N, C and M).

  Proof. From right to left, the claim follows from Lemma 2.7. From left to right, observe that given a standard model M st , we obtain an equivalent bineighbourhood model M bi by taking, for all
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 1 Figure 1: The calculi LSE * .
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 2 Figure 2: Derivation of rule RE and axioms M, N and C in the respective calculi.

Theorem 3 . 1 .

 31 If a sequent Γ ⇒ ∆ is derivable in LSE(N, C, M), then it isvalid in the class of all bi-neighbourhood (N,C,M-)models.

Proposition 3 . 2 .

 32 (a) Substitution of world labels and (b) substitution of positive terms for neighbourhood labels are height-preserving admissible (hp-admissible) in LSE * . Moreover, (c) the rules of left and right weakening are hp-admissible in LSE * ; (d) all rules of LSE * are hp-invertible; and (e) the rules of left and right contraction are hp-admissible in LSE * .

Theorem 3 . 3 .

 33 Cut is admissible in LSE * .

[

  a1] : x, ..., [an] : x, [a1 . . . an] : x, Γ ⇒ ∆ C [a1] : x, ..., [an] : x, Γ ⇒ ∆ x : [a1], ..., x : [an], Γ ⇒ ∆ dec x : [a1 . . . an], Γ ⇒ ∆ x : [a1], Γ ⇒ ∆ ... x : [an], Γ ⇒ ∆ dec

Proposition 4 . 1 .

 41 Every proper sequent of the form x : [a], x : [a], Γ ⇒ ∆ is derivable in TLSE * . Proof. Since x : [a], x : [a], Γ ⇒ ∆ is proper, by denition there is a formula A such that [a] : A is in Γ and [a] : A is in ∆. Then the sequent has the form x : [a], x : [a], [a] : A, Γ ⇒ ∆ , [a] : A and is derivable as follows:

  Proposition 4.2. (a) Rules dec and dec are invertible in TLSE * with respect to derivations of proper sequents. (b) Contraction is hp-admissible in TLSE * Theorem 4.3. Any proper sequent derivable in LSE * is derivable also in TLSE * , whence the calculi TLSE * are complete for the corresponding logic.Proof. We just consider the most signicant cases. If the last rule applied is C, then S has the form t : x, s : x, Γ ⇒ ∆ and it was derived from the proper sequent ts : x, t : x, s : x, Γ ⇒ ∆, that by inductive hypothesis is derivable in TLSE * . Let t and s be the terms [a 1 . . . a n ] and [b 1 . . . b m ]. Then ts is [a 1 . . . a n b 1 . . . b m ] (without possible repetitions). By denition of proper sequent, Γ contains [a i ] : x and [b j ] : x for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then we can apply C and obtain t : x, s : x, Γ ⇒ ∆.

  By applying the same procedure to the second premiss, we obtain that sequents x : [b j ], x : [a k ], Γ ⇒ ∆ and x : [b j ], x : [b l ], Γ ⇒ ∆ are derivable for all 1 ≤ k ≤ n, 1 ≤ j, l ≤ m. Now take all sequents x : [a i ], x : [a k ], Γ ⇒ ∆ and x : [b j ], x : [b l ], Γ ⇒ ∆ where i = k and j = l. By contraction we obtain x : [a i ], Γ ⇒ ∆ and x : [b j ], Γ ⇒ ∆.

Theorem 4 . 8 .

 48 TLSE * is complete with respect to the corresponding class of bi-neighbourhood models.

  [a] : B, Γ ⇒ ∆, [a] : B where the premisses of l ∀ and r ∃ are proper. Then by (a) and (b) we have that also x : B, [a] : B, Γ ⇒ ∆, [a] : B, and [a] : B, Γ ⇒ ∆, [a] : B, x : B are proper and are derivable with derivations of the same heights. Observein particular that point (b) is here applicable because of the condition on the application of cmp and the denition of sequents, that guarantee that x is in Γ. By an application of cut to these sequents with x : B as cut formula we then obtain [a] : B, Γ ⇒ ∆, [a] : B. Theorem 5.2. TLSE * is complete with respect to the corresponding class of standard models.

  saturated branch C2 saturated branch C3 On the basis of the three open branches we dene three models following the denition of Theorem 5.2. The branch C 1 gives the modelM 1 = W, N 1 , V 1 , where W = {x, y}, N 1 (x) = {{x}}, N 1 (y) = ∅, V 1 (p) = {x, y} and V 1 (q) = {x}. The branch C 2 gives the model M 2 = W, N 2 , V 2 , where W = {x, y}, N 2 (x) = {∅}, N 2 (y) = ∅, V 2 (p) = {y}, and V 2 (q) = ∅.Finally, C 3 gives the same model of C 2 . It is immediate to verify that they are countemodels to the sequent at the root. Observe that M 2 is the model M S of Example 4.1.

  = W, N , V , where W is a non-empty set, N is a function W -→ PP(W ) and V is a valuation function for propositional variables of L. |= st A is dened in the usual way for atomic formulas and Boolean connectives. For the modality we have M, w |= st 2A i [A] M ∈ N (w), where [A] M denotes the set {v | M, v |= st A} of the worlds v that force A, also called the truth set of A.

	↔ B			
	2A ↔ 2B		
	and can be extended further by choosing any combination of axioms M, C and
	N (below left), thus producing eight distinct logics. The resulting systems are
	denoted by ES 1 ...S n , where S i ∈ {M,C,N} 2 (see the classical cube below on the right). We write E * (EM * , EC * , EN * ) to indicate any extension of E (EM, EC, EN) with some of these axioms and recall that the top extension coincides with K. EMCN (K)
	M 2(A ∧ B) → 2A ∧ 2B	EMC	EMN	ECN
	C 2A ∧ 2B → 2(A ∧ B) N 2	EM	EC	EN
			E	
	Denition 2.1. A standard neighbourhood model (just standard model in the
	following) is a triple F A model is said to be supplemented if for all α, β ⊆ W , α ∈ N (w) and α ⊆ β
	implies β ∈ N (w); it is closed under intersection if α ∈ N (w) and β ∈ N (w)
	implies α ∩ β ∈ N (w); and it contains the unit if for all w ∈ W, W ∈ N (w). The
	forcing relation M, w As a consequence of the above denition, we obtain the following truth
	condition for 3A: M, w |= st 3A i [¬A] M / ∈ N (w).		
	Theorem 2.1 (Chellas [1]). Logic E(M, C, N) is sound and complete with
	respect to standard models (which in addition are, respectively, supplemented,
	closed under intersection, or contain the unit).		
	We now introduce a new semantics where pairs of neighbourhood are used
	to evaluate the truth of a modal formula.			
	Denition 2.2. A bi-neighbourhood model is a triple M = W, N , V , where

  The forcing relation M, w |= bi A is dened as in Denition 2.1 except for the modality, for which the clause is as follows:M, w |= bi 2A i for some (α, β) ∈ N (w) and all v ∈ W , v ∈ α implies M, v |= bi A, and v ∈ β implies M, v |= bi A. |= bi 3A i for all (α, β) ∈ N (w), there is v ∈ α such that M, v |= bi A, or there is u ∈ β such that M, u |= bi A.

	Observe that in case the considered model does not satisfy condition M
	(i.e. in the non-monotonic case), if α and β are complementary, this denition
	becomes equivalent to the standard one. From Denition 2.2 we obtain the
	following truth condition for 3A: M, w Notice
	also that bi-neghbourhood models satisfying condition M collapse into standard
	models, where 2 coincides with the modality ] considered by Pacuit [14].
	Theorem 2.2. Logic E (M, C, N) is sound with respect to bi-neighbourhood
	(M,C,N-)models.

  Denition 3.2. A sequent is a pair Γ ⇒ ∆, where Γ and ∆ are nite multisets of formulas of L ls , that respect the following conditions: (1) ∆ contains only formulas of the kinds x : A, t : A and t : A (whereas Γ may contain any formula of L ls );[START_REF] Gasquet | From classical to normal modal logics[END_REF] If Γ is non-empty, then all world labels and all neighbourhood labels

In the literature, in the presence of axiom M the letter E is sometimes omitted from the name of the systems, that are instead denoted by MS 1 ...Sn, where S i ∈ {C,N}.

A neighbourhood label a occurs in (or belongs to) a labelled formula φ (set of formulas, sequent) if there is a (positive or negative) term containing a in φ.
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| t : x is in Γ * }; for any p ∈ L, V (p) = {x ∈ W | x : p is in Γ * }. Then we dene the realisation (ρ, σ) by choosing ρ(x) = x for any world label x, σ(t) = α t for any positive or negative term t occurring in Γ * ∪ ∆ * .

First of all observe that M and σ are well dened: By the denition of α [a1...an] and α [a1...an] it follows immediately that σ(ts) = σ(t)∩σ(s) and σ(ts) = σ(t) ∪ σ(s). Moreover, σ(t) ∩ σ(t) = ∅. In fact, assume t = [a 1 . . . a n ] and α t ∩ α t = ∅. By denition, for some 1 ≤ i ≤ n and some y ∈ W , y : [a i ] and y : [a i ] are in Γ * . Since such expressions are never deleted, this means that there is a sequent Γ j ⇒ ∆ j in the brach B such that y : [a i ] and y : [a i ] are in Γ j . Then by Proposition 4.1, Γ j ⇒ ∆ j is derivable, against the hypothesis that B is saturated. Finally, from this it follows that (α, β) ∈ N (x) implies α ∩ β = ∅. By considering all possible cases, it is easy to prove by induction on the weight of φ that if φ is in Γ * , then M |= ρ,σ φ, and if φ is in ∆ * , then M |= ρ,σ φ. Moreover, it can be shown that if TLSE * contains the rules for C, then M is a C-model, if it contains the rules for N, then M is a N-model, and if it contains the rules for M, then M is a M-model. Example 4.1. Here is a failed derivation of an instance of axiom M in TLSE:

The bi-neighbourhood model M = W, N , V dened directly from the saturated branch B is the following: W = {x, y}, N (x) = {(∅, {y})}, N (y) = ∅, V (p) = {y} and V (q) = ∅. Then we have M, x |= 2p and, since [p ∧ q] M = ∅, we also have M, x |= 2(p ∧ q), thus the sequent at the root is falsied.

If we now consider the set S = {2(p ∧ q), 2p, p ∧ q, p, q} and we follow the denition in Lemma 2.7, we obtain the standard model M S in which N S (x) = {[p∧q] M } = {∅} and N S (y) = ∅. It is immediate to verify that also M S falsies the sequent.

5

Proof-theoretic equivalence of the semantics

In the previous section, we have shown that TLSE * is sound and complete with respect to bi-neighbourhood semantics, thus by virtue of Theorem 2.8 also with respect to the standard semantics. For the non-monotonic case we now give a proof-theoretical argument to show that the two semantics coincide (therefore we do not consider rule M in this section). More precisely, we show that interpreting the negative terms as true complements (as it happens in standard semantics)

does not extend the set of provable formulas, whence the set of valid formulas.

To this purpose we consider the following rule:

x : [a], Γ ⇒ ∆ x : [a], Γ ⇒ ∆ cmp (x, a ∈ Γ ∪ ∆) Γ ⇒ ∆