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Abstract. Simulated fragmentation process in granular assemblies is a challenging problem which date back the beginning of
the 90’. If first approaches have focus on the fragmentation on a single particle, with the development of robust, fast numerical
method is is possible today to simulated such process in a large collection of particles. But the question of the fragmentation
problem is still open: should the fragmentation be done dynamically (one particle becoming two fragments) and according
which criterion or should the fragment paths be defined initially and which is the impact of the discretization and the model
of fragments? The present contribution proposes to investigate the second aspect i.e. the impact of fragment modeling on the
fragmentation processes. First to perform such an analysis, the geometry of fragments (disks/sphere or polygon/polyhedra),
their behavior (rigid/deformable) and the law governing their interactions are investigated. Then such model will be used in a
grinding application where the evolution of fragments and impact on the behavior of the whole packing are investigate.
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INTRODUCTION

Simulated fragmentation process in granular assemblies
is a challenging problem which date back the beginning
of the 90’. First approaches have focus on the fragmen-
tation on a single particle and the different parameters
of interaction law [1, 2] or on the fragmentation algo-
rithm [3]. The works have been extended to the simula-
tion of the fragmentation of a collection of particles un-
der compression [4] and to the combining of rigid and de-
formable particles [5]. More recently, such methods are
compared to experimental process [6], proposing good
agreements and could be applied on grinding simulation
process [7]. But the question of the fragmentation prob-
lem is still open: should the fragmentation be done dy-
namically (one particle becoming two fragments) and ac-
cording which criterion or should the fragment paths be
defined initially and which is the impact of the discretiza-
tion and the model of fragments?
The present contribution proposes to investigate the

second aspect i.e. the impact of fragment modeling on
the fragmentation processes. First to perform such an
analysis, the geometry of fragments (disks or polygon)
and the law governing their interactions are investigated.
Numerical results are compared to experimental ones,
resulting from the impact of steel sphere on a pyrex bead
lying on a impact bar. Then such model will be used in
a grinding application where the evolution of fragments
and impact on the behavior of the whole packing are
investigate.

NUMERICAL STRATEGY

To simulate our collection of particles, the Non Smooth
Contact Dynamics method (NSCD) developed by
Moreau [8] and Jean [9] is used. The headlines of the
original approach are the following. Let’s consider the
equation of motion using to describe the evolution of a
collection of rigid bodies:

Mq̈= Fext +R, (1)

where M denotes the mass matrix, q̈ the second time
derivative of configuration parameter q. The forces of
the system are decomposed into external forces Fext and
the resultant of contact forces R. The equation (1) is re-
written in a framework which allow the derivation of
acceleration when shock are expected using a θ -method,
where θ is equal to 0.5 for stability reason ad to keep a
conservative time scheme.
Thus, over the time interval [ti, ti+1], of measure h, one
obtain the following system:

{
qi+1 = qi+θ q̇i+1+(1−θ)q̇i

q̇i+1 = q̇ f ree
i+1 +M

−1hRi+1
, (2)

with

q̇ f ree
i+1 = q̇i+hM−1(θFext

i+1+(1−θ)Fext
i ). (3)

The resolution of system (2) is performed by looking for
the unknowns (hRi+1, q̇i+1) related to the elements of the
system. To the research of such couple of unknowns, one
prefers looking for its dual (ri+1,ui+1) composed of the
local contact impulsion and the contact relative velocity,



related to (hRi+1, q̇i+1) via the linear mappings H et H∗
: {

hR = Hr
u = H

∗q̇ . (4)

By introducing the equations of system (4) in system (2),
one obtains:{

Wpi+1+ui+1 =M
−1(h(1−θ)Fext

i +hθFext
i+1)

Interaction[ri+1,ui+1]
,

(5)
whereW(=H∗M−1

H) represents the Delassus operator
and Interaction[ri+1,ui+1], the interaction law relating
contact impulsions and contact relative velocities. The
algorithm used to solve the contact problem is a Non-
Linear Gauss-Seidel algorithm, looking for a solution
by a contact-wise treatment. The reader could refers to
original works for more information [9, 8].
To close the system (5), the interaction law which

relate r and u should be defined. The present model,
used to describe the interaction between particles has
been proposed by Raous et al [10] and is based on five
parameters:Cn andCt the normal and tangential stiffness
respectively; w, the de-cohesion energy; b, the viscosity
associated to the evolution of the adhesion and μ the
local friction coefficient. The intensity of the adhesion
of the interaction is characterized in this model by the
internal variable β , introduced by Frémond [11]. It takes
its values between 0 and 1 (0 is no adhesion and 1 is
perfect adhesion). The use of a damageable stiffness of
the interface, depending on β , ensures a good continuity
between contact conditions during the process:

∂β
∂ t
=−1

b
(w−β (Cnu2n+Ctu2t ))

−, (6)

where q− denotes the negative part of the quantity q.
For the purposes of the present work, no viscosity be-
tween particles is considered (b = 0). Initially interac-
tions are perfectly intact (β=1) and normal and tangential
stiffness are considered equal. This means that the local
model is defined through three parameters, i.e.Cn, μ and
w.
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FIGURE 1. Cohesive Zone Model force profile ; (a) elastic
range definition and (b) beta value.

Fig. 1 proposes an illustration of a typical CZM graph.
The maximal traction force rc is equal to

√
wCn while the

corresponding distance defining the elastic range (with-
out damage), gc, is equal to

√
w/Cn. Note that when such

law is used in discrete element assemblies, it is necessary
to take care during the contact detection process. Indeed,
to avoid overlap between particles, an alert distance is
used to anticipate a potential contact. Usually, this dis-
tance should not be too large to minimize the number of
contact (active or not). With the presence of CZM, the
alert distance should not be too small to cut the CZM
graph and dissipate energy numerically.

EXPERIMENTAL SET-UP

To support our numerical results, an experimental set-
up based on a Hopkinson bar is used (c.f. Fig.2). The
experiment consist in the impact of a steel sphere on a
pyrex bead lying on a impact bar.

FIGURE 2. Visualization of the experimental set-up based
on a Hopkinson bar

The diameter of the pyrex bead is equal to 6 mm
with a density ρ equal to 2 230 kg.m−3. The steel
sphere diameter is equal to 60 mm with a density equal
to 7 600kg.m−3. The initial distance between the steel
sphere and the plan is equal to 80 mm. No initial velocity
is given to the sphere. The experiment is performed on a
set of 30 pyrex beads. The force resulting of the impact
of the sphere on the bar is measured and plotted on Fig.3

FIGURE 3. Evolution of the force measured on the impact
bar for the whole bead set.

All Profiles respect approximatively the same evolu-
tion. The bifurcation point (force threshold) on the evo-





to the presence of large fragment in the contact which are
broken by the impact bar.

FIGURE 8. Evolution of the mean impact force evolution for
three value of μ and fixed values for Cn and w (resp. equal to
109 and 5 10−2)

The increase of μ does not affect the first part of the
evolution of the impact force (c.f. Fig. 8). Then for a large
value of μ , the impact force decreases slowly. This is due
to the presence of large fragment in the contact which are
broken by the impact bar.
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FIGURE 9. Evolution of the mean impact force evolu-
tion for sample (c) and (d) for a triplet (Cn,μ,w) equal to

(109,0.1,5 10−2)

Finally, the influence of polygon mesh is analyzed (c.f.
Fig. 9). One could observed that the impact force value
is independent of the mesh. This value is larger for a
collection of polygons (˜25N ) that for a collection of
disks (˜12N ). This is could be explain by the fact that
is more difficult for a polygon to move than a disk. Such
behavior plays also an important role in the decrease of
the curve which is faster for polygons

On a collection of particles

Such modeling could be applied on a collection of par-
ticles where each particle is a collection of polygons (100
particles composed of 54 elements, c.f. Fig. 10). The
fragmentation process is observed during the rotation of
the drum.
The initial drop-off of particles create a small evolu-

tion of the global damage. Then when particles start to
flow at the free surface, the global damage increase lin-
early to reach a steady state where fragments created dur-

FIGURE 10. Fragmentation of particles in a rotating drum

ing the process preserve the damage of undamaged par-
ticles.

CONCLUSION

To conclude, a comparison with experimental result, un-
derlined the weakness of rigid modeling for such pro-
cess. Indeed, there is some elasticity in compression.
This elasticity measured is related to contact, orthogonal
to the loading direction, which are working in traction.
Improvement in terms local contact law as well as ele-
ment deformation could be performed.
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