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Asymptotic analysis of selection-mutation models in the

presence of multiple fitness peaks

Tommaso Lorenzi∗ Camille Pouchol†‡

Abstract

We study the long-time behaviour of phenotype-structured models describing the
evolutionary dynamics of asexual populations whose phenotypic fitness landscape is
characterised by multiple peaks. First we consider the case where phenotypic changes
do not occur, and then we include the effect of heritable phenotypic changes. In the
former case the model is formulated as an integrodifferential equation for the pheno-
type distribution of the individuals in the population, whereas in the latter case the
evolution of the phenotype distribution is governed by a non-local parabolic equation
whereby a linear diffusion operator captures the presence of phenotypic changes. We
prove that the long-time limit of the solution to the integrodifferential equation is
unique and given by a measure consisting of a weighted sum of Dirac masses centred
at the peaks of the phenotypic fitness landscape. We also derive an explicit formula
to compute the weights in front of the Dirac masses. Moreover, we demonstrate that
the long-time solution of the non-local parabolic equation exhibits a qualitatively sim-
ilar behaviour in the asymptotic regime where the diffusion coefficient modelling the
rate of phenotypic change tends to zero. However, we show that the limit measure
of the non-local parabolic equation may consist of less Dirac masses, and we provide
a sufficient criterion to identify the positions of their centres. Finally, we carry out
a detailed characterisation of the speed of convergence of the integral of the solution
(i.e. the population size) to its long-time limit for both models. Taken together, our
results support a more in-depth theoretical understanding of the conditions leading to
the emergence of stable phenotypic polymorphism in asexual populations.

1 Introduction

Phenotype-structured models formulated as integrodifferential equations (IDEs) or non-
local partial differential equations (PDEs) have been increasingly used as a theoretical
framework to study evolutionary dynamics in a variety of asexual populations [2, 4, 7–14,
16, 18, 20, 24, 30, 32, 35–37, 39–42, 44–47, 50]. In these models, the phenotypic state of each
individual is represented by a continuous real variable x, and the phenotypic distribution
of the individuals within the population at a given time t > 0 is described by a function
n(t, x) > 0. In many scenarios of biological and ecological interest one can assume x ∈ Ω,
where Ω is a smooth bounded domain of Rd, d > 1.
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We focus here on the case where, in the absence of phenotypic changes, the evolution
of the population density function n(t, x) is governed by an IDE of the form

∂n

∂t
= R(x, ρ(t))n, n ≡ n(t, x), (t, x) ∈ (0,∞)× Ω. (1.1)

The function R(x, ρ(t)) represents the net per capita growth rate of individuals in the
phenotypic state x, under the environmental conditions determined by the population size

ρ(t) :=

∫
Ω
n(t, x) dx, (1.2)

and models the effect of natural selection. In fact, depending on the sign of R(x, ρ(t))
the number density of individuals in the phenotypic state x will either grow or decay at
time t. The function R(x, ρ(t)) can thus be seen as the phenotypic fitness landscape of the
population [26,49].

In the ecological and biological scenarios whereby the effect of heritable, spontaneous
phenotypic changes need to be taken into account, a linear diffusion operator can be in-
cluded in the IDE (1.1). This leads to a non-local parabolic PDE of the form

∂n

∂t
= R(x, ρ(t))n+ β∆n, n ≡ n(t, x), (t, x) ∈ (0,∞)× Ω, (1.3)

where the diffusion coefficient β > 0 models the rate of phenotypic change. Since pheno-
typic changes preserve the total number of individuals within the population, zero Neu-
mann is the most natural choice of boundary conditions for the non-local PDE (1.3).

The way in which the fitness function R(x, ρ(t)) is defined depends largely on the
underlying application problem, and we consider here the prototypical definition

R(x, ρ(t)) := r(x)− ρ(t). (1.4)

In definition (1.4), the function r(x) is the net per capita growth rate of the individuals in
the phenotypic state x (i.e. the difference between the rate of proliferation through asexual
reproduction and the rate of death under natural selection). Hence the maximum points
of this function correspond to the fitness peaks (i.e. the peaks of the phenotypic fitness
landscape of the population). Moreover, the saturating term −ρ(t) models the limitations
on population growth imposed by carrying capacity constraints (e.g. limited availability
of space and resources).

In the framework of the IDE (1.1), or the non-local PDE (1.3), a mathematical depiction
of phenotypic adaptation can be obtained by studying the long-time behaviour of the
population density function n(t, x). In this regard, whilst the case of one single fitness peak
has been broadly studied [1, 5, 15, 17, 22, 43, 48], there is a paucity of literature concerning
the case where multiple fitness peaks are present, with the exception of the asymptotic
results presented in [3, 11, 19, 21, 23, 31, 38, 39, 47, 51]. Based on these few previous results,
we expect the solution to the IDE (1.1) complemented with (1.4) to converge to a limit
measure given by a sum of weighted Dirac masses centred at the maximum points of
the function r(x) as t → ∞, and we envisage the long-time solution of the non-local
PDE (1.3) to exhibit a qualitatively similar behaviour in the asymptotic regime where
β → 0. This represents a mathematical formalisation of the biological notion that the
phenotypic variants corresponding to the fitness peaks (i.e. the fittest phenotypic variants)
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are ultimately selected. However, the following key questions still remain open: is there a
unique weighted sum of Dirac masses defining the limit of the solution to the IDE (1.1)
when t → ∞? If so, what are the only admissible values of the weights in front of the
different Dirac masses? Are there any differences between the long-time solution to the
IDE (1.1) and the asymptotic limit when β → 0 of the long-time solution to the non-
local PDE (1.3)? If so, how does the presence of the diffusion term change the values of
the weights associated with the Dirac masses? How does the speed of convergence of the
population size ρ(t) to its long-time limit differs between the IDE (1.1) and the non-local
PDE (1.3)?

In this paper, we address these questions focussing on the case where the fitness function
is defined via (1.4). In summary, using Laplace’s method we derive an explicit formula
to compute the weights in front of the Dirac masses that constitute the long-time limit
of the solution to the IDE (1.1), and show that the weights are uniquely determined by
the initial condition n(0, x) and the Hessian H(r) at the maximum points of the function
r(x) (vid. Theorem 2). Moreover, exploiting the properties of the principal eigenpair of
the elliptic differential operator β∆ + r, we prove that when β → 0 the long-time limit
of the non-local PDE (1.3) converges to a limit measure consisting of a weighted sum of
Dirac masses with non-negative weights centred at the maximum points of the function
r(x) (vid. Proposition 1). We also derive sufficient conditions for the limit measure to be
unique and demonstrate that, ceteris paribus, there can be a significant difference between
this limit measure and the limit measure of the IDE (1.1). In particular, we show that,
unless ad hoc symmetry assumptions are made (vid. Proposition 2), the limit measure
for the non-local PDE (1.3) may consist of less Dirac masses than the limit measure for
the IDE (1.1) (i.e. a smaller number of weights will be strictly positive), and we provide
a sufficient criterion to identify the maximum points of the function r(x) corresponding
to the Dirac masses with positive weights (vid. Proposition 3). This criterion relies on
a suitable multidimensional characterisation of the concavity of the function r(x) at the
maximum points which is borrowed from semiclassical analysis. Finally, we carry out a
detailed characterisation of the speed of convergence of the population size ρ(t) to its long-
time limit both for the IDE (1.1) and for the non-local PDE (1.3). Taken together, our
results support a more in-depth theoretical understanding of the conditions leading to the
emergence of stable polymorphism in asexual populations.

The remainder of the paper is organised as follows. In Section 2 we introduce our main
assumptions and a few technical preliminaries. In Section 3 we carry out a qualitative
and quantitative characterisation of the solution to the IDE (1.1) complemented with (1.4)
when t → ∞, while in Section 4 we study the asymptotic properties of the solution to
the non-local PDE (1.3) complemented with (1.4) by letting first t→∞ and then β → 0.
In both sections, we present a sample of numerical solutions that confirm the analytical
results obtained. Section 5 concludes the paper by providing a brief overview of possible
research perspectives.
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2 Main assumptions, notation and preliminaries

In this paper, we will consider the following Cauchy problem for the IDE (1.1)
∂n

∂t
= (r(x)− ρ(t))n, n ≡ n(t, x), (t, x) ∈ (0,∞)× Ω,

n(0, x) = n0(x), n0 ∈ C(Ω), n0 > 0, n0 6≡ 0

(2.5)

and the following initial-boundary value problem for the non-local parabolic PDE (1.3)

∂nβ
∂t
− β∆nβ = (r(x)− ρβ(t))nβ, nβ ≡ nβ(t, x), (t, x) ∈ (0,∞)× Ω,

∇nβ(t, x) · ν(x) = 0, (t, x) ∈ (0,∞)× ∂Ω,

nβ(0, x) = n0(x), n0 ∈ C(Ω), n0 > 0, n0 6≡ 0,

(2.6)

where ν(x) is the outward normal to the boundary ∂Ω at the point x ∈ ∂Ω.

Main assumptions on the function r(x). In order to prevent n(t, ·) from vanishing
as t→∞, we will assume

r : Ω→ R, r ∈ C(Ω), max
x∈Ω

r(x) = rM > 0 (2.7)

and, being interested in the case where r(x) has multiple maximum points, we will also
assume

arg max(r) = {x̄1, . . . , x̄N} ⊂ Ω with N > 2. (2.8)

Notice that we assume all points x̄i to belong to the interior of Ω in order to simplify
the presentation. However, part of our results can be extended to the case where the set
arg max(r) contains some boundary points and, when appropriate, we will comment on
how the proofs presented here could be adapted to such a case. Where necessary, we will
make the additional assumptions

supp(n0) ∩ arg max(r) 6= ∅ (2.9)

and
r ∈ C2(Ω), det(Hi) < 0 for i = 1, . . . , N, (2.10)

where Hi is the Hessian H(r) evaluated at the point x̄i. Assumptions (2.10) ensure that
each maximum point x̄i is nondegenerate.

Laplace’s method. We recall some useful results on the asymptotic expansion of in-
tegrals involving exponentials, usually referred to as Laplace’s method. We refer the
reader to [54] for a general presentation of such an asymptotic method and for the re-
lated proofs. Let r satisfy assumptions (2.7), (2.8) and (2.10), and assume f ∈ C(Ω). For
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x̄i ∈ arg max(r) and ε small enough so that x̄i is the only maximum point of r(x) in the
ball B(x̄i, ε), Laplace’s method ensures that if x̄i ∈ supp (f) then∫

B(x̄i,ε)
f(x)er(x)t dx ∼ (2π)d/2

f(x̄i)√
|det(Hi)|

erM t

t
d
2

as t→∞, (2.11)

whereas if x̄i /∈ supp (f) then∫
B(x̄i,ε)

f(x)er(x)t dx = o

(
erM t

t
d
2

)
as t→∞. (2.12)

Moreover, if f(x) and r(x) are, respectively, of class C1 and C3 on the ball B(x̄i, ε), higher
order terms of the asymptotic expansion can be computed. In this case, Laplace’s method
ensures that ∫

B(x̄i,ε)
f(x)er(x)t dx =

(
Ai +

Bi
t

+ o

(
1

t

))
erM t

t
d
2

as t→∞, (2.13)

where Ai and Bi are real constants, the values of which are not relevant for our purposes.

Preliminaries about the operator β∆ + r. We will consider the elliptic differential
operator

Lβ = β∆ + r (2.14)

acting on functions defined on Ω, and we will denote by (λβ, ψβ) the principal eigenpair
of Lβ (i.e. Lβψβ = −λβψβ) with zero Neumann boundary condition. A useful result is
established by the following lemma, which follows from the Krein-Rutman theorem [25,33].

Lemma 1. The principal eigenvalue λβ is simple and there is a unique normalised positive
eigenfunction ψβ associated with λβ. The eigenfunction ψβ is smooth and the principal
eigenvalue λβ is given by

λβ = inf
φ∈H1(Ω)\{0}

R(Lβ, φ), (2.15)

where R denotes the Rayleigh quotient, i.e.

R(Lβ, φ) :=

β

∫
Ω
|∇φ(x)|2 dx−

∫
Ω
r(x)φ2(x) dx∫

Ω
φ2(x) dx

.

The infimum is attained only when φ is a multiple of ψβ.

We will also make use of the second eigenvalue λ2,β < λβ of the operator Lβ. For a
function u ∈ L2(Ω), we will denote by α2(u) the L2(Ω)-projection of u onto the finite-
dimensional eigenspace associated to λ2,β, and we will denote the opposite to the spectral
gap of the operator Lβ by

γβ := λ2,β − λβ < 0. (2.16)

If the set Ω is symmetric with respect to some hyperplane S, which without loss of
generality we will define as

S := {x1 = 0}, (2.17)



T. Lorenzi and C. Pouchol 6

then
x = (x1, x2, . . . , xd) ∈ Ω =⇒ (−x1, x2, . . . , xd) ∈ Ω. (2.18)

Under assumption (2.18) and given a function f : Ω→ R, we will use the notation

f̂(x) = f(−x1, x2, . . . , xd) for x ∈ Ω.

With this notation, we will say f to be symmetric with respect to the hyperplane S if
f̂(x) = f(x) for all x ∈ Ω. A useful result is established by the following lemma.

Lemma 2. If the set Ω satisfies assumption (2.18) and the function r(x) is symmetric
with respect to the hyperplane S, i.e. if

r̂(x) = r(x) for all x ∈ Ω, (2.19)

then the principal eigenfunction ψβ is symmetric with respect to the hyperplane S.

Proof. Since Lβψβ = −λβ ψβ, that is,

β∆ψβ + r ψβ = −λβ ψβ in Ω,

if assumption (2.18) is satisfied then

β∆ψ̂β + r̂ ψ̂β = −λβ ψ̂β in Ω.

Under the additional assumption (2.19) the latter elliptic equation implies that

β∆ψ̂β + r ψ̂β = −λβ ψ̂β in Ω,

that is, Lβψ̂β = −λβ ψ̂β. Hence ψ̂β is a normalised positive eigenfunction associated
with the principal eigenvalue λβ, and the uniqueness of the principal eigenfunction of the

operator Lβ ensures that ψ̂β = ψβ.

Function space framework Throughout the paper, we will consider the space of Radon
measures M1

(
Ω
)

as the dual of the space of continuous functions C
(
Ω
)
. With a slight

abuse of notation, the integral of a function ϕ ∈ C
(
Ω
)

against a measure µ ∈ M1
(
Ω
)

will be denoted in the same way as the integral of the product of the function ϕ with an
L1-function, i.e. ∫

Ω
ϕ(x)µ(x) dx =

∫
Ω
ϕ dµ.

Sequences of functions fk in L1(Ω) will be regarded as elements of the bigger spaceM1
(
Ω
)
.

Given a sequence µk inM1
(
Ω
)
, we will write µk −−−⇀

k→∞
µ to indicate the weak-∗ convergence

of µk to µ, namely that∫
Ω
ϕ(x)µk(x) dx −−−→

k→∞

∫
Ω
ϕ(x)µ(x) dx ∀ϕ ∈ C

(
Ω
)
.

Moreover, we will say that the sequence µk concentrates on a set ω ⊂ Ω if∫
Ω
ϕ(x)µk(x) dx −−−→

k→∞
0 ∀ϕ ∈ C

(
Ω
)

s.t. supp(ϕ) ∩ ω = ∅,

and we will use the result given by the following lemma, which is a well-known fact in
measure theory.
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Lemma 3. If a sequence µk in M1
(
Ω
)

concentrates on a finite set {x̄1, . . . , x̄N} and
µk −−−⇀

k→∞
µ then the limit measure µ must be a linear combination of Dirac masses centred

at the points x̄1, . . . , x̄N .

Finally, we will say that a measure µ ∈ M1
(
Ω
)

is symmetric with respect to the
hyperplane S if∫

Ω
ϕ(x)µ(x) dx =

∫
Ω
ϕ̂(x)µ(x) dx ∀ϕ ∈ C

(
Ω
)

s.t. ϕ̂(x) = ϕ(x) ∀x ∈ Ω

and we will use the result given by the following lemma, the proof of which is straightfor-
ward.

Lemma 4. Let µk be a sequence of symmetric measures in M1
(
Ω
)
. If µk −−−⇀

k→∞
µ then

the limit measure µ is symmetric as well.

3 Long-time behaviour of the Cauchy problem (2.5)

In this section, we study the asymptotic behaviour of the solutions to the Cauchy prob-
lem (2.5) when t→∞ (Section 3.1), and we provide a sample of numerical solutions that
confirm the analytical results obtained (Section 3.2).

3.1 Asymptotic analysis

Under assumptions (2.7) there exists a unique non-negative solution n ∈ C([0,+∞);L1(Ω))
of the Cauchy problem (2.5) [21, 47]. Moreover, solving the Cauchy problem (2.5) yields
the semi-explicit formula

n(t, x) = n0(x) er(x)t−
∫ t
0 ρ(s) ds (3.20)

and, if assumption (2.8) is satisfied as well, the solution n(t, x) is known to concentrate on
the set arg max(r) when t→∞, as established by the following theorem.

Theorem 1. Under assumptions (2.7)-(2.9), the solution to the Cauchy problem (2.5) is
such that

ρ(t) −−−→
t→∞

rM (3.21)

and, up to extraction of subsequences,

n(t, x) −−−⇀
t→∞

rM

N∑
i=1

ai δx̄i(x) with ai > 0 and
N∑
i=1

ai = 1. (3.22)

In the case where
min
x∈Ω

r(x) = rm > 0, (3.23)

Theorem 1 can be proved through a few simple calculations building upon the method
presented in [48], as shown by the proof provided in the Appendix for the sake of com-
pleteness. Alternatively, when assumption (3.23) is satisfied, one can prove Theorem 1
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using the method of proof presented in [47], which relies on the observation that the semi-
explicit solution (3.20) can be made explicit as

n(t, x) =
n0(x) er(x)t

1 +

∫
Ω

n0(y)

r(y)
(er(y)t − 1) dy

.

On the other hand, in the case where assumption (3.23) is not satisfied, the proof is much
more intricate and requires the use of a Lyapunov functional of the form

W (t) =

∫
Ω

[
n(t, x)− n∞(x)− n∞(x) ln (n(t, x))

]
dx,

with n∞ being any measure concentrated on the set arg max(r) and having total mass rM .
We refer the interested reader to [31, 51] for a proof of Theorem 1 in such a more general
case.

We prove here that the coefficients a1, . . . , aN that define the limit measure (3.22)
are uniquely determined by the initial condition and by the Hessian of r(x) at the points
x̄1, . . . , x̄N , which entails the convergence of the whole trajectory n(t, ·) to a unique
limit point as t → ∞. These results are summarised by the following theorem, which
also provides a characterisation of the rate of convergence of the total mass ρ(t) to the
long-term limit rM .

Theorem 2. If assumptions (2.7)-(2.10) are satisfied, then the solution to the Cauchy
problem (2.5) is such that

n(t, x) −−−⇀
t→∞

rM

N∑
i=1

ai δx̄i(x) (3.24)

with

ai = A
n0(x̄i)√
|det(Hi)|

for i = 1, . . . , N, (3.25)

where A > 0 is a normalising constant such that
N∑
i=1

ai = 1.

Moreover, if the functions n0(x) and r(x) are, respectively, of class C1 and C3 in a neigh-
bourhood of each maximum point x̄1, . . . , x̄N then

rM − ρ(t) ∼ d

2t
as t→∞. (3.26)

Proof. Throughout the proof we will use the following notation

J(t) :=
erM te−

∫ t
0 ρ(s) ds

td/2
. (3.27)

The results established by Theorem 1 ensure that we can extract a subsequence n(tk, ·)
such that

n(tk, ·) −−−⇀
k→∞

rM

N∑
i=1

ai δx̄i(x) with
N∑
i=1

ai = 1.
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Moreover, considering ε > 0 small enough so that x̄i is the only maximum point of the
function r(x) in the ball B(x̄i, ε) for every i = 1, . . . , N and integrating over B(x̄i, ε) both
sides of the expression (3.20) for n(t, x) with t = tk we find that∫

B(x̄i,ε)
n(tk, x) dx =

(∫
B(x̄i,ε)

n0(x) er(x)tk dx

)
e−

∫ tk
0 ρ(s) ds. (3.28)

The long-time behaviour of the integral on the right-hand side of the above equation can be
characterised using Laplace’s method. In particular, the asymptotic relation (2.11) ensures
that if x̄i ∈ supp(n0) then∫

B(x̄i,ε)
n(tk, x) dx ∼ (2π)d/2

n0(x̄i)√
| det(Hi)|

J(tk) as k →∞, (3.29)

where J is defined according to (3.27). On the other hand, the asymptotic relation (2.12)
ensures that if x̄i /∈ supp(n0) then∫

B(x̄i,ε)
n(tk, x) dx = o

(
1√

|det(Hi)|
J(tk)

)
as k →∞. (3.30)

Taken together, the integral identity (3.28) and the asymptotic relations (3.29) and (3.30)
allow us to conclude that there exist some real constants K > 0 and A > 0 such that

J(tk) −−−→
k→∞

K (3.31)

and

ai = A
n0(x̄i)√
| det(Hi)|

with
N∑
i=1

ai = 1.

We remark that K cannot be 0 because otherwise ρ(t) would converge to 0, which cannot
be since ρ(t)→ rM [cf. the asymptotic result (3.21)]. Hence, the coefficients ai that define
the limit measure are uniquely determined and the limit measure is unique. This ensures
that the whole trajectory n(t, ·) converges to the limit point given by (3.24) and (3.25) as
t→∞.

To prove claim (3.26) we proceed as follows. We note that the asymptotic result (3.31)
now holds true for J(t) and not for a mere subsequence J(tk). This implies that∫ t

0
(rM − ρ(s)) ds ∼ d

2
ln(t) as t→∞. (3.32)

To conclude we only need to show that ρ(t) has an asymptotic expansion of the form
a + b

t + o
(

1
t

)
as t → ∞. The coefficients a and b are then necessarily rM and −d

2 , owing
to (3.32).

From now on, C1 and C2 will denote some generic real constants which might vary
from line to line.

We choose again ε > 0 small enough so that x̄i is the only maximum point of the
function r(x) in the ball B(x̄i, ε) for every i = 1, . . . , N . Integrating over B(x̄i, ε) both
sides of the expression (3.20) for n(t, x) we find that

ρ(t) = e−
∫ t
0 ρ(s) ds

N∑
i=1

∫
B(x̄i,ε)

n0(x)er(x)t dx + e−
∫ t
0 ρ(s) ds

∫
Ω\∪Ni=1B(x̄i,ε)

n0(x)er(x)t dx.
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The second term on the right-hand side of the above equation decays exponentially to 0
as t → ∞, since ρ(t) → rM . Moreover, choosing ε small enough so that – under the
additional assumption that the functions n0(x) and r(x) are, respectively, of class C1 and
C3 in a neighbourhood of each maximum point x̄1, . . . , x̄N – we have n0 ∈ C1 (B(x̄i, ε))
and r ∈ C3 (B(x̄i, ε)) for every i = 1, . . . , N , we can use the asymptotic expansion (2.13)
and in so doing obtain the following asymptotic expression for the first integral on the
right-hand side of the latter equation∫

B(x̄i,ε)
n0(x)er(x)t dx =

(
C1 +

C2

t
+ o

(
1

t

))
erM t

t
d
2

as t→∞.

Taken together, these results yield

ρ(t) = J(t)

[
C1 +

C2

t
+ o

(
1

t

)]
as t→∞, (3.33)

with J defined according to (3.27).
We now prove that

J(t) = C1 +
C2

t
+ o

(
1

t

)
as t→∞, (3.34)

from which we can infer that ρ(t) satisfies an asymptotic expansion of the same form, thus
concluding the proof. In order to prove (3.34), we notice that a sufficient condition for this

to hold is that the function u(t) := e
∫ t
0 ρ(s) ds satisfies the estimate

u(t) =
erM t

td/2

(
C1 +

C2

t
+ o

(
1

t

))
as t→∞. (3.35)

In order to prove (3.35), we differentiate u to obtain

u′(t) = ρ(t)e
∫ t
0 ρ(s) ds =

∫
Ω
n0(x)er(x)t dx =

erM t

td/2

(
C1 +

C2

t
+ o

(
1

t

))
as t→∞,

(3.36)
where the last equality has been established above. Since∫ t

1

es

sα
ds =

et

tα

(
C1 +

C2

t
+ o

(
1

t

))
as t→∞

for any α > 0, we can conclude that estimate (3.36) still holds true after integration and,
therefore, estimate (3.35) is satisfied.

Remark 1. In the case where d = 1, expression (3.25) reads as

ai = A
n0(x̄i)√
|r′′(x̄i)|

for i = 1, . . . , N.

Remark 2. The results of Theorem 2 can be extended to the case where some maximum
points of the function r(x) belong to the boundary ∂Ω, a case that might be relevant for
applications. In particular, letting ∂Ω be sufficiently smooth and using Laplace’s method
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one can prove that if x̄j ∈ arg max(r) ∩ ∂Ω is a stationary point of r(x) (i.e. ∇r(x) = 0),
then

aj =
A

2

n0(x̄j)√
|det(Hj)|

.

This implies that, all other things being equal, the weight in front of a Dirac mass centred
at a boundary point will be half that of a Dirac mass centred at an interior point. On the
other hand, if x̄j ∈ arg max(r) ∩ ∂Ω is a nonstationary point of the restriction of r(x) to
the boundary, and there is at least one maximum point of r(x) that belongs to the interior
of Ω, then the weight aj in front of δx̄j (x) will be zero (i.e. the mass in a neighbourhood
of x̄j will vanish as t→∞).

Remark 3. The asymptotic relation (3.26) shows that the integral ρ(t) of the solution to
the IDE (1.1) complemented with (1.4) converges to rM more slowly than the solution of
the related logistic ordinary differential equation

dN

dt
= (rM −N)N, N ≡ N(t), t ∈ (0,∞),

which converges exponentially to rM as t→∞. Moreover, whilst

sgn

(
dN(t)

dt

)
= sgn (rM −N(0)) ∀t ∈ R+,

which means that N(t) will approach the asymptotic value rM from below if N(0) < rM
and from above if N(0) > rM , the asymptotic relation (3.26) indicates that ρ(t) will always
approach rM from below independently from the value of ρ(0). This also implies that if
ρ(0) > rM then the derivative of ρ(t) will change sign at least once on R+.

It is also worth comparing the speed of convergence given by the asymptotic rela-
tion (3.26) with the one that can be obtained based on the best estimates currently avail-
able in the literature, namely

(
rM − ρ(t)

)2
+

∫
Ω

(
rM − r(x)

)
n(t, x) dx = O

(
log(t)

t

)
as t→∞.

Furthermore, this cannot vanish as O
(

1

tα

)
for any α > 1 [31,51].

3.2 Numerical solutions

To confirm the asymptotic results established by Theorem 2, we solve numerically the
Cauchy problem (2.5). In particular, we approximate the IDE (1.1) complemented
with (1.4) using the forward Euler method with step size 0.01. We select a uniform discreti-
sation of the interval Ω := [−1, 2] consisting of 1000 points as the computational domain
of the independent variable x, and we consider t ∈ [0, 200]. All numerical computations
are performed in Matlab.

We choose the initial condition

n0(x) ≡ 2

3
so that

∫
Ω
n0(x) dx = 2 (3.37)
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and we use the following definition

r(x) := e
−(x+0.5)2

0.01 + e
−(x−1)2

0.1 , (3.38)

which satisfies the assumptions of Theorem 2. As shown by the plot in Figure 1, the
function r(x) defined according to (3.38) has two maximum points, that is, x̄1 ∈ [−1, 0]
and x̄2 ∈ [0, 2].

-1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

Figure 1: Plot of the function r(x) defined according to (3.38).

We compute numerically the integrals

ρ1(t) :=

∫ 1
2

−1
n(t, x) dx and ρ2(t) :=

∫ 2

1
2

n(t, x) dx (3.39)

and the coefficients a1 and a2 given by (3.25). In the one-dimensional setting considered
here, the expressions given by (3.25) read as

a1 = A
n0(x̄1)√
|r′′(x̄1)|

and a2 = A
n0(x̄2)√
|r′′(x̄2)|

with A s.t. a1 + a2 = 1. (3.40)

The results obtained are summarised in Figure 2 and Figure 3. As we would expect
based on Theorem 1, the numerical results displayed in Figure 2 show that n(t, x) becomes
concentrated as a sum of two Dirac masses centred at the points x̄1 and x̄2 (left panel),
while ρ(t) converges to rM (right panel).

Furthermore, the curves displayed in the left panel of Figure 3 show that, in agreement
with the results established by Theorem 2, the integrals ρ1(t) and ρ2(t) defined according
to (3.39) converge, respectively, to the values a1 rM and a2 rM , with a1 and a2 given

by (3.40), while the curves in the right panel of Figure 3 show that (rM − ρ(t)) t→ 1

2
as

t→∞, i.e. the asymptotic relation (3.26) is verified.
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Figure 2: Dynamics of n(t, x) (left panel) and ρ(t) (right panel) obtained by solving numer-
ically the Cauchy problem (2.5) with n0(x) and r(x) defined according to (3.37) and (3.38).
The black, dashed line in the right panel highlights the value of rM .

0 50 100 150 200
t

0

0.2

0.4

0.6

0.8

1

1.2
ρ1 (t)

ρ2 (t)

0 50 100 150 200
t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
(rM − ρ(t)) t

Figure 3: Dynamics of the integrals ρ1(t) (red line) and ρ2(t) (blue line) defined according
to (3.39) (left panel), and of the function (rM − ρ(t)) t (right panel). The black, dashed
lines in the left panel highlight the values of the quantities a1 rM and a2 rM , with a1 and
a2 given by (3.40), while the black, dashed line in the right panel corresponds to the
asymptotic value of (rM − ρ(t)) t given by (3.26). The integrals ρ1(t), ρ2(t) and ρ(t) are
computed using the numerical solution of the Cauchy problem (2.5) subject to the initial
condition (3.37) with r(x) defined according to (3.38).

4 Long-time behaviour of the initial-boundary value prob-
lem (2.6)

In this section, we study the asymptotic behaviour of the solutions to the initial-boundary
value problem (2.6) as t→∞ (Section 4.1), and we provide a sample of numerical solutions
that confirm the analytical results obtained (Section 4.2).
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4.1 Asymptotic analysis

Under assumptions (2.7) there exists a unique non-negative classical solution
nβ ∈ C([0,+∞), L1(Ω)) ∩ C1((0,+∞), C2,α(Ω)) of the initial-boundary value prob-
lem (2.6) [19]. Moreover, the behaviour of nβ(t, x) in the asymptotic regime t → ∞ is
known to be governed by the principal eigenpair (λβ, ψβ) of the elliptic differential operator
Lβ (i.e. Lβψβ = −λβψβ) defined according to (2.14) with zero Neumann boundary condi-
tion. The following theorem builds on the method of proof presented in [19,33] and extends
previous results by characterising the speed of convergence of ρβ towards its limit as t→∞.

Theorem 3. Under assumptions (2.7), the solution of the initial-boundary value prob-
lem (2.6) is such that if λβ > 0 then

ρβ(t) −−−→
t→∞

0, (4.41)

whereas if λβ < 0 then

ρβ(t) −−−→
t→∞

−λβ and nβ(t, ·) −−−→
t→∞

−λβ ψβ in L∞(Ω). (4.42)

Furthermore, when λβ < 0, if ∫
Ω
α2(n0) dx 6= 0 (4.43)

where α2(n0) is the the L2(Ω)-projection of n0 onto the finite-dimensional eigenspace as-
sociated to λ2,β, then there exist some real constants K1 6= 0 and K2 6= 0 such that

− λβ − ρβ(t) ∼
{
K1 e

γβt if γβ > λβ,
K2 e

λβt if γβ 6 λβ,
as t→∞, (4.44)

with γβ being the opposite to the spectral gap of the operator Lβ, which is defined via (2.16).

Proof. Let uβ(t, x) := w(t)nβ(t, x) where w(t) solves the Cauchy problem{
w′ = (ρβ(t) + λβ) w, w ≡ w(t), t ∈ (0,∞),

w(0) = 1.
(4.45)

We have

∂uβ
∂t

= w′ nβ + w
∂nβ
∂t

= w′ nβ + w
[(
r(x)− ρβ(t)

)
nβ + β∆nβ

]
=

(
w′ − ρβ(t)w

)
nβ + w

(
r(x)nβ + β∆nβ

)
=

(
w′ − ρβ(t)w

)
nβ + Lβ[uβ].

Using the fact that w(t) solves the Cauchy problem (4.45) and nβ(t, x) is the solution of
the initial-boundary value problem (2.6), we obtain the following initial-boundary value
problem for uβ(t, x)

∂uβ
∂t
− Lβ[uβ] = λβuβ, uβ ≡ uβ(t, x), (t, x) ∈ (0,∞)× Ω,

∇uβ(t, x) · ν(x) = 0, (t, x) ∈ (0,∞)× ∂Ω,

uβ(0, x) = n0(x), n0 ∈ C(Ω), n0 > 0, n0 6≡ 0.
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This is a standard parabolic problem, the solution of which is such that

uβ(t, ·) −−−→
t→∞

K ψβ in L∞(Ω) for some K > 0.

Since ∫
Ω
uβ(t, x) dx = w(t) ρβ(t) and

∫
Ω
ψβ(x) dx = 1,

the above convergence result yields

w(t) ρβ(t) −−−→
t→∞

K. (4.46)

Hence the ordinary differential equation for w(t) can be rewritten as

w′ = λβ

(
K

λβ
+ w

)
+ f(t), (4.47)

with the function f(t) := ρβ(t)w(t)−K being such that f(t)→ 0 as t→∞. Using (4.47)
we conclude that

if λβ > 0 then w(t) −−−→
t→∞

∞, whilst if λβ < 0 then w(t) −−−→
t→∞

K

−λβ
.

These asymptotic results along with the asymptotic result (4.46) ensure that

if λβ > 0 then ρβ(t) −−−→
t→∞

0, whereas if λβ < 0 then ρβ(t) −−−→
t→∞

−λβ.

Moreover, recalling that uβ(t, x) = w(t)nβ(t, x) we find that if λβ < 0 then

nβ(t, ·) −−−→
t→∞

−λβ ψβ in L∞(Ω).

We now turn our attention to estimate (4.44). We recall that ρβ(t) =
∫
Ω uβ(t,x) dx

w(t) , and
we estimate the numerator and the denominator separately.

For the numerator, we expand uβ further in the orthonormal basis associated to the
operator Lβ and integrate to find that there exists some constant C such that∫

Ω
uβ(t, x) dx = K + Ceγβt + o

(
eγβt

)
as t→∞.

If assumption (4.43) is satisfied then C 6= 0. The latter estimate for
∫

Ω uβ(t, x) dx gives
also a more detailed characterisation of the behaviour of the function f(t) in (4.47) when
t→∞, that is,

f(t) = ρβ(t)w(t)−K ∼ Ceγβt as t→∞. (4.48)

For the denominator, we note that solving (4.47) subject to the initial condition w(0) =
1 gives

w(t) = −K
λβ

+

(
1 +

K

λβ

)
eλβt +

∫ t

0
f(s)eλβ(t−s) ds.

This along with estimate (4.48) allows us to conclude that if γβ > λβ then

w(t) = −K
λβ

+ C̃eγβt + o
(
eγβt

)
as t→∞,
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whereas if γβ 6 λβ then

w(t) = −K
λβ

+ C̃eλβt + o
(
eλβt

)
as t→∞,

for some constant C̃ 6= 0.
Combining these estimates for

∫
Ω uβ(t, x) dx and w(t) yields (4.44), and concludes the

proof of Theorem 3.

Remark 4. Comparing the results established by Theorem 3 [cf. asymptotic rela-
tion (4.44)] with the results established by Theorem 2 [cf. asymptotic relation (3.26)],
one can see that there is a clear difference between the speed of convergence of ρβ(t) to its
long-time limit −λβ and the speed of convergence of ρ(t) to its long time-limit rM .

Remark 5. Some results on the behaviour of γβ in the asymptotic regime β → 0 are

available in the existing literature. In particular, it is known that typically γβ ∼ e−C/
√
β

if β tends to 0 [53]. Hence, when β is small, the exponent in (4.44) will be exponentially
small.

The results established by Theorem 3 show that analysing the long-time behaviour
of the solution to the initial-boundary value problem (2.6) comes down to studying the
properties of the principal eigenpair (λβ, ψβ). In particular, a general characterisation of
λβ and ψβ(x) can be obtained when β → 0. To illustrate this, we define β := ε, where ε
is a small positive parameter, and study the behaviour of λε and ψε(x) in the asymptotic
regime ε → 0. Proposition 1 shows that the limit of −λεψε when ε → 0 is given by
a measure which has total mass equal to rM and consists of a weighted sum of Dirac
masses centred at the points x̄1, . . . , x̄N . This kind of concentration result is standard in
semiclassical analysis (see for instance [29]) but we give here a short proof that applies to
our case for the sake of self-containedness.

Proposition 1. If assumptions (2.7) and (2.8) are satisfied, then

− λε −−−→
ε→0

rM (4.49)

and, up to extraction of subsequences,

ψε(x) −−−⇀
ε→0

N∑
i=1

ai δx̄i(x) with ai > 0 and

N∑
i=1

ai = 1. (4.50)

Proof. We divide the proof of Proposition 1 into two steps. We first prove claim (4.49)
and then claim (4.50).

Step 1: proof of (4.49). Since λε is the principal eigenvalue of the differential elliptic
operator Lε, we have [cf. equation (2.15)]

λε = inf
φ∈H1(Ω)\{0}

R(Lε, φ) with R(Lε, φ) =

ε

∫
Ω
|∇φ(x)|2 dx−

∫
Ω
r(x)φ2(x) dx∫

Ω
φ2(x) dx

. (4.51)
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We start by noting that

ε

∫
Ω
|∇φ(x)|2 dx−

∫
Ω
r(x)φ2(x) dx > −rM

∫
Ω
φ2(x) dx ∀φ ∈ H1(Ω),

and, therefore, λε > −rM for all ε > 0. Thus it suffices to show that lim λε 6 −rM as
ε→ 0 in order to prove (4.49). To do this we construct a sequence of positive normalised
H1-functions φε such thatR(Lε, φε) converges to −rM as ε→ 0. We introduce the function

G : x 7−→ Ce−|x|
2
, (4.52)

where | · | denotes the Euclidean norm on Rd and C is a normalising constant such that G
has integral 1. Recalling the classical result

1

σd
G

(
x− x̄i
σ

)
−−−⇀
σ→0

δx̄i(x),

we choose φ2
ε : x 7−→ 1

ε
d
4

G

(
x− x̄i
ε

1
4

)
so that φ2

ε −−−⇀
ε→0

δx̄i . Using the fact that

∫
Ω
r(x)φ2

ε(x) dx −−−→
ε→0

rM ,

∫
Ω
φ2
ε(x) dx −−−→

ε→0
1

and

ε

∫
Ω
|∇φε(x)|2 dx =

∫
Ω
|x− x̄i|2 φ2

ε(x) dx −−−→
ε→0

|x̄i − x̄i|2 = 0,

we obtain
R(Lε, φε) −−−→

ε→0
−rM .

This concludes the proof of (4.49).

Step 2: proof of (4.50). The pair (λε, ψε) satisfies the eigenvalue problem{
−Lε ψε = λε ψε, in Ω,

∇ψε · ν = 0, on ∂Ω,

and integrating over Ω we find∫
Ω

(−λε − r(x)) ψε(x) dx = 0.

Hence, ∫
Ω

(rM − r(x)) ψε(x) dx −−−→
ε→0

0. (4.53)

Finally, for any ϕ ∈ C
(
Ω
)

with supp(ϕ) ∩ arg max(r) = ∅ we have∣∣∣∣∫
Ω
ϕ(x)ψε(x) dx

∣∣∣∣ =

∣∣∣∣∫
Ω

ϕ(x)

rM − r(x)
(rM − r(x)) ψε(x) dx

∣∣∣∣
6 max

x∈supp(ϕ)

∣∣∣∣( ϕ(x)

rM − r(x)

)∣∣∣∣ ∫
Ω

(rM − r(x)) ψε(x) dx.
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The latter integral inequality along with the asymptotic result (4.53) yields∫
Ω
ϕ(x)ψε(x) dx −−−→

ε→0
0 ∀ϕ ∈ C

(
Ω
)

s.t. supp(ϕ) ∩ arg max(r) = ∅.

This concludes the proof of (4.50).

Remark 6. The results of Proposition 1 imply that if arg max(r) = {x̄1} then the limit
of −λεψε when ε→ 0 is given by the measure rM δx̄1(x).

Remark 7. The proof of Proposition 1 can be adapted to the case where the function
r(x) attains its maximum only on the boundary ∂Ω. We expect that this can be done, as
in Laplace’s method, by adjusting the normalising constant C in (4.52), depending on the
nature of the maximum at the boundary (stationary or not). However, we consider here
only the simpler case corresponding to Proposition 1, which suffices for our purposes.

Remark 8. Since rM > 0, expression (4.51) for the Rayleigh quotient is such that if ε is
small enough then −λε > 0. Hence, based on the result of Theorem 3, we have that ρε(t)
will not vanish as t→∞ when ε is sufficiently small.

In the framework of the results established by Proposition 1, to fully characterise the
long-time limit of nε(t, x) when ε→ 0 it is necessary to assess whether there exists a unique
set of admissible coefficients a1, . . . , aN (i.e. if the limit measure is unique); if so, one needs
to identify the values of the coefficients that define the only admissible limit measure.

A case where we expect the limit measure to be unique is when the set Ω and the
function r(x) are symmetric with respect to the hyperplane S defined according to (2.17).
In this case, a complete characterisation of the limit measure is given by the following
proposition.

Proposition 2. Under assumptions (2.7) and (2.8), letting N = 2 and making the addi-
tional symmetry assumptions (2.18) and (2.19), we have

ψε(x) −−−⇀
ε→0

1

2

(
δx̄1(x) + δx̄2(x)

)
. (4.54)

Proof. Under the symmetry assumptions (2.18) and (2.19) the points x̄1 ∈ Ω and x̄2 ∈ Ω
are symmetric with respect to the hyperplane S, i.e.

if x̄1 = (x̄1 1, x̄1 2, . . . , x̄1 d) then necessarily x̄2 = (−x̄1 1, x̄1 2, . . . , x̄1 d).

Moreover, in the case where N = 2, the result established by Proposition 1 implies that

ψε(x) −−−⇀
ε→0

a δx̄1(x) + (1− a) δx̄2(x), for some a > 0.

Finally, Lemma 2 ensures that ψε is symmetric with respect to the hyperplane S, and
Lemma 4 in turn ensures that the weak limit point of ψε for ε → 0 is symmetric with
respect to the hyperplane S as well. Hence, a = 1

2 and there is a unique limit point given
by

1

2
δx̄1(x) +

1

2
δx̄2(x).
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Since the sequence ψε is bounded in L1(Ω), the Banach-Alaoglu Theorem ensures that it
is relatively (weakly-∗) compact in M1(Ω). This along with the uniqueness of the limit
point gives the convergence of the whole sequence ψε, i.e.

ψε(x) −−−⇀
ε→0

1

2

(
δx̄1(x) + δx̄2(x)

)
,

which concludes the proof of Proposition 2.

Furthermore, an almost exhaustive characterisation of the limit measure in the absence
of particular symmetries is provided by the following proposition, whereby the function
ζ : arg max (r)→ R+, which is defined as

ζ(x̄i) :=
d∑
j=1

√
|λij | (4.55)

where (λij)16j6d are the eigenvalues of Hi (each counted with its multiplicity), is used to
characterise the concavity of the function r(x) at the maximum points, as it was done in
previous papers on semiclassical analysis [27,28].

Proposition 3. Under assumptions (2.7) and (2.8),

ψε concentrates on the set arg min (ζ) as ε→ 0. (4.56)

In particular, if arg min (ζ) = {x̄m} for some 1 6 m 6 N , then

ψε(x) −−−⇀
ε→0

δx̄m(x). (4.57)

Proof. We note that studying the asymptotic behaviour of ψε when ε → 0 is equivalent
to studying the asymptotic behaviour of the principal eigenfunction ϕε of the differential
elliptic operator ε∆ − V with V := −r. The result of Proposition 1 ensures that the
support of the weak limit of ϕε as ε → 0 will be a (possibly improper) subset of the set
arg min (V ) = (x̄1, . . . , x̄N ). Investigating at which points of this discrete set the weak
limit point of the sequence ϕε will actually be concentrated is a fundamental question in
semiclassical analysis. Such a question arises in the study of the dynamics of a particle
confined within a region of space surrounding a minimum point of the potential V (i.e.
a potential well) in the asymptotic regime of small noise (i.e. when ε → 0) [27–29, 52].
Recasting the problem in this way, we can use the asymptotic results presented in [27,28]
which ensure that, under assumptions (2.7) and (2.8), when ε tends to 0, the principal
eigenfunction ϕε concentrates on the set arg min(ζ), with ζ defined via (4.55). Hence, under
the additional assumption that the set arg min(ζ) coincides with the singleton {x̄m} for
some 1 6 m 6 N , we find that ϕε concentrates at the point x̄m as ε→ 0, whence (4.57).

Remark 9. In the case where d = 1, the assumption arg min (ζ) = {x̄m} reads as

{x̄m} = arg min
x̄i∈arg max r

|r′′(x̄i)|. (4.58)

Remark 10. Comparing the results of Proposition 3 with the results established by The-
orem 2 one can see that there is a stark difference between the long-time behaviour of the
solution to the initial-boundary value problem (2.6) for β → 0 and the long-time behaviour
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of the solution to the Cauchy problem (2.5). In fact, in the case where the set arg min (ζ)
is reduced to a singleton and n0(x) > 0 for all x ∈ arg max(r), Theorem 2 shows that the
long-time limit of n(t, x) will be given by a sum of multiple Dirac masses with different
positive weights, whereas Proposition 3 shows that the long-time limit of nβ(t, x) for β → 0
will consist of one single Dirac mass. From the point of view of evolutionary dynamics, this
implies that, all else being equal, individuals in the phenotypic states x ∈ arg max(r) will
coexist in the absence of phenotypic changes, whereas only individuals in the phenotypic
state x̄m will ultimately survive when heritable phenotypic changes occur. This provides
a mathematical formalisation of the idea that, while being historically assumed to play a
neutral role in evolutionary outcome, heritable phenotypic changes can shape the equilib-
rium phenotypic distribution of asexual populations with multi-peaked fitness landscapes,
even if there is no bias in the generation of novel phenotypic variants.

Remark 11. We remark that when the set arg min (ζ) is not a singleton, it is still possible
to go further in reducing the support of the limit point of the sequence ψε as ε → 0.
However, the conditions determining which of the coefficients ai will be different from
zero become rather convoluted, as shown by the results of semiclassical analysis presented
in [29]. Therefore, we consider here only the simpler case corresponding to Proposition 3,
which suffices for our purposes.

4.2 Numerical solutions

To confirm the asymptotic results established by Propositions 1-3, we solve numerically the
initial-boundary value problem (2.6). Numerical solutions are constructed by approximat-
ing the diffusion term via a second-order central difference scheme [34] and then using the
forward Euler method with step size 0.01 to approximate the resulting system of ordinary
differential equations. We select a discretisation of the interval Ω := [−1, 2] consisting of
1000 points as the computational domain of the independent variable x and let t ∈ [0, tf ]
with tf being either 200 or 800. All numerical computations are performed in Matlab.

We define β = 10−6, choose the initial condition (3.37), and use either the following
definition

r(x) := e
−(x+0.5)2

0.01 + e
−(x−1.5)2

0.01 (4.59)

or definition (3.38). Definition (4.59) satisfies the assumptions of Proposition 2 with
S := {0.5} (cf. the plot in Figure 4), whereas definition (3.38) satisfies the assump-
tions of Proposition 3 and, as previously noted, it has two maximum points x̄1 ∈ [−1, 0]
and x̄2 ∈ [0, 2] (cf. the plot in Figure 1).

We compute numerically the following integrals

ρ1(t) :=

∫ 1
2

−1
nβ(t, x) dx and ρ2(t) :=

∫ 2

1
2

nβ(t, x) dx. (4.60)

The results obtained are summarised in Figure 5 and Figure 6. As we would expect
based on Proposition 1 and Proposition 2, the numerical results displayed in Figure 5 show
that when r(x) is defined according to (4.59) the solution nβ(t, x) becomes concentrated
as a sum of two Dirac masses centred at the points x̄1 and x̄2, the integral ρβ(t) converges

to rM , and the integrals ρ1(t) and ρ2(t) defined via (4.60) both converge to
rM
2

.

On the other hand, the numerical results displayed in Figure 6 show that, in agreement
with the results of Proposition 1 and Proposition 3, when r(x) is defined according to (3.38)
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Figure 4: Plot of the function r(x) defined according to (4.59).

Figure 5: Dynamics of nβ(t, x) (left panel) and ρβ(t) (right panel) obtained by solving nu-
merically the initial-boundary value problem (2.6) with β = 10−6 and with n0(x) and r(x)
defined according to (3.37) and (4.59). The black, dashed line in the right panel highlights
the value of rM , while the red line and the blue, dashed line correspond, respectively, to
the integrals ρ1(t) and ρ2(t) defined according to (4.60).

the integral ρβ(t) converges to rM while the solution nβ(t, x) becomes concentrated as one
single Dirac mass centred at the point x̄2 (left panel), which is the maximum point of the
function r(x) that satisfies condition (4.58) – i.e. |r′′(x̄2)| < |r′′(x̄1)|. As a consequence,
the integral ρ1(t) converges to zero, whereas the integral ρ2(t) converges to rM .
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Figure 6: Dynamics of nβ(t, x) (left panel) and ρβ(t) (right panel) obtained by solving
numerically the initial-boundary value problem (2.6) with β = 10−6 and with n0(x) and
r(x) defined according to (3.37) and (3.38). The black line in the right panel highlights
the value of rM , while the red line and the blue, dashed line correspond, respectively, to
the integrals ρ1(t) and ρ2(t) defined according to (4.60).

5 Research perspectives

There are several possible generalisations of the prototypical selection model (1.1) and
selection-mutation model (1.3) for which suitable developments of the methods used here
would be relevant.

More general saturating non-local terms. A natural way to extend our study would
be to replace the saturating term ρ(t) with a more general non-local term of the form∫

ΩK(x, y)n(t, y) dy, where the kernel K(x, y) models the effect of competitive interactions
between individuals in the phenotypic state x and other individuals in a generic pheno-
typic state y. While the long-time behaviour of the IDE model with such a more general
saturating non-local term was extensively studied in [31], where the convergence of the
solution to a weighted sum of Dirac masses was also investigated depending on the prop-
erties of the kernel K, the existing literature still lacks a precise characterisation of the
long-time behaviour of the solutions for the corresponding PDE model, with the exception
of the particular case when K(x, y) ≡ k(y) or similar cases [19]. While we expect that
extending our results to this particular case would be relatively easy, the case of a generic
kernel K(x, y) is an open problem that requires a different approach compared to the one
undertaken here.

Integral kernel modelling phenotypic changes. Our results could be extended to
the case where the linear diffusion operator in the non-local PDE (1.3) is replaced by an
integral term of the form

∫
Ω (M(x, y)n(t, y)−M(y, x)n(t, x)) dy, where the kernel M(x, y)

models the transition of individuals from a generic phenotypic state y to the phenotypic
state x. In [6] it was shown that, when phenotypic changes are modelled through such an
integral kernel, the solution of selection-mutation models like the one considered here will
typically converge to a measure as t→∞, and a criterion was derived to determine whether
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the limit measure would be singular or absolutely continuous. Suitable developments of
our methods would make it possible to investigate the dependence of such a criterion on
the weight of mutations compared to selection, which would be captured by a scaling
parameter analogous to our parameter ε.

Systems of equations. It would also be interesting to extend our results to the case of
systems of IDEs of the form of (1.1) and systems of non-local PDEs of the form of (1.3).
In this regard, the results presented in [51] for a specific system of IDEs could prove useful,
since they establish the convergence of the solution to a measure as t → ∞ and provide
a characterisation of its support. As for systems of corresponding non-local PDEs, the
convergence of the components of the solution to the principal eigenfunctions of the related
elliptic differential operators when t → ∞ has been proved for a two-by-two competitive
system [33]. Apart from these particular cases, the long-time behaviour of the solutions
of these systems of IDEs and non-local PDEs is still an open problem, which requires a
different approach compared to the one undertaken here.
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Appendix. Proof of Theorem 1 under assumption (3.23)

We start by noting that ρ(t) is uniformly bounded in L∞([0,∞)). In fact, integrating both
sides of the IDE for n(t, x) over Ω and using Grönwall’s lemma yields

dρ

dt
> (rm − ρ)ρ =⇒ ρ(t) > min (rm, ρ(0)) =: ρm ∀ t ∈ [0,∞) (5.61)

and

dρ

dt
6 (rM − ρ)ρ =⇒ ρ(t) 6 max (rM , ρ(0)) =: ρM ∀ t ∈ [0,∞). (5.62)

Then we prove that ρ ∈ BV ([0,+∞)). In order to do this, we define

q :=
dρ

dt
=

∫
Ω

(r(x)− ρ)n(t, x) dx

so that differentiating we obtain

dq

dt
=

∫
Ω

(r(x)− ρ)2n(t, x) dx− qρ.

Multiplying both sides of the latter differential equation by −
(
sgn(q)

)
− and estimating the

right-hand side of the resulting differential equation from above we find that

dq−
dt

6 −ρm q− =⇒ (q(t))− 6 (q(0))− e
−ρm t ∀ t ∈ [0,∞). (5.63)
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Moreover, for any T > 0 we have∫ T

0
q(t) dt = ρ(T )− ρ(0) 6 ρM . (5.64)

Using estimates (5.63) and (5.64) we obtain∫ T

0

(
dρ

dt

)
+

dt =

∫ T

0

dρ

dt
dt +

∫ T

0

(
dρ

dt

)
−

dt < ∞

and letting T →∞ we find ∫ ∞
0

(
dρ

dt

)
+

dt < ∞.

This estimate along with the fact that ρ ∈ L∞([0,∞)) ensures that ρ ∈ BV ([0,+∞)).
Since ρ ∈ BV ([0,+∞)) we conclude that ρ(t) admits a limit ρ∞ as t → ∞. The fact

that ρ∞ = rM can be proved via contradiction. Suppose that ρ∞ < rM and consider
ε > 0 such that r(x) > rM − ε for all x ∈ B(xi, ε), where B(xi, ε) is the ball of centre
x̄i ∈ arg max(r) and radius ε. Since ρ(t) → ρ∞ as t → ∞, if ρ∞ < rM then for ε small
enough there exists τε > 0 such that ρ(t) < rM − 2ε for all t > τε. Solving the IDE (1.1)
complemented with (1.4) for t > τε gives

n(t, x) = n(τε, x) er(x)(t−τε)−
∫ t
τε
ρ(s) ds. (5.65)

Integrating both sides of (5.65) over Ω and estimating from below we find

ρ(t) >
∫
B(xi,ε)

n(τε, x) e(rM−ε)(t−τε)−
∫ t
τε
ρ(s) ds dx > eε(t−τε)

∫
B(xi,ε)

n(τε, x) dx ∀ t > τε,

which implies that ρ(t)→∞ as t→∞. Thus we arrive at a contradiction. Now suppose
that ρ∞ > rM . If so, there exist ε > 0 sufficiently small and τε > 0 sufficiently large so
that ρ(t) > rM + ε for all t > τε. Solving the IDE (1.1) complemented with (1.4) for t > τε
gives (5.65). Moreover, integrating both sides of (5.65) over Ω and estimating from above
yields

ρ(t) 6
∫

Ω
n(tε, x) erM (t−τε)−

∫ t
τε
ρ(s) ds dx 6 e−ε(t−τε)

∫
Ω
n(τε, x) dx ∀ t > τε,

which implies that ρ(t) → 0 as t → ∞. Thus we arrive again at a contradiction. In so
doing we have proved that ρ∞ = rM .

Since the sequence (n(t, ·))t>0 is bounded in L1(Ω), the Banach-Alaoglu Theorem en-
sures that it is relatively (weakly-∗) compact inM1(Ω). Thus we can extract a subsequence
n(tk, ·) ∈M1(Ω) such that

n(tk, ·) −−−⇀
k→∞

n∞ with n∞ ∈M1(Ω),

where the measure n∞ is non-negative and its total mass is rM . Finally, since solving the
Cauchy problem (2.5) yields

n(tk, x) = n0(x) er(x)tk−
∫ tk
0 ρ(s) ds
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and ρ(t)→ rM as t→∞, we have∫
Ω
ϕ(x)n(tk, x) dx −−−→

k→∞
0 ∀ϕ ∈ C

(
Ω
)

s.t. supp(ϕ) ∩ arg max(r) = ∅,

which implies that

n∞ = rM

N∑
i=1

ai δ(x− xi) with
N∑
i=1

ai = 1.

This concludes the proof of Theorem 1 in the case where assumption (3.23) is satisfied.
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