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Abstract. Continuous improvement in medical imaging techniques al-
lows the acquisition of higher-resolution images. When these are used
in a predictive setting, a greater number of explanatory variables are
potentially related to the dependent variable (the response). Meanwhile,
the number of acquisitions per experiment remains limited. In such high
dimension/small sample size setting, it is desirable to find the explana-
tory variables that are truly related to the response while controlling the
rate of false discoveries. To achieve this goal, novel multivariate infer-
ence procedures, such as knockoff inference, have been proposed recently.
However, they require the feature covariance to be well-defined, which is
impossible in high-dimensional settings. In this paper, we propose a new
algorithm, called Ensemble of Clustered Knockoffs, that allows to select
explanatory variables while controlling the false discovery rate (FDR),
up to a prescribed spatial tolerance. The core idea is that knockoff-based
inference can be applied on groups (clusters) of voxels, which drastically
reduces the problem’s dimension; an ensembling step then removes the
dependence on a fixed clustering and stabilizes the results. We bench-
mark this algorithm and other FDR-controlling methods on brain imag-
ing datasets and observe empirical gains in sensitivity, while the false
discovery rate is controlled at the nominal level.

1 Introduction

Medical images are increasingly used in predictive settings, in which one wants
to classify patients into disease categories or predict some outcomes of interest.
Besides predictive accuracy, a fundamental question is that of opening the black
box, i.e. understanding the combinations of observations that explains the out-
come. A particular relevant question is that of the importance of image features
in the prediction of an outcome of interest, conditioned on other features. Such
conditional analysis is a fundamental step to allow causal inference on the im-
plications of the signals from image regions in this outcome; see e.g. [12] for the
case of brain imaging. However, the typical setting in medical imaging is that of
high-dimensional small-sample problems, in which the number of samples n is
much smaller than the number of covariates p. This is further aggravated by the



steady improvements in data resolution. In such cases, classical inference tools
fail, both theoretically and practically. One solution to this problem is to re-
duce the massive number of covariates by utilizing dimension reduction, such as
clustering-based image compression, to reduce the number of features to a value
close to n; see e.g. [4]. This approach can be viewed as the bias/variance trade-
off: some loss in the localization of the predictive features —bias— is tolerated
as it comes with less variance —hence higher power— in the statistical model.
This is particularly relevant in medical imaging, where localizing predictive fea-
tures at the voxel level is rarely important: one is typically more interested in
the enclosing region.

However, such a method suffers from the arbitrariness of the clustering step
and the ensuing high-variance in inference results with different clustering runs,
as shown empirically in [6]. [6] also introduced an algorithm called Ensemble of
Clustered Desparsified Lasso (ECDL), based on the inference technique devel-
oped in [13], that provides p-values for each feature, and controls the Family Wise
Error Rate (FWER), i.e. the probability of making one or more false discoveries.
In applications, it is however more relevant to control the False Discovery Rate
(FDR) [3], which indicates the expected fraction of false discoveries among all
discoveries, since it allows to detect a greater number of variables. In univariate
settings, the FDR is easily controlled by the Benjamini-Hochberg procedure [3],
valid under independence or positive correlation between features. It is unclear
whether this can be applied to multivariate statistical settings. A promising
method which controls the FDR in multivariate settings is the so-called knockoff
inference [2, 5], which has been successfully applied in settings where n ≈ p.
However, the method relies on randomly constructed knockoff variables, there-
fore it also suffers from instability. Our contribution is a new algorithm, called
Ensemble of Clustered Knockoffs (ECKO), that i) stabilizes knockoff inference
through an aggregation approach; ii) adapts knockoffs to n� p settings. This is
achieved by running the knockoff inference on the reduced data and ensembling
the ensuing results.

The remainder of our paper is organized as follows: Sec. 2 establishes a rigor-
ous theoretical framework for the ECKO algorithm; Sec. 3 describes the setup of
our experiments with both synthetic and brain imaging data predictive problems,
to illustrate the performance of ECKO, followed by details of the experimental
results in Sec. 4; specifically, we benchmark this approach against the proce-
dure proposed in [7], that does not require the clustering step, yet only provides
asymptotic (n → ∞) guarantees. We show the benefit of the ECKO approach
in terms of both statistical control and statistical power.

2 Theory

2.1 Generalized Linear Models and High Dimensional Setting

Given a design matrix X ∈ Rn×p and a response vector y ∈ Rn, we consider
that the true underlying model is of the following form:

y = f(Xw∗) + σε , (1)



where w∗ ∈ Rp is the true parameter vector, σ ∈ R+ the (unknown) noise
magnitude, ε ∼ N (0, In) the noise vector and f is a function that depends on the
experimental setting (e.g. f = Id for the regression problem or e.g. f = sign for
the classification problem). The columns of X refer to the explanatory variables
also called features, while the rows of X represent the coordinates of different
samples in the feature space. We focus on experimental settings in which the
number of features p is much greater than the number of samples n i.e. p� n.
Additionally, the (true) support denoted by S is given by S = {k ∈ [p] : w∗k 6= 0}.
Let Ŝ denotes an estimate of the support given a particular inference procedure.
We also define the signal-to-noise ratio (SNR) which allows to assess the noise
regime of a given experiment:

SNR =
‖Xw∗‖22
σ2 ‖ε‖22

. (2)

A high SNR means the signal magnitude is strong compared to the noise, hence
it refers to an easier inference problem.

2.2 Structured Data

In medical imaging and many other experimental settings, the data stored in
the design matrix X relate to structured signals. More precisely, the features
have a peculiar dependence structure that is related to an underlying spatial
organization, for instance the spatial neighborhood in 3D images. Then, the
features are generated from a random process acting on this underlying metric
space. In our paper, the distance between the j-th and the k-th features is
denoted by d(j, k).

2.3 FDR control

In this section, we introduce the false discovery rate (FDR) and a spatial gener-
alization of the FDR that we called δ-FDR. This quantity is important since a
desirable property of an inference procedure is to control the FDR or the δ-FDR.
In the following, we assume that the true model is the one defined in Sec. 2.1.

Definition 1 False discovery proportion (FDP). Given an estimate of the sup-
port Ŝ obtained from a particular inference procedure, the false discovery propor-
tion is the ratio of the number selected features that do not belong to the support
(false discoveries) divided by the number of selected features (discoveries):

FDP =
#{k ∈ Ŝ : k /∈ S}

#{k ∈ Ŝ}
(3)

Definition 2 δ-FDP. Given an estimate of the support Ŝ obtained from a par-
ticular inference procedure, the false discovery proportion with parameter δ > 0,
denoted δ-FDP is the ratio of the number selected features that are at a distance



more than δ from any feature of the support, divided by the number of selected
features:

δ-FDP =
#{k ∈ Ŝ : ∀j ∈ S, d(j, k) > δ}

#{k ∈ Ŝ}
(4)

One can notice that for δ = 0, the FDP and the δ-FDP refer to same quantity
i.e. 0-FDP = FDP .

Definition 3 False Discovery Rate (FDR) and δ-FDR. The false discovery rate
and the false discovery rate with parameter δ > 0 which is denoted by δ-FDR
are respectively the expectations of the FDP and the δ-FDP:

FDR = E[FDP] ,

δ-FDR = E[δ-FDP] .
(5)

2.4 Knockoff Inference

Initially introduced by [2] to identify variables in genomics, the knockoff filter
is an FDP control approach for multivariate models. This method has been
improved to work with mildly high-dimensional settings in [5], leading to the
so-called model-X knockoffs:

Definition 4 Model-X knockoffs [5]. The model-X knockoffs for the family of
random variables X = (X1, . . . Xp) are a new family of random variables X̃ =

(X̃1, . . . , X̃p) constructed to satisfy the two properties:

1. For any subset K ⊂ {1, . . . , p}: (X, X̃)swap(K)
d
= (X, X̃),

where the vector (X, X̃)swap(K) denotes the swap of entries Xj and X̃j, ∀j ∈
K

2. X̃ ⊥⊥ y | X where y is the response vector.

In a nutshell, knockoff procedure first creates extra null variables that have a
correlation structure similar to that of the original variables. A test statistic vec-
tor is then calculated to measure the strength of the original versus its knockoff
counterpart. An example of such statistic is the lasso-coefficient difference (LCD)
that we use in this paper:

Definition 5 Knockoff procedure with intermediate p-values [2, 5].

1. Construct knockoff variables, produce matrix concatenation: [X, X̃] ∈ Rn×2p.
2. Calculate LCD by solving

min
w∈R2p

1

2
‖y − [X, X̃]w‖22 + λ‖w‖1 ,

and then, for all j ∈ [p], take the difference zj = |ŵj(λ)| − |ŵj+p(λ)|.
3. Compute the p-values pj, for j ∈ [p]:

pj =
#{k : zk ≤ −zj}

p
. (6)



4. Derive q-values by Benjamini-Hochberg procedure: (qj)j∈[p] = BHq
(
(pj)j∈[p]

)
5. Given a desired FDR level α ∈ (0, 1): Ŝ = {j : qj ≤ α}.

Remark 1 The above formulation is distinct from that of [2, 5], but it is equiv-
alent. We use it to introduce the intermediate variables pj for all j ∈ [p].

Our first contribution is to extend this procedure computing qj by aggregat-
ing different draws of knockoffs before applying the Benjamini-Hochberg (BHq)
procedure. More precisely, we first compute B draws of knockoff variables and,

using (6), we derive the corresponding p-values p
(b)
j , for all j ∈ [p] and b ∈ [B].

Then, we aggregate them for each j in parallel, using the quantile aggregation
procedure introduced in [11]:

∀j ∈ [p], pj = quantile-aggregation({p(b)j : b ∈ [B]}) (7)

We then proceed with the fourth and fifth steps of the knockoff procedure de-
scribed in Def. 5.

2.5 Dimension reduction

Knockoff (KO) inference is intractable in high-dimensional settings, as knockoff
generation requires the estimation and inversion of covariance matrices of size
(2p × 2p). Hence we leverage data structure by introducing a clustering step
that reduces data dimension before applying KO inference. As in [6], assuming
the features’ signals are spatially smooth, it is relevant to consider a spatially-
constrained clustering algorithm. By averaging the features with each clustering,
we reduce the number of parameters from p to q, the number of clusters, where
q � p. KO inference on cluster-based signal averages will be referred to as
Clustered Knockoffs (CKO). However, it is preferable not to fully rely on a
particular clustering, as a small perturbation on the input data has a dramatic
impact on the clustering solution. We followed the approach used in [9] that
aggregates solutions across random clusterings. More precisely, they build C
different clusterings from C different random subsamples of size b0.7nc from the
full sample X, but always using the same clustering algorithm.

2.6 The Ensemble of Clustered Knockoff Algorithm

The problem is to aggregate the q-values obtained across CKO runs on different
clustering solutions. To do so, we transfer the q-values from clusters (group of
voxels) to features (voxels): given a clustering solution c ∈ [C], we assign to
each voxel the q-value of its corresponding cluster. More formally, if, considering
the c-th clustering solution, the k-th voxel belongs to the j-th cluster denoted

by G
(c)
j then the q-value q̃

(c)
k assigned to this voxel is: q̃

(c)
k = q

(c)
j if k ∈ G

(c)
j .

This procedure hinges on the observation that the FDR is a resolution-invariant
concept —it controls the proportion of false discoveries. In the worst case, this
results in a spatial inaccuracy of δ in the location of significant activity, δ being
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Fig. 1: Representation of the ECKO algorithm. To create a stable inference result,
we introduce ensembling steps both within each cluster level and at the voxel-
level, across clusterings.

the diameter of the clusters. Finally, the aggregated q-value q̃k of the k-th voxel

is the average of the q-values q̃
(c)
k , c ∈ [C], received across C different clusterings:

given the FDR definition (5), FDPs can naturally be averaged. The algorithm
is summarized in Alg. 1 and represented graphically in Fig. 1.

2.7 Theoretical Results

Ensemble of Clustered Knockoffs (ECKO).

Theorem 1 δ-FDR control by the Ensemble of Clustered Knockoffs procedure
at the voxel level. Assuming that the true model is the one defined in (1), using
the q-values q̃k defined in Sec. 2.6, the estimated support Ŝ = {k : q̃k ≤ α}
ensure that the δ-FDR is lower than α.

Sketch of the proof (details are omitted for the sake of space). We first establish
that the aggregation procedure yields q-values qcj that control the FDR. This
follows simply from the argument given in the proof of Theorem 3.1 in [11].
Second, we show that broadcasting the values from clusters (q) to voxels (q̃) still
controls the FDR, yet with a possible inaccuracy of δ, where δ is the supremum
of clusters diameters: the δ-FDR is controlled. This comes from the resolution
invariance of FDR and the definition of δ-FDR. Third, averaging-based aggre-
gation of the q-values at the voxel level, controls the δ-FDR. This stems from
the definition of the FDR as an expected value.



Algorithm 1: Full ECKO algorithm

input : Data matrix Xinit ∈ Rn×p, response vector yinit ∈ Rn;
Clustering object Ward(·);

param : q = 500, B = 25, C = 25, fdr - Nominal FDR threshold;

for c = 1, . . . , C do

X
(c)
init = resample(Xinit)

X
(c)
clustered = Ward(q,X

(c)
init)

for b = 1, . . . , B do
∀j = 1, . . . , q :

z
(b,c)
j ← Knockoffs(X

(c)
clustered,yinit, fdr)

p
(b,c)
j ←

#{k ∈ [q] : z
(b,c)
k ≤ −z(b,c)j }
p

end
∀j = 1, . . . , q :

p
(c)
j ← Aggregated(p

(b,c)
j , b ∈ [B])

q
(c)
j ← BHq corrected(p

(c)
j )

∀k = 1, . . . , p :

q̃
(c)
k ← q

(c)
j if k ∈ G

(c)
j

end

∀k = 1, . . . , p :

q̃k ← Average(q̃
(c)
k , c ∈ [C])

return Ŝ ← {k ∈ [p] : q̃k ≤ fdr}

2.8 Alternative approaches

In the present work, we use two alternatives to the proposed CKO/ECKO ap-
proach: the ensemble of clustered desparsified lasso (ECDL) [6] and the APT
framework from [7]. As we already noted, ECDL is structured as ECKO. The
main differences are that it relies on desparsified lasso rather than knockoff infer-
ence and returns p-values instead of q-values. The APT approach was proposed
to return feature-level p-values for binary classification problems (though the
generalization to regression is straightforward). It directly works at the voxel
level, yet with two caveats:

– Statistical control is granted only in the n→∞ limit
– Unlike ECDL and ECKO, it is unclear whether the returned score represents

marginal or conditional association of the input features with the output.

For both ECDL and APT, the returned p-values are converted to q-values using
the standard BHq procedure. The resulting q-values are questionable, given that
BHq is not valid under negative dependence between the input q-values [3]; on
the other hand, practitioners rarely check the hypothesis underlying statistical
models. We thus use the procedure in a black-box mode and check its validity a
posteriori.



3 Experiments

Synthetic data. To demonstrate the improvement of the proposed algorithm,
we first benchmark the method on 3D synthetic data set that resembles a medical
image with compact regions of interest that display some predictive information.
The size of the weight vector w is 50× 50× 50, with 5 regions of interest (ROIs)
of size 6 × 6 × 6. A design matrix X that represents random brain signal is
then sampled according to a multivariate Gaussian distribution. Finally, the
response vector y is calculated following linear model assumption with Gaussian
noise, which is configured to have SNR ≈ 3.6, similar to real data settings. An
average precision-recall curve of 30 simulations is calculated to show the relative
merits of single cluster Knockoffs inference versus ECKO and ECDL and APT.
Furthermore, we also vary the Signal-to-Noise Ratio (SNR) of the simulation
to investigate the accuracy of FDR control of ECKO with different levels of
difficulty in detecting the signal.

Real MRI dataset. We compare single-clustered Knockoffs (CKO), ECKO
and ECDL on different MRI datasets downloaded from the Nilearn library [1].
In particular, the following datasets are used:

– Haxby [8]. In this functional-MRI (fMRI) dataset, subjects are presented
with images of different objects. For the benchmark in our study, we only
use the brain signal and responses for images related to faces and houses of
subject 2 (n = 216, p = 24083).

– Oasis [10]. The original collection include data of gray and white matter
density probability maps for 416 subjects aged 18 to 96, 100 of which have
been clinically diagnosed with very mild to moderate Alzheimers disease.
The purpose for our inference task is to find regions that predict the age of
a subject (n = 400, p = 153809).

We chose q = 500 in all experiments for the algorithms that require clustering
step (KO, ECKO and ECDL). In the two cases, we start with a qualitative
comparison of the returned results. The brain maps are ternary: all regions
outside Ŝ are zeroed, while regions in Ŝ get a value of +1 or −1, depending on
whether the contribution to the prediction is positive or negative. For ECKO, a
vote is performed to decide whether a voxel is more frequently in a cluster with
positive or negative weight.

4 Results

Synthetic data. A strong demonstration of how ECKO makes an improvement
in stabilizing the single-clustering Knockoffs (CKO) is shown in Fig. 2. There is
a clear distinction between selection of the orange area at lower right and the
blue area at upper right in the CKO result, compared to the ground truth. More-
over, CKO falsely discovers some regions in the middle of the cube. By Contrast,



0 10 20 30 40 50 0
10

20
304050

50
40
30
20
10
0

True Weight

weights = 1.0
weights = -1.0

0 10 20 30 40 50 0
10

20
30

40
50

50
40
30
20
10
0

CKO

weights = 1.0
weights = -1.0

0 10 20 30 40 50 0
10

20
30

40
50

50
40
30
20
10
0

ECKO

weights = 1.0
weights = -1.0

0 10 20 30 40 50 0
10

20
30

40
50

50
40
30
20
10
0

APT

weights = 1.0
weights = -1.0

0 10 20 30 40 50 0
10

20
30

40
50

50
40
30
20
10
0

ECDL

weights = 1.0
weights = -1.0

Fig. 2: Experiments on simulated data: Original 3D weight vector (top left) and
inference results from CKO vs. ECKO. The single CKO run has markedly dif-
ferent solutions to the ground truth. Meanwhile, ECKO’s solution is closer to
the ground truth in the sense that altogether, it is more powerful than APT and
also more precise than ECDL.

ECKO’s selection is more similar to the true 3D weight cube. While it returns
a wider selection than ECKO, ECDL also claims more false discoveries, most
visibly in the blue area on upper-left corner. At the same time, APT returns
adequate results, but is more conservative than ECKO. Fig. 3a is the result of
averaging 30 simulations for the 3D brain synthetic data. ECKO and ECDL
obtain almost identical precision-recall curve: for a precision of at least 90%,
both methods have recall rate of around 50%. Meanwhile, CKO falls behind,
and in fact it cannot reach a precision of over 40% across all recall rates. APT
yields the best precision-recall compromise, slightly above ECKO and ECDL.
When varying SNR (from 2−1 to 25) and investigating the average proportion
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Fig. 3: (a) Average Precision-recall curve (for SNR ≈ 3.6) and (b) SNR-FDR
curve of 30 synthetic simulations. Nominal FDR control level is 10%. ECKO
shows substantially better results than CKO and is close to ECDL. APT obtains
a slightly better Precision-recall curve. ECKO, ECDL and APT successfully
control FDR under nominal level 0.1 where as CKO fails to.

of false discoveries (δ-FDR) made over the average of 30 simulations (Fig. 3b),
we observe that CKO fails to control δ-FDR at nominal level 10% in general.
Note that accurate δ-FDR control would be obtained with larger δ values, but
this makes the whole procedure less useful. The ECDL controls δ-FDR at low
SNR level. However, when the signal is strong, ECDL might select more false
positives. ECKO, on the other hand, is always reliable —albeit conservative—
keeping FDR below the nominal level even when SNR increases to larger mag-
nitude.

Oasis & Haxby dataset. When decoding the brain signal on subject 2 of the
Haxby dataset using response vector label for watching ’Face vs. House’, there
is a clear resemblance of selection results between ECKO and ECDL. Using an
FDR threshold of 10%, both algorithms select the same area (with a difference
in size), namely a face responsive region in the ventral visual cortex, and agree

L R
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z=0

ECKO L R

z=10 -1.0

1.0L R

z=0
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Fig. 4: Comparison of results for 2 ensembling clustered inference methods on
Haxby dataset, nominal FDR=0.1. The results are similar to a large extent. No
voxel region is detected by APT, therefore we omit to show the selection outcome
of the method.
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Fig. 5: Results of ECKO inference on Oasis dataset, nominal FDR=0.1. ECKO
is the only method to detect significant regions. The temporal region detected by
ECKO would be detected by other approaches using a less conservative thresh-
old.

on the sign of the effect. However, on Oasis dataset, thresholding to control the
FDR at 0.1 yields empty selection with ECDL and APT, while ECKO still selects
some voxels. This potentially means that ECKO is statistically more powerful
than ECDL and APT.

5 Conclusion

In this work, we proposed an algorithm that makes False Discovery Rate (FDR)
control possible in high-dimensional statistical inference. The algorithm is an in-
tegration of clustering algorithm for dimension reduction and aggregation tech-
nique to tackle the instability of the original knockoff procedure. Evaluating the
algorithm on both synthetic and brain imaging datasets shows a consistent gain
of ECKO with respect to CKO in both FDR control and sensitivity. Further-
more, empirical results also suggest that the procedure achieves non-asymptotic
statistical guarantees, yet requires the δ-relaxation for FDR.

The number of clusters represents a bias-variance trade-off: increasing it can
reduce the bias (in fact, the value of δ), while reducing it improves the condition-
ing for statistical inference, hence the sensitivity of the knockoff control. We set
it to 500 in our experiments. Learning it from the data is an interesting research
direction.

We note that an assumption of independence between hypothesis tests is
required for the algorithm to work, which is often not the case in realistic sce-
narios. Note that this is actually the case for all FDR-controlling procedures
that rely on the BHq algorithm. As a result, making the algorithm work with re-
laxed assumption is a potential direction for our future study. Furthermore, the
double-aggregation procedure makes the algorithm more expensive, although it
results in embarrassingly parallel loops. An interesting challenge is to reduce the
computation cost of this procedure. Another avenue to explore for the future is
novel generative schemes for knockoff, based e.g. on deep adversarial approaches.
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