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Abstract: We present a semi-analytical model of the resonance phenomena occurring in a hybrid
system made of a 1D array of periodic subwavelength slits deposited on an insulator/graphene
layer. We show that the spectral response of this hybrid system can be fully explained by a simple
semi-analytical model based on weak and strong couplings between two elementary sub-systems.
The first elementary sub-system consists of a 1D array of periodic subwavelength slits viewed as
a homogeneous medium. In this medium lives a metal-insulator-metal lattice mode interacting
with surface and cavity plasmon modes. A weak coupling with surface plasmon modes on
both faces of the perforated metal film leads to a broadband spectrum while a strong coupling
between this first sub-system and a second one made of a graphene-insulator-metal gap leads to a
narrow band spectrum. We provide a semi-analytical model based on these two interactions thus
allowing efficient access of the full spectrum of the hybrid system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Extraordinary optical transmission (EOT) [1] through an opaque metallic film perforated with
subwavelength slits has received great interest over the past decade because of its numerous
applications in optoelectronics such as mid-infrared spatial light modulators, linear signal
processing or biosensing. Many theoretical and experimental works were carried out in order to
understand and predict EOT and, especially, to highlight the role of surface waves [2–5]. More
recently we provided, in [6], a simple and versatile model, for this phenomenon, involving a
specific mode living in an equivalent homogeneous medium and a phase correction to account
for surface waves. The proposed semi-analytical model is valid from the visible to the infrared
frequencies ranges. On the other hand, significant efforts have been made to create active
or tunable plasmonic devices operating from THz to mid-infrared frequencies. Thanks to its
extraordinary electronic and optical properties, graphene, a single layer of arranged carbon atoms
has attracted much attention in the last years. This material can support both TE an TM surface
plasmons and can exhibit some remarkable properties such as flexible wide band tunability
that can be exploited to build new plasmonic devices. The main challenge when designing a
graphene-plasmon-based device is how to efficiently excite graphene surface plasmons with a
free space electromagnetic wave since there is a huge momentum mismatch between the two
electromagnetic modes. Generally two strategies are used. The first one consists in patterning
the graphene sheet into nano-resonators [7–19]. In this case a surface plasmon of the obtained
structure which is very similar to the graphene surface plasmon is excited and an absorption rate
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close to 100% can be reached. In particular in [19], the authors presented an electrically tunable
hybrid graphene-gold Fano resonator which consists of a square graphene patch and a square gold
frame. They showed that the destructive interference between the narrow- and broadband dipolar
surface plasmons, which are induced respectively on the surfaces of the graphene patch and
the gold frame, leads to the plasmonic equivalent of electromagnetically induced transparency
(EIT). However patterning a graphene sheet requires sophisticated processing techniques and
deteriorates its extraordinary mobility. The second strategy consists in using a continuous
graphene sheet instead of undesirable patterned graphene structure [20–25]. In this approach, the
graphene sheet is coupled with nano-scatterers such as nano-particles, or nano-gratings. Gao et
al. proposed [23] to use diffractive gratings to create a guided-wave resonance in the graphene
film that can be directly observed from the normal incidence transmission spectra. In [22] Zhao
et al. studied a tunable plasmon-induced-transparency effect in a grating-coupled double-layer
graphene hybrid system at far-infrared frequencies. They used a diffractive grating to couple a
normal incident wave and plasmonic modes living in a system of two graphene-films separated
by a spacer. Zhang et al. [25] investigated optical field enhancements, in a wide mid-infrared
band, originating from the excitation of graphene plasmons, by introducing a dielectric grating
underneath a graphene monolayer. Usually, the optical response of all the grating-graphene based
structures listed above is performed thanks to the finite difference time domain method (FDTD)
or to the finite element method (FEM). However the features of these hybrid graphene-resonators
devices is often linked to a plasmon resonance phenomenon. Therefore a modal method allowing
for a full modal analysis of the couplings occurring in these plasmonic systems seems more
suitable.
In this paper, we investigate an optical tunable plasmonic system involving two fundamental

phenomena: an EOT phenomenon and ametal-insulator-graphene cavity plasmonmode excitation.
We propose a semi-analytical model allowing to fully describe the spectrum behaviour of an
hybrid plasmonic structure, made of a 1D periodic subwavelength slits array deposited on an
insulator/graphene layers. The spectrum of the proposed hybrid system exhibits Lorentz and
Fano-like resonances and also other broadband and narrow band resonances that are efficiently
captured by our simplified model. In order to explain the origin of this particular behaviour, we
first split the hybrid system into a couple of sub-systems. Second, thanks to a modal analysis
through the polynomial modal method (PMM: one of the most efficient methods for modeling
the electromagnetic properties of periodic structures) [26–29], we demonstrate that the scattering
parameters of each sub-system can be computed through a concept of weak and strong couplings.
Finally we provide analytical expressions of the reflection and transmission coefficients of the
structure and describe the mechanisms leading to Lorentz and Fano resonances occurring in it.

2. Physical system

The hybrid structure under study is presented in Fig. 1. It consists of two sub-systems. The first
sub-system earlier studied in [6] is a sub-wavelength periodic array of nano-slits with height
h1 = 800nm, period d = 165nm<<λ and slits-width s = 15nm. The relative permittivity of the
material filling the slits is denoted by ε(s) while the dispersive relative permittivity of the metal
(gold) is denoted by ε(m) and described by the Drude-Lorentz model [31,32]. See Ref. [6] for
the numerical parameters used for ε(m) description. This first sub-structure is deposited on a
dielectric spacer (with relative permittivity ε(2) = 1.542 and hight h2 = 10nm) itself deposited on
a continuous graphene sheet. The monolayer graphene optical properties are modeled with an
equivalent layer with thickness ∆ and permittivity ε(ω) [30] :

ε(ω) = 1 + i
σ(ω)

ε0ω∆
(1)
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Fig. 1. Sketch of hybrid structure made of a dispersive metal film perforated with a
subwavelength periodic array of 1D nano-slits deposited on a dielectric spacer ended by a
continuous graphene sheet.

where the optical conductivity of graphene

σ(ω) = σinter + σintra (2)

includes both the interband and intraband contributions. The first term of Eq. (2) i.e. the interband
contribution σinter has the form σinter = σ

′
inter + iσ

′′
inter, where

σ′inter = σ0

[
1 +

1
π
atan

(
~ω − 2µc

~Γ

)
−

1
π
atan

(
~ω + 2µc

~Γ

)]
σ′′inter =

σ0
2π

ln
[
2µc − ~ω
2µc + ~ω

]
.

(3)

σ0 = πe2/2h is the universal conductivity of the graphene, 1/Γ is the relaxation time (throughout
this work, we will take Γ = 2.1012s−1) and µc is the Fermi level. The second term σintra of Eq. (2)
describes a Drude model response for intraband processes:

σintra = σ0
4µc
π

1
~Γ − i~ω

. (4)

This hybrid structure is excited, from the upper medium (having relative permittivity ε(0)) by a
TM polarized plane wave (the magnetic field is parallel to the y axis). The wave vector of the
incident wave is denoted by K0 = k0

(
α0ex + β0ey + γ0ez

)
, where k0 = 2π/λ = ω/c denotes the

wavenumber, λ being the wavelength and c the light velocity in vacuum. The relative permittivity
of the lower region is denoted by ε(3). We report in Figs. 2(a) and (b), the spectra of the hybrid
structure for two values of the chemical potential: µc = 1eV Fig. 2(a) and µc = 1.5eV Fig. 2(b).
These curves display both broadband and narrow bands resonance phenomena. It has been shown
in [6] that a Lorentz-like resonance corresponding to an EOT phenomenon can occur in the
first sub-system i.e. the dispersive metal film perforated with a subwavelength periodic array of
1D nano-slits excited by a plane. In the current case, this EOT occurs around λ = 3.37µm and
as pointed out in [6] it is related to the excitation of a particular eigenmode of the slit grating
structure : the so-called lattice mode. One can easily conceive that the broadband resonance is
related to the EOT phenomenon outlined later, while the narrow band resonance phenomena
are due to Fabry-Perrot-like resonances of a cavity mode living in the metal/spacer/graphene
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Fig. 2. Reflection, transmission and absorption spectra of the hybrid system for µc = 1eV
(Fig. 2(a)) and µc = 1.5eV (Fig. 2(b)). The hybrid structure exhibits both broadband
and tunable narrow band resonances with respect to the chemical potential. Parameters:
ε1 = ε3 = εslit = 1, incidence angle= 0o, h = 800nm, d = 165nm, a = 15nm.

gap. For example, for µc = 1eV , a first two narrow resonances are observed around λ = 4.17µm
and λ = 7.3µm. The real parts of the magnetic field plotted in Fig. 3(a) at λ = 4.17µm and in
Fig. 3(b) at λ = 7.30µm, for µc = 1eV, support the fact that the narrow band resonances are
linked to the resonance of a cavity mode of the horizontal metal/insulator/graphene sub-system.
As the effective index of this mode strongly depends on the chemical potential µc, the resonance
frequencies of this hybrid cavity mode shift with increasing µc. Comparing the reflection
spectrum of the first sub-system with that of the hybrid structure, we can interpret the latter
spectral response as a weak or strong coupling between the lattice mode of the former sub-system
with the cavity mode of the metal/insulator/graphene gap. We propose in the following, a
simple single mode model allowing to efficiently describe, and understand the mechanism of this
vertical-to-horizontal cavity modes coupling.

Fig. 3. Real part of the magnetic field Hx(x, z) at λ = 4.17µm (Fig. 3(a)) and at λ = 7.30µm
(Fig. 3(b)). Parameters: ε1 = ε3 = εslit = 1, incidence angle= 0o, h = 800nm, d = 165nm,
a = 15nm.
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3. Modal analysis of the system

The sketch of vertical-to-horizontal cavity modes coupling outlined in the previous section is
presented in Fig. 4, where γ(1)0 denotes effective index of the periodic slits array lattice mode
in the z-direction while α(3)0 denotes that of the metal/insulator/graphene cavity mode in the
x-direction. The effective indices α(1)0 and α(2)0 will be introduced later. Modal methods are very
suitable to deal with the current problem since it is related to mode resonances. Thus, all required
effective indices are computed as eigenvalues of the generic operator L(k):

Fig. 4. Sketch of the mechanism of the coupling between cavity lattice modes of the periodic
array of nano-slits and the metal/insulator/graphene gap plasmon modes. Strong and weak
couplings between three modes are responsible of the resonance phenomena of the hybrid
structure.

L(k)(ω)|H(k)q (ω)〉 = (γ
(k)
q (ω))

2 |H(k)q (ω)〉 (5)

with
L(k)(x,ω) =

( c
ω

)2
ε(k)(x,ω)∂x

1
ε(k)(x,ω)

∂x + ε
(k)(x,ω).

Figure 5 illustrates the different configurations used for the computation of the required effective

Fig. 5. Configurations used for the computation of the required effective indices (eigenvalues
of Eq. (5). config.1 is used for the computation of the modes of periodic arrays of nano-slits
in general and in particular for the computation of the cavity lattice mode effective index
γ
(1)
0 . config.2 is used for the computation of the effective index α(2)0 of the plasmon mode.

The gap plasmon mode effective index α(3)0 is computed thanks to config.3.

indices. Recall that these effective indices are computed as eigenvalues of Eq. (5). The first
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configuration (config.1) is used for the computation of the modes of periodic arrays of nano-
slits in general and particularly for the computation of the cavity lattice mode effective index
γ
(1)
0 . The second configuration (config.2) is used for the computation of the plasmon mode

effective index α(2)0 while the cavity plasmon mode effective index α(3)0 is computed thanks
to the third configuration (config.3). Practically, the PMM is used to solve numerically the
eigenvalue equation Eq. (5). For that purpose, the structure is divided into sub-intervals I(k)x , in
the x-direction: k ∈ {1, 2} for config.1 while k ∈ {1, 6} for config.2 and config.3. At this stage,
we split the hybrid system into two coupled sub-systems:

• a weakly coupled sub-system sketched in Figs. 6 and 7 which leads to the broadband
resonances.

• a strongly coupled sub-system sketched in Figs. 9 and 10 leading to a narrow bands
dispersion curves.

Let us now analyse each coupled sub-system and provide semi-analytical models allowing to
describe them.

Fig. 6. Sketch of the weak coupling sub-system consisting of a periodic array of nano-slits
encapsulated between ε(0) and ε(3) media. The lattice mode γ(1)0 is assumed to live in an√
ε(1) effective homogeneous medium. Two plasmon modes α(0)sp and α(2)0 ensure the phase

matching with the plane waves in media ε(0) and ε(3).

Fig. 7. The sketch of α(2)0 plasmon mode computation.

3.1. Weakly coupled sub-system

A semi-analytical model for the weakly coupled system has been already described in [6]. This
system consists of a periodic array of subwavelength nano-slits encapsulated between media
with relative permittivities ε(0) and ε(3). As pointed out in [6], the electromagnetic response
of the system to an incident plane wave excitation, in the static limit (d<<λ), is equivalent to
that of a slab with equivalent permittivity ε(1) = 〈1/ε(m,s)(x)〉−1 and height h1. Its reflection and
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transmission coefficients R12 and T12 are then given by :

R12 =
r1 + φ1r2φ2
1 + r1φ1r2φ2

(6)

and
T12 =

t1t2φ2
1 + r1φ1r2φ2

(7)

where r1, t1 and r2, t2 are the Fresnel coefficients at the interfaces ε(0)/ε(1) and ε(1)/ε(3) under
TM polarization:

r1 =
1 − n01(ω)
1 + n01(ω)

, r2 =
1 − n13(ω)
1 + n13(ω)

, (8)

t1 =
2

1 + n01(ω)
, t2 =

2
1 + n13(ω)

. (9)

where

n01(ω) =
γ
(1)
0 (ω)/ε

(1)(ω)

γ
(0)
0 (ω)/ε

(0)(ω)
, and n13(ω) =

γ
(3)
0 (ω)/ε

(3)(ω)

γ
(1)
0 (ω)/ε

(1)(ω)
, (10)

and
φ1 = e−ik0γ

(1)
0 h1φ

(0)
c , φ2 = e−ik0γ

(1)
0 h1φ

(2)
c (11)

with
φ
(0)
c = e−ik0α

(0)
sp a(0) , φ

(2)
c = e−ik0α

(2)
0 a(2) . (12)

Phase correction terms are introduced in order to take into account the phase matching between
the lattice mode with effective index γ(1)0 and the incident plane wave (see [6]). In equation

Eq. (12), α(0)sp =

√
ε(0)ε(m)

ε(0) + ε(m)
is the effective index of the surface plasmon propagating along the

upper interface, a(1) =
a
4

√
ε(0)

ε(s)
and a(2) =

a
4

√
ε(3)

ε(s)
. We compare in Fig. 8(a) the spectrum of

the reflectivity |R12 |
2, with the reflectivity of the hybrid system. As expected, the |R12 |

2 curve
perfectly matches the broadband resonance of the hybrid structure. The impact of the phase
correction terms φ(0),(2)c on the results is not significant since the omission of these terms only
induces a little shift of the |R12 |

2 curve. This is why we consider the coupling between the
γ
(1)
0 -effective index-slit-mode and the α(2)0 -effective index-plasmon-mode as a weak coupling.

3.2. Strongly coupled system

Consider now the strongly coupled system sketched in Figs. 9 and 10. Since the transverse
geometrical parameters of the grating are smaller than the incident field wavelength λ (d<<λ),
we can introduce for the lattice mode an effective index α(1)0 along the x-axis as follows:

α
(1)
0 =

√
ε(1) − γ

(1)2
0 , (13)

where α(1)0 has a positive real part and a negative imaginary part. The S-parameters of the
equivalent two ports network of Fig. 9 are then given by :
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Fig. 8. Comparison between the reflection spectrum of the hybrid structure and the
responses of the weakly coupled sub-system (a) and the strongly coupled sub-system (b). As
expected, the weakly coupled sub-system reflection spectrum |R12(λ)|2 perfectly matches
the broadband resonances of the hybrid structure. On the other hand, the strongly coupled
sub-system spectrum characteristic function |S11(λ) + S12(λ)|2 perfectly matches the narrow
band resonances of the hybrid structure. Parameters: λ ∈ [2, 10]µm, ε(1) = ε(3) = ε(s) = 1,
ε(2) = 1.542, incidence angle= 0o, µc = 1eV .

Fig. 9. Sketch showing the strong coupling between the gap plasmon mode α(3)0 living in

an
√
ε(2) homogeneous medium and α(1)0 lattice mode in an

√
ε(1) effective homogeneous

medium.

Fig. 10. The sketch of α(3)0 plasmon mode computation.


S11 S12

S21 S22



a1

a2

 =

b1

b2

 (14)
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where 
S11(ω) = S22(ω) =

[
1 − n2(ω)

] [
1 − φ2(ω)

]
[1 + n(ω)]2 − [1 − n(ω)]2 φ2(ω)

S12(ω) = S21(ω) =
4n(ω)φ(ω)

[1 + n(ω)]2 − [1 − n(ω)]2 φ2(ω)

, (15)

with 
n(ω) =

α
(3)
0 (ω)/ε

(3)(ω)

α
(1)
0 (ω)/ε

(1)(ω)

φ = e−ik0α
(3)
0 d.

, (16)

The dispersion relation of this system is obtained by finding the zeros of the determinant ∆(ω) of
the matrix S(ω) of equation Eq. (14) :

∆(ω) = S11(ω)S22(ω) − S12(ω)S21(ω) = [S11(ω) − S12(ω)] [S11(ω) + S12(ω)] = 0. (17)

Then we have two classes of solutions:
S11(ω) − S12(ω) = 0

or

S11(ω) + S12(ω) = 0

. (18)

As shown Fig. 8(b) the resonance frequencies defined by the class of solutions satisfying to
S11(ω) + S12(ω) = 0 match with the narrow band resonances of the hybrid structure. Let us set

r13(ω) = − (S11(ω) + S12(ω)) . (19)

Coefficient r13 corresponds to the reflection coefficient of the strongly coupled system where
the output and input ports are excited by two fields of equal amplitudes a1 = a2. Therefore the
reflection spectrum of the whole system can take the following form :

R =
r1 + φ1r13r2φ2
1 + r1φ1r13r2φ2

(20)

and
T =

t1r13t2φ2
1 + r1φ1r13r2φ2

. (21)

By using the approximate model of Eqs. (20) and (21), we provide some numerical simulations
(In Figs. 11(a), (b), (c) and (d)) for different values of µc. In these figures, we compare the
spectra of the hybrid-structure with the reflection and transmission curves obtained from rigorous
PMM computations. The chemical potential is set to µc = 1eV , in Figs. 11(a) and (b), while
µc = 1.5eV , in Figs. 11(a) and (b). All these results fit very well the rigorous numerical
simulations obtained with the PMM. Our model captures very well all resonances phenomena
occurring in the hybrid system namely Lorentz and Fano resonances and thus confirms that
couplings between some fundamental modes of elementary sub-structures are of fundamental
importance in these phenomena. Armed with this model, we are now ready to deepen the
explanation of the dispersion curves of Figs. 2(a) and (b).
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Fig. 11. Comparison between the spectra of the hybrid-structure with the reflection and
transmission curves obtained from the PMM for two values of the chemical potential µc.
The chemical potential is set to µc = 1eV , in Figs. 11(a) and (b), while µc = 1.5eV, in
Figs. 11(c) and (d). All these results fit very well with the rigorous numerical simulations
obtained with the PMM. Our model captures very well all resonances occurring in the hybrid
system namely Lorentz and Fano ones. Parameters: λ ∈ [2, 10]µm, ε(1) = ε(3) = ε(s) = 1,
ε(2) = 1.542, incidence angle= 0o.
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4. Analysis of the Lorentz and Fano resonances of the system

Analysing the reflection |R|2, transmission |T |2 from Eqs. (20), (21), it is possible to provide
justifications for the curves shapes in Figs. 2(a) and (b). From these figures, we remark that:

1. In the frequency range close to the resonance frequencies of the weak sub-system, the
reflection and transmission spectra generally exhibit asymmetric Fano-like shapes while
the absorption presents Lorentz-like shapes (left inserts of Figs. 2(a) and (b)).

2. When the resonance frequency of both strongly and weakly coupled systems match each
other, it results in an exaltation of the reflection and annihilation of both transmission and
absorption. This can be seen as a sort of induced reflection.

3. In the frequency range far from the resonance frequencies of the weakly coupled sub-system,
a Lorentz-like absorption enhancement can be observed (right inserts of Figs. 2(a) and
(b)). The scattering efficiency vanishes and the absorption takes its maximum value close
to unity.

Before commenting on the first point raised above, let us recall that, in general, the Fano resonance
occurs when a narrow band resonance sub-system interferes with a continuum or a broadband
resonance sub-system. The signature of this resonance in the spectrum is the presence of two
closed critical points corresponding to a vanishing value of the amplitude followed or preceded
by an enhancement. In the current case, the zeros of the transmission T , in Eq. (21), are the zeros
of the coefficient r13 and these frequency values are always followed or preceded by great or little
transmission enhancements. Therefore the Fano resonance shape becomes obvious.

For the second point, let us recall the resonance condition of the first sub-system. It is obtained
from the zeros of the reflection coefficient R12, in Eq. (6), as soon as:

φ1r2φ3 ' −r1 and 1 + r1φ1r2φ2 , 0, (22)

There is an extinction of the reflection without any annihilation of the transmission. Knowing
that the resonance condition of the strongly coupled system is given by

r13(ω) ' 0, (23)

when the latter resonance condition Eq. (23) meets the former Eq. (22), it results

r13φ1r2φ3 ' 0 (24)

which leads to an exaltation of reflection, and an annihilation of the transmission (see Eq. (21))
and the absorption. The spectral responses of the structure are shown to be highly tunable
by changing a gate voltage applied to the graphene sheet. The height h2 of the horizontal
cavity influences the system through the effective index α(3)0 . The dispersion curves of the
effective index α(3)0 are plotted in Fig. 12(a) for different values of h2 while µc is kept constant
and equal to 1eV . It can be seen that increasing h2 leads to a decrease of the real part of
α
(3)
0 . Since the x dependance of the electromagnetic field in the cavity may be approximated

by Hy(x) = A+exp(ikα(3)0 x) + A−exp(−ikα(3)0 x), (k = 2π/λ), for a given d-length cavity, the
resonance wavelengths can be approximately obtained through a phase condition on the term
A±sin(2πdα(3)0 /λr). When α(3)0 decreases, the resonance wavelength λr brought by the strongly
coupled sub-system also decreases. Consequently increasing spacer height pushes the resonance
wavelengths resulting from the strongly coupling sub-system towards the visible wavelengths
range. The same behavior can be observed when the height h2 is kept constant while increasing
the chemical potential µc (see Fig. 12(b)). This time it is µc that influences the system through



Research Article Vol. 2, No. 4 / 15 April 2019 / OSA Continuum 1307

the effective index of the horizontal cavity. Increasing µc decreases α(3)0 and thereby leads to a
decrease of the resonance wavelengths. By tuning the potential µc, one can realize the condition
of Eq. (24) leading to an induced reflection phenomenon. For the last point raised, the Lorentz
resonance shape of the absorption is provided by the poles of the scattering parameters of the
system i.e. when 1 + r1φ1r13r2φ2 ' 0 leading to weak values of both reflection and transmission.
Besides, the exaltation of the absorption always occurs around frequencies where both reflection
and transmission are weak and equal and these frequencies are different from the zeros of the
coefficient r13. Therefore in the frequency range far from the resonance frequency of the EOT
sub-system, the hybrid structure behaves as a tunable perfect absorber.
Finally, it is worth noticing that the present model works very well for normal incidence and

reasonably well for angles of incidence up to twenty degrees. For large angles of incidence, some
new resonances appear in the spectra and are not captured by our model.

Fig. 12. Dispersion curves of the effective index α(3)0 for different values of h2, (µc = 1eV)
(Fig. 12(a)) and for different values of µc (h2 = 10nm) (Fig. 12(b)). Increasing the chemical
potential µc or the spacer width h2, the real part of α

(3)
0 decreases. Parameters: ε2 = 1.542.

5. Conclusion

In conclusion, we have proposed a simple model, allowing to deepen the comprehension of
the resonance phenomena involving the EOT phenomenon and a metal/insulator/graphene gap
plasmon excitation. We consider a hybrid structure that consists of a 1D array of periodic
subwavelength slits ended by a metal/insulator/graphene gap. For our analysis, this hybrid
structure is split into two sub-systems. Each sub-system is driven by eigenmodes operating in an
appropriate coupling regime. The study of the first sub-system, characterised by modes operating
in a weak coupling regime, allows to understand the broadband resonance of the hybrid system.
We provided an analytical expression of the reflection and transmission coefficients of this first
sub-system. The behavior of the second sub-system, characterized by modes acting in a regime
of strong coupling allows to understand the narrow-band nature of the hybrid system. Here, the
resonance frequencies directly depend on the metal-insulator-graphene horizontal Perot Fabry
cavity effective index. Since the real part of this effective index decreases by increasing the
graphene sheet chemical potential, the resonance wavelengths of the system become perfectly
tunable ; better yet an induced reflection phenomenon or perfect absorption can be achieved with
suited values of the graphene sheet Fermi level. We proposed a spectral function allowing not
only to characterize the resonance frequencies of this second sub-system, but also showed that
introducing this spectral function into the reflection and transmission coefficients of the first
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sub-system, we obtain an analytical expression of the reflection and transmission coefficients of
the global hybrid system which are successfully compared with those obtained with rigorous
numerical simulations (through the PMM approach). Finally, armed with these analytical
expressions, we provided a full description of the resonance phenomena occurring in the system.
Our analysis in terms of simple modes couplings can be extended to study the coupling of
the lattice modes with a substrate made by a non-reciprocal photonic topological materials,
of particular interest for energy management and transport [33] and for atomic manipulation
[34]. The analysis of such complex hybrid configurations involving diffraction gratings coupled
to hybrid graphene multilayer structures could also be applied to study and to estimate more
complicated phenomena, like the Casimir effect [35] and the radiative heat transfer [36].
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