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Asymptotic analysis of selection-mutation models in the

presence of multiple fitness peaks

Tommaso Lorenzi∗ Camille Pouchol†

March 22, 2019

Abstract

We study the long-time behaviour of phenotype-structured models describing the
evolutionary dynamics of asexual species whose phenotypic fitness landscape is char-
acterised by multiple peaks. First we consider the case where phenotypic variations
do not occur, and then we include the effect of heritable phenotypic changes. In the
former case the model is formulated in terms of an integrodifferential equation for the
phenotype distribution of the individuals of the species, whereas in the latter case the
evolution of the phenotype distribution is governed by a nonlocal parabolic equation
whereby a linear diffusion operator captures the presence of phenotypic variations.
We prove that the long-time limit of the solution to the integrodifferential equation is
unique and given by a measure consisting of a weighted sum of Dirac masses centred
at the peaks of the phenotypic fitness landscape. We also derive an explicit formula to
compute the weights in front of the Dirac masses. Moreover, we demonstrate that the
long-time solution of the nonlocal parabolic equation exhibits a qualitatively similar
behaviour in the asymptotic regime where the diffusion coefficient modelling the rate
of phenotypic variations tends to zero. However, we show that the limit measure of
the nonlocal parabolic equation may consist of less Dirac masses, and we provide a
sufficient criterion to identify the positions of their centres. Taken together, our re-
sults support a more in-depth theoretical understanding of the conditions leading to
the emergence of stable phenotypic polymorphism in asexual species.

1 Introduction

Phenotype-structured models formulated in terms of integrodifferential equations (IDEs) or
nonlocal partial differential equations (PDEs) have been increasingly used as a theoretical
framework to study evolutionary dynamics in a variety of asexual populations [1, 2, 5–8,
10,12,14,17,23,27–32,34–36,39]. In these models, the phenotypic state of each individual
is represented by a continuous real variable x, and the phenotypic distribution of the
individuals within the population at a given time t > 0 is described by a function n(t, x) >
0. In many scenarios of biological and ecological interest one can assume x ∈ Ω, where Ω
is a smooth bounded domain of Rd, d > 1.
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We focus here on the case where, in the absence of phenotypic variations, the evolution
of the population density function n(t, x) is governed by an IDE of the form

∂n

∂t
= R(x, ρ(t))n, n ≡ n(t, x), (t, x) ∈ (0,∞)× Ω. (1.1)

The functional R(x, ρ(t)) represents the net per capita growth rate of individuals in the
phenotypic state x under the environmental conditions determined by the population size

ρ(t) :=

∫
Ω
n(t, x) dx, (1.2)

and models the effect of natural selection. In fact, depending on the sign of R(x, ρ(t))
the number density of individuals in the phenotypic state x will either grow or decay at
time t. The functional R(x, ρ(t)) can thus be seen as the phenotypic fitness landscape of
the population [19,38].

In those ecological and biological scenarios whereby the effect of heritable random phe-
notypic changes need to be taken into account, a linear diffusion operator can be included
in the IDE (1.1). This leads to a nonlocal parabolic PDE of the form

∂n

∂t
= R(x, ρ(t))n+ β∆n, n ≡ n(t, x), (t, x) ∈ (0,∞)× Ω, (1.3)

where the diffusion coefficient β > 0 models the phenotypic variation rate. Since phenotypic
changes preserve the total number of individuals within the population, zero Neumann is
the most natural choice of boundary conditions for the nonlocal PDE (1.3).

The way in which the fitness functional R(x, ρ(t)) is defined depends largely on the
underlying application problem, and we consider here the following prototypical definition

R(x, ρ(t)) := r(x)− ρ(t). (1.4)

In the definition (1.4), the function r(x) is the net per capita growth rate of the individuals
in the phenotypic state x (i.e. the difference between the rate of proliferation through
asexual reproduction and the rate of death under natural selection). Hence the maximum
points of this function correspond to the fitness peaks (i.e. the peaks of the phenotypic
fitness landscape of the population). Moreover, the saturating term −ρ(t) models the
limitations on population growth imposed by carrying capacity constraints (e.g. limited
availability of space and resources).

In the framework of the IDE (1.1), or the nonlocal PDE (1.3), a mathematical depiction
of phenotypic adaptation can be obtained by studying the long-time behaviour of the
population density function n(t, x). In this regard, whilst the case of one single fitness
pick has been broadly studied [3,9,11,16,33,37], there is a paucity of literature concerning
the case where multiple fitness peaks are present, with the exception of the asymptotic
results presented in [13, 15, 24, 36, 40]. Based on these few previous results, we expect
the solution to the IDE (1.1) complemented with the definition (1.4) to converge to a
limit measure given by a sum weighted Dirac masses centred at the maximum points
of the function r(x) as t → ∞, and we envisage the long-time solution of the nonlocal
PDE (1.3) to exhibit a qualitatively similar behaviour in the asymptotic regime where
β → 0. This represents a mathematical formalisation of the biological notion that the
phenotypic variants corresponding to the fitness peaks (i.e. the fittest phenotypic variants)
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are ultimately selected. However, the following key questions still remain open: is there a
unique weighted sum of Dirac masses defining the limit of the solution to the IDE (1.1)
when t → ∞ ? If so, what are the only admissible values of the weights in front of the
different Dirac masses? Are there any differences between the long-time solution to the
IDE (1.1) and the asymptotic limit when β → 0 of the long-time solution to the nonlocal
PDE (1.3)? If so, how does the presence of the diffusion term change the values of the
weights associated with the Dirac masses?

In this paper we address these questions. In summary, using Laplace’s method we derive
an explicit formula to compute the weights in front of the Dirac masses that constitute the
long-time limit of the solution to the IDE (1.1), and show that the weights are uniquely
determined by the initial condition n(0, x) and the Hessian H(r) at the maximum points
of the function r(x) (vid. Theorem 2). Moreover, exploiting the properties of the principal
eigenpair of the elliptic differential operator β∆+r, we prove that when β → 0 the long-time
limit of the nonlocal PDE (1.3) converges to a limit measure consisting of a weighted sum
of Dirac masses with nonnegative weights centred at the maximum points of the function
r(x) (vid. Theorem 3). Finally, we provide sufficient conditions for the limit measure to be
unique and demonstrate that, all things being equal, there can be a significant difference
between this limit measure and the limit measure of the IDE (1.1). In particular, we show
that, unless ad hoc symmetry assumptions are made (vid. Proposition 2), the limit measure
for the nonlocal PDE (1.3) may consist of less Dirac masses than the limit measure for
the IDE (1.1) (i.e. a smaller number of weights will be strictly positive), and we provide a
sufficient criterion to identify the maximum points of the function r(x) corresponding to the
Dirac masses with positive weights (vid. Proposition 3). This criterion relies on a suitable
multidimensional characterisation of the concavity of the function r(x) at the maximum
points which is borrowed from semi-classical analysis. Taken together, our results support
a more in-depth theoretical understanding of the conditions leading to the emergence of
stable polymorphism in phenotype-structured populations.

The remainder of the paper is organised as follows. In Section 2 we introduce our main
assumptions and a few technical preliminaries. In Section 3 we carry out a qualitative
and quantitative characterisation of the solution to the IDE (1.1) when t → ∞, while in
Section 4 we study the asymptotic properties of the solution to the nonlocal PDE (1.3) by
letting first t → ∞ and then β → 0. In both sections, we present a sample of numerical
solutions that illustrate the analytical results obtained. Section 5 concludes the paper by
providing a brief overview of possible research perspectives.

2 Main assumptions, notation and preliminaries

In this paper, we will consider the following Cauchy problem for the IDE (1.1)
∂n

∂t
= (r(x)− ρ(t))n, n ≡ n(t, x), (t, x) ∈ (0,∞)× Ω,

n(0, x) = n0(x), n0 ∈ C(Ω), n0 > 0, n0 6≡ 0

(2.5)
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and the following initial-boundary value problem for the nonlocal parabolic PDE (1.3)

∂nβ
∂t
− β∆nβ = (r(x)− ρβ(t))nβ, nβ ≡ nβ(t, x), (t, x) ∈ (0,∞)× Ω,

∇nβ(t, x) · ν(x) = 0, (t, x) ∈ (0,∞)× ∂Ω,

nβ(0, x) = n0(x), n0 ∈ C(Ω), n0 > 0, n0 6≡ 0,

(2.6)

where ν(x) is the outward normal to the boundary ∂Ω at the point x ∈ ∂Ω.

Main assumptions on the function r(x). In order to prevent n(t, ·) from vanishing
as t→∞, we will assume

r : Ω→ R, r ∈ C(Ω), max
x∈Ω

r(x) = rM > 0 (2.7)

and, being interested in the case where r(x) has multiple maximum points, we will also
assume

arg max(r) = {x̄1, . . . , x̄N} ⊂ Ω with N > 2. (2.8)

Notice that we assume all points x̄i to belong to the interior of Ω in order to simplify
the presentation. However, part of our results can be extended to the case where the set
arg max(r) contains some boundary points and, when appropriate, we will comment on
how the proofs presented here could be adapted to such a case. Where necessary, we will
make the additional assumptions

supp(n0) ∩ arg max(r) 6= ∅ (2.9)

and
r ∈ C2(Ω) and det(Hi) < 0 for i = 1, . . . , N, (2.10)

where Hi is the Hessian H(r) evaluated at the point x̄i. Assumptions (2.10) ensure that
each maximum point x̄i is nondegenerate.

Laplace’s method. We recall some useful results on the asymptotic expansion of inte-
grals involving exponentials, usually referred to as Laplace’s method. We refer the reader
to [42] for a general presentation of such an asymptotic method and for the related proofs.
Let r satisfy assumptions (2.10) and assume f ∈ C(Ω). For x̄i ∈ arg max(r) and ε small
enough so that x̄i is the only maximum point of r(x) in the ball B(x̄i, ε), Laplace’s method
ensures that if x̄i ∈ supp (f) then∫

B(x̄i,ε)
f(x)er(x)t dx ∼ (2π)d/2

f(x̄i)√
|det(Hi)|

erM t

t
d
2

as t→∞, (2.11)

whereas if x̄i /∈ supp (f) then∫
B(x̄i,ε)

f(x)er(x)t dx = o

(
1√

| det(Hi)|
erM t

t
d
2

)
as t→∞. (2.12)
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Moreover, if f(x) and r(x) are, respectively, of class C1 and C3 on the ball B(x̄i, ε), higher
order terms of the asymptotic expansion can be computed. In this case, Laplace’s method
ensures that ∫

B(x̄i,ε)
f(x)er(x)t dx =

(
Ai +

Bi
t

+ o

(
1

t

))
erM t

t
d
2

as t→∞, (2.13)

where Ai and Bi are real constants, the values of which are not relevant for our purposes.

Preliminaries about the operator β∆ + r. We will consider the elliptic differential
operator

Lβ = β∆ + r (2.14)

acting on functions defined on Ω, and we will denote by (λβ, ψβ) the principal eigenpair of
Lβ with zero Neumann boundary condition. A useful result is established by the following
lemma, which follows from the Krein-Rutman theorem [18,25]

Lemma 1. The principal eigenvalue λβ is simple and there is a unique normalised positive
eigenfunction ψβ associated with λβ. The eigenfunction ψβ is smooth and the principal
eigenvalue λβ is given by

λβ = inf
φ∈H1(Ω)\{0}

R(Lβ, φ), (2.15)

where R denotes the Rayleigh quotient, i.e.

R(Lβ, φ) :=

β

∫
Ω
|∇φ(x)|2 dx−

∫
Ω
r(x)φ2(x) dx∫

Ω
φ2(x) dx

.

The infimum is attained only when φ is a multiple of ψβ.

If the set Ω is symmetric with respect to the some hyperplane S, which without loss of
generality we will define as

S := {x1 = 0}, (2.16)

then
x = (x1, x2, . . . , xd) ∈ Ω =⇒ (−x1, x2, . . . , xd) ∈ Ω. (2.17)

Under assumption (2.17) and given a function f : Ω→ R, we will use the notation

f̂(x) = f(−x1, x2, . . . , xd) for x ∈ Ω.

With this notation, we will say f to be symmetric with respect to the hyperplane S if
f̂(x) = f(x) for all x ∈ Ω. A useful result is established by the following lemma.

Lemma 2. If the set Ω satisfies assumption (2.17) and the function r(x) is symmetric
with respect to the hyperplane S, i.e. if

r̂(x) = r(x) for all x ∈ Ω, (2.18)

then the principal eigenfunction ψβ is symmetric with respect to the hyperplane S.
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Proof. Since Lβψβ = −λβ ψβ, that is,

β∆ψβ + r ψβ = −λβ ψβ in Ω,

if assumption (2.17) is satisfied then

β∆ψ̂β + r̂ ψ̂β = −λβ ψ̂β in Ω.

Under the additional assumption (2.18) the latter elliptic equation implies that

β∆ψ̂β + r ψ̂β = −λβ ψ̂β in Ω,

that is, Lβψ̂β = −λβ ψ̂β. Hence ψ̂β is a normalised positive eigenfunction associated
with the principal eigenvalue λβ, and the uniqueness of the principal eigenfunction of the

operator Lβ ensures that ψ̂β = ψβ.

Function space framework Throughout the paper, we will consider the space of Radon
measures M1

(
Ω
)

as the dual of the space of continuous functions C
(
Ω
)
. The integral of

a function ϕ ∈ C
(
Ω
)

against a measure µ ∈ M1
(
Ω
)

will with a slight abuse of notation
be denoted in the same way as the integral of the product of the function ϕ with an
L1-function, i.e. ∫

Ω
ϕ(x)µ(x) dx =

∫
Ω
ϕ dµ.

Sequences of functions fk in L1(Ω) will be seen as elements of the bigger space M1
(
Ω
)
.

Given a sequence µk inM1
(
Ω
)
, we will write µk −−−⇀

k→∞
µ to indicate the weak-∗ convergence

of µk to µ, namely that∫
Ω
ϕ(x)µk(x) dx −−−→

k→∞

∫
Ω
ϕ(x)µ(x) dx ∀ϕ ∈ C

(
Ω
)
.

Moreover, we will say that the sequence µk concentrates on a set ω ⊂ Ω if∫
Ω
ϕ(x)µk(x) dx −−−→

k→∞
0 ∀ϕ ∈ C

(
Ω
)

s.t. supp(ϕ) ∩ ω = ∅,

and we will use the result given by the following lemma, which is a well-known fact in
measure theory.

Lemma 3. If a sequence µk in M1
(
Ω
)

concentrates on a finite set {x̄1, . . . , x̄N} and
µk −−−⇀

k→∞
µ then the limit measure µ must be a linear combination of Dirac masses centred

at the points x̄1, . . . , x̄N .

Finally, we will say that a measure µ ∈ M1
(
Ω
)

is symmetric with respect to the
hyperplane S if∫

Ω
ϕ(x)µ(x) dx =

∫
Ω
ϕ̂(x)µ(x) dx ∀ϕ ∈ C

(
Ω
)

s.t. ϕ̂(x) = ϕ(x) ∀x ∈ Ω

and we will use the result given by the following lemma, the proof of which is straightfor-
ward.

Lemma 4. Let µk be a sequence of symmetric measures in M1
(
Ω
)
. If µk −−−⇀

k→∞
µ then

the limit measure µ is symmetric as well.



T. Lorenzi and C. Pouchol 7

3 Long-time behaviour of the Cauchy problem (2.5)

In this section we study the asymptotic behaviour of the solutions to the Cauchy prob-
lem (2.5) when t→∞ (Section 3.1), and we provide a sample of numerical solutions that
illustrate the analytical results obtained (Section 3.2).

3.1 Asymptotic analysis

Under assumptions (2.7) there exists a unique nonnegative solution n ∈ C([0,+∞);L1(Ω))
of the Cauchy problem (2.5) [15, 36]. Moreover, solving the Cauchy problem (2.5) yields
the semi-explicit formula

n(t, x) = n0(x) er(x)t−
∫ t
0 ρ(s) ds (3.19)

and, if assumption (2.8) is satisfied as well, the solution n(t, x) is known to concentrate on
the set arg max(r) when t→∞, as established by the following theorem.

Theorem 1. Under assumptions (2.7), (2.8) and (2.9), the solution to the Cauchy prob-
lem (2.5) is such that

ρ(t) −−−→
t→∞

rM (3.20)

and, upon extraction of subsequences,

n(t, x) −−−⇀
t→∞

rM

N∑
i=1

ai δx̄i(x) with ai > 0 and
N∑
i=1

ai = 1. (3.21)

In the case where
min
x∈Ω

r(x) = rm > 0, (3.22)

Theorem 1 can be proved through a few simple calculations building upon the method
presented in [37], as shown by the proof provided in Appendix 5. Alternatively, when
assumption (3.22) is satisfied, one can prove Theorem 1 using the method of proof presented
in [36], which relies on the observation that the semi-explicit solution (3.19) can be made
explicit as

n(t, x) =
n0(x) er(x)t

1 +

∫
Ω

n0(y)

r(y)
(er(y)t − 1) dy

.

On the other hand, in the case where assumption (3.22) is not satisfied, the proof is much
more intricate and requires the use of a Lyapunov functional of the form

W (t) =

∫
Ω

[
n(t, x)− n∞(x)− n∞(x) ln (n(t, x))

]
dx,

with n∞ being any measure concentrated on the set arg max(r) and having total mass rM .
We refer the interested reader to [24, 40] for a proof of Theorem 1 in such a more general
case.

We prove here that the coefficients a1, . . . , aN that define the limit measure (3.21)
are uniquely determined by the initial condition and the Hessian of r(x) at the points
x̄1, . . . , x̄N , which entails the convergence of the whole trajectory n(t, ·) to a unique
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limit point as t → ∞. These results are summarised by the following theorem, which
also provides a characterisation of the rate of convergence of the total mass ρ(t) to the
long-term limit rM .

Theorem 2. If the assumptions of Theorem 1 and the additional assumption (2.10) are
satisfied then

n(t, x) −−−⇀
t→∞

rM

N∑
i=1

ai δx̄i(x) (3.23)

with

ai = A
n0(x̄i)√
|det(Hi)|

for i = 1, . . . , N, (3.24)

where A > 0 is a normalising constant such that

N∑
i=1

ai = 1.

Moreover, if the functions n0(x) and r(x) are, respectively, of class C1 and C3 in a neigh-
bourhood of each maximum point x̄1, . . . , x̄N then

rM − ρ(t) ∼ d

2t
as t→∞. (3.25)

Proof. Throughout the proof we will use the following notation

J(t) :=
erM te−

∫ t
0 ρ(s) ds

td/2
. (3.26)

The results established by Theorem 1 ensure that we can extract a subsequence n(tk, ·)
such that

n(tk, ·) −−−⇀
k→∞

rM

N∑
i=1

ai δx̄i(x) with

N∑
i=1

ai = 1.

Moreover, considering ε > 0 small enough so that x̄i is the only maximum point of the
function r(x) in the ball B(x̄i, ε) for every i = 1, . . . , N and integrating over B(x̄i, ε) both
sides of the expression (3.19) for n(t, x) with t = tk we find that∫

B(x̄i,ε)
n(tk, x) dx =

(∫
B(x̄i,ε)

n0(x) er(x)tk dx

)
e−

∫ tk
0 ρ(s) ds. (3.27)

The long-time behaviour of the integral on the right-hand side of the above equation can be
characterised using Laplace’s method. In particular, the asymptotic relation (2.11) ensures
that if x̄i ∈ supp(n0) then∫

B(x̄i,ε)
n(tk, x) dx ∼ (2π)d/2

n0(x̄i)√
| det(Hi)|

J(tk) as k →∞, (3.28)

where J is defined according to (3.26). On the other hand, the asymptotic relation (2.12)
ensures that if x̄i /∈ supp(n0) then∫

B(x̄i,ε)
n(tk, x) dx = o

(
1√

|det(Hi)|
J(tk)

)
as k →∞. (3.29)
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Taken together, the integral identity (3.27) and the asymptotic relations (3.28) and (3.29)
allow us to conclude that there exist some real constants K > 0 and A > 0 such that

J(tk) −−−→
k→∞

K (3.30)

and

ai = A
n0(x̄i)√
| det(Hi)|

with

N∑
i=1

ai = 1.

We remark that K cannot be 0 because otherwise ρ(t) would converge to 0, which cannot
be since ρ(t)→ rM [cf. the asymptotic result (3.20)]. Hence the coefficients ai that define
the limit measure are uniquely determined and the limit measure is unique. This ensures
that the whole trajectory n(t, ·) converges to the limit point given by (3.23) and (3.24) as
t→∞.

To prove claim (3.25) we proceed as follows. We note that the asymptotic result (3.30)
now holds true for J(t) and not for a mere subsequence J(tk). This implies that∫ t

0
(rM − ρ(s)) ds ∼ d

2
ln(t) as t→∞. (3.31)

Furthermore, choosing again ε > 0 small enough so that x̄i is the only maximum point of
the function r(x) in the ball B(x̄i, ε) for every i = 1, . . . , N and integrating over B(x̄i, ε)
both sides of the expression (3.19) for n(t, x) we find that

ρ(t) = e−
∫ t
0 ρ(s) ds

N∑
i=1

∫
B(x̄i,ε)

n0(x)er(x)t dx + e−
∫ t
0 ρ(s) ds

∫
Ω\∪Ni=1B(x̄i,ε)

n0(x)er(x)t dx.

The second term on the right-hand side of the above equation decays exponentially to 0
as t → ∞, since ρ(t) → rM . Moreover, choosing ε small enough so that – under the
additional assumption that the functions n0(x) and r(x) are, respectively, of class C1 and
C3 in a neighbourhood of each maximum point x̄1, . . . , x̄N – we have n0 ∈ C1 (B(x̄i, ε))
and r ∈ C3 (B(x̄i, ε)) for every i = 1, . . . , N , we can use the asymptotic expansion (2.13)
and in so doing obtain the following asymptotic expression for the first integral on the
right-hand side of the above equation∫

B(x̄i,ε)
n0(x)er(x)t dx =

(
Ai +

Bi
t

+ o

(
1

t

))
erM t

t
d
2

as t→∞,

where Ai and Bi are real constants. Taken together, these results yield

ρ(t) = J(t)

[
N∑
i=1

(
Ai +

Bi
t

)
+ o

(
1

t

)]
as t→∞, (3.32)

with J defined according to (3.26). Since J(t) → K and ρ(t) → rM as t → ∞, the
asymptotic expression (3.32) implies that

K
N∑
i=1

Ai = rM and ρ(t)− rM ∼ K
N∑
i=1

Bi
t

as t→∞.
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Combining the latter asymptotic relation together with the asymptotic relation (3.31) we
find that

K

N∑
i=1

Bi = −d
2
,

and this concludes the proof of Theorem 2.

Remark 1. In the case where d = 1 the expression (3.24) reads as

ai = A
n0(x̄i)√
|r′′(x̄i)|

for i = 1, . . . , N.

Remark 2. The results of Theorem 2 can be extended to the case where some maximum
points of the function r(x) belong to the boundary ∂Ω – a case that might be relevant for
applications. In particular, letting ∂Ω be sufficiently smooth and using Laplace’s method
one can prove that if x̄j ∈ arg max(r) ∩ ∂Ω is a stationary point of r(x) then

aj =
A

2

n0(x̄j)√
|det(Hj)|

.

This implies that, ceteris paribus, the weight in front of a Dirac mass centred at a boundary
point will be half that of a Dirac mass centred at an interior point. On the other hand, if
x̄j ∈ arg max(r) ∩ ∂Ω is a nonstationary point of the restriction of r(x) to the boundary,
and there is at least one maximum point of r(x) that belongs to the interior of Ω, then the
weight aj in front of δx̄j (x) will be zero (i.e. the mass in a neighbourhood of x̄j will vanish
as t→∞).

Remark 3. The asymptotic relation (3.25) shows that the integral ρ(t) of the solution to
the IDE (1.1) converges to rM more slowly than the solution of the related logistic ordinary
differential equation

dN

dt
= (rM −N)N, N ≡ N(t), t ∈ (0,∞),

which converges exponentially to rM as t→∞. Moreover, whilst

sgn

(
dN(t)

dt

)
= sgn (rM −N(0)) ∀t ∈ R+,

which means that N(t) will approach the asymptotic value rM from below if N(0) < rM
and from above if N(0) > rM , the asymptotic relation (3.25) indicates that ρ(t) will always
approach rM from below independently from the value of ρ(0). This also implies that if
ρ(0) > rM then the derivative of ρ(t) will change sign at least once on R+.

It is also worth comparing the speed of convergence given by the asymptotic rela-
tion (3.25) with the one that can be obtained based on the best estimates currently avail-
able in the literature, namely(

rM − ρ(t)
)2

+

∫
Ω

(
rM − r(x)

)
n(t, x) dx = O

(
log(t)

t

)
as t→∞,

and also that the latter cannot vanish as O
(

1

tα

)
for any α > 1 [24,40].
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3.2 Numerical solutions

To illustrate the asymptotic results established by Theorem 2, we solve numerically the
Cauchy problem (2.5). In particular, we approximate the IDE (1.1) using the forward Euler
method with step size 0.01. We select a uniform discretisation of the interval Ω := [−1, 2]
consisting of 1000 points as the computational domain of the independent variable x, and
we consider t ∈ [0, 200]. We choose the initial condition

n0(x) ≡ 2

3
so that

∫
Ω
n0(x) dx = 2 (3.33)

and we use the following definition

r(x) := e
−(x+0.5)2

0.01 + e
−(x−1)2

0.1 , (3.34)

which satisfies the assumptions of Theorem 2. As shown in Figure 1, the function r(x)
defined according to (3.34) has two maximum points x̄1 ∈ [−1, 0] and x̄2 ∈ [0, 2].

-1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

Figure 1: Plot of the function r(x) defined according to (3.34).

We compute numerically the integrals

ρ1(t) =

∫ 1
2

−1
n(t, x) dx and ρ2(t) =

∫ 2

1
2

n(t, x) dx, (3.35)

as well as the coefficients a1 and a2 given by (3.24). In the one-dimensional setting con-
sidered here, the expressions given by (3.24) read as

a1 = A
n0(x̄1)√
|r′′(x̄1)|

and a2 = A
n0(x̄2)√
|r′′(x̄2)|

with A s.t. a1 + a2 = 1. (3.36)

All numerical computations are performed in Matlab.
The results obtained are summarised in Figure 2 and Figure 3. As we would expect

based on Theorem 1, the numerical results displayed in Figure 2 show that n(t, x) becomes
concentrated as a sum of two Dirac masses centred at the points x̄1 and x̄2 (left panel),
while ρ(t) converges to rM (right panel).
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Figure 2: Dynamics of n(t, x) (left panel) and ρ(t) (right panel) obtained by solving numer-
ically the Cauchy problem (2.5) with n0(x) and r(x) defined according to (3.33) and (3.34).
The black line in the right panel highlights the value of rM .

Furthermore, the curves displayed in the left panel of Figure 3 show that, in agreement
with the results established by Theorem 2, the integrals ρ1(t) and ρ2(t) converge, respec-
tively, to the values a1 rM and a2 rM , with a1 and a2 given by (3.36), while the curves

in the right panel of Figure 3 demonstrate that (rM − ρ(t)) t→ 1

2
as t → ∞, i.e. the

asymptotic relation (3.25) is verified.

0 50 100 150 200
t

0
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0.4

0.6

0.8

1

1.2
ρ1 (t)

ρ2 (t)

0 50 100 150 200
t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
(rM − ρ(t)) t

Figure 3: Dynamics of the integrals ρ1(t) and ρ2(t) given by (3.35) (left panel), and of the
function (rM − ρ(t)) t (right panel). The black lines in the left panel highlight the values
of the quantities a1 rM and a2 rM , with a1 and a2 given by (3.36), while the black line in
the right panel corresponds to the asymptotic value of (rM − ρ(t)) t given by (3.25). The
integrals ρ1(t), ρ2(t) and ρ(t) are computed using the numerical solution of the Cauchy
problem (2.5) subject to the initial condition (3.33) with r(x) defined according to (3.34).
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4 Long-time behaviour of the initial-boundary value prob-
lem (2.6)

In this section we study the asymptotic behaviour of the solutions to the initial-boundary
value problem (2.6) as t→∞ (Section 4.1), and we provide a sample of numerical solutions
that illustrate the analytical results obtained (Section 4.2).

4.1 Asymptotic analysis

Under assumptions (2.7) there exists a unique nonnegative classical solution
nβ ∈ C([0,+∞), L1(Ω)) ∩ C1((0,+∞), C2,α(Ω)) of the initial-boundary value prob-
lem (2.6) [13]. Moreover, the behaviour of nβ(t, x) in the asymptotic regime t → ∞
is known to be governed by the principal eigenpair (λβ, ψβ) of the elliptic differential
operator Lβ defined according to (2.14) with zero Neumann boundary condition, as
established by the following proposition [13,25].

Proposition 1. Under assumptions (2.7), the solution of the initial-boundary value prob-
lem (2.6) is such that if λβ > 0 then

ρβ(t) −−−→
t→∞

0, (4.37)

whereas if λβ < 0 then

ρβ(t) −−−→
t→∞

−λβ and nβ(t, ·) −−−→
t→∞

−λβ ψβ in L∞(Ω). (4.38)

Proof. Let uβ(t, x) := w(t)nβ(t, x) where w(t) solves the Cauchy problem{
w′ = (ρβ(t) + λβ) w, w ≡ w(t), t ∈ (0,∞),

w(0) = 1.
(4.39)

We have

∂uβ
∂t

= w′ nβ + w
∂nβ
∂t

= w′ nβ + w
[(
r(x)− ρβ(t)

)
nβ + β∆nβ

]
=

(
w′ − ρβ(t)w

)
nβ + w

(
r(x)nβ + β∆nβ

)
=

(
w′ − ρβ(t)w

)
nβ + Lβ[uβ].

Using the fact that w(t) solves the Cauchy problem (4.39) and nβ(t, x) is the solution of
the initial-boundary value problem (2.6), we obtain the following initial-boundary value
problem for uβ(t, x)

∂uβ
∂t
− Lβ[uβ] = λβuβ, uβ ≡ uβ(t, x), (t, x) ∈ (0,∞)× Ω,

∇uβ(t, x) · ν(x) = 0, (t, x) ∈ (0,∞)× ∂Ω,

uβ(0, x) = n0(x), n0 ∈ C(Ω), n0 > 0, n0 6≡ 0.
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This is a standard parabolic problem the solution of which is such that

uβ(t, ·) −−−→
t→∞

C ψβ in L∞(Ω) for some C > 0.

Since ∫
Ω
uβ(t, x) dx = w(t) ρβ(t) and

∫
Ω
ψβ(x) dx = 1,

the above convergence result yields

w(t) ρβ(t) −−−→
t→∞

C. (4.40)

Hence the ordinary differential equation for w(t) can be rewritten as

w′ = λβ

(
C

λβ
+ w

)
+ f(t),

with the function f(t) being such that f(t) → 0 as t → ∞. Using the latter ordinary
differential equation we conclude that

if λβ > 0 then w(t) −−−→
t→∞

∞, whilst if λβ < 0 then w(t) −−−→
t→∞

C

−λβ
.

These asymptotic results along with the asymptotic result (4.40) ensure that

if λβ > 0 then ρβ(t) −−−→
t→∞

0, whereas if λβ < 0 then ρβ(t) −−−→
t→∞

−λβ.

Moreover, recalling that uβ(t, x) = w(t)nβ(t, x) we find that if λβ < 0 then

nβ(t, ·) −−−→
t→∞

ψβ in L∞(Ω).

This concludes the proof of Proposition 1.

The results established by Proposition 1 show that analysing the long-time behaviour
of the solution to the initial-boundary value problem (2.6) comes down to studying the
properties of the principal eigenpair (λβ, ψβ). In particular, a general characterisation of
λβ and ψβ(x) can be obtained when β → 0. To illustrate this, we define β := ε, where ε
is a small positive parameter, and study the behaviour of λε and ψε(x) in the asymptotic
regime ε → 0. Our main findings are summarised by Theorem 3, which shows that
the long-time limit of nε(t, x) when ε → 0 is given by a measure which has total mass
equal to rM and consists of a weighted sum of Dirac masses centred at the points x̄1, . . . , x̄N .

Theorem 3. If the assumptions of Proposition 1 along with assumption (2.8) are satisfied,
then

− λε −−−→
ε→0

rM (4.41)

and, upon extraction of subsequences,

ψε(x) −−−⇀
ε→0

N∑
i=1

ai δx̄i(x) with ai > 0 and
N∑
i=1

ai = 1. (4.42)

Proof. We divide the proof of Theorem 3 into two steps. We first prove claim (4.41) and
then claim (4.42).
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Step 1: proof of (4.41). Since λε is the principal eigenvalue of the differential elliptic
operator Lε, we have [cf. equation (2.15)]

λε = inf
φ∈H1(Ω)\{0}

R(Lε, φ) with R(Lε, φ) =

ε

∫
Ω
|∇φ(x)|2 dx−

∫
Ω
r(x)φ2(x) dx∫

Ω
φ2(x) dx

. (4.43)

We start by noting that

ε

∫
Ω
|∇φ(x)|2 dx−

∫
Ω
r(x)φ2(x) dx > −rM

∫
Ω
φ2(x) dx ∀φ ∈ H1(Ω),

and, therefore, λε > −rM for all ε > 0. Thus it suffices to show that lim λε 6 −rM as
ε→ 0 in order to prove (4.41). To do this we construct a sequence of positive normalised
H1−functions φε such that R(Lε, φε) converges to −rM as ε → 0. We introduce the
function

G : x 7−→ Ce−|x|
2
, (4.44)

where | · | denotes the Euclidean norm on Rd and C is a normalising constant such that G
has integral 1. Recalling the classical result

1

σd
G

(
x− x̄i
σ

)
−−−⇀
σ→0

δx̄i(x),

we choose φ2
ε : x 7−→ 1

ε
d
4

G

(
x− x̄i
ε

1
4

)
so that φ2

ε −−−⇀
ε→0

δx̄i . Using the fact that

∫
Ω
r(x)φ2

ε(x) dx −−−→
ε→0

rM ,

∫
Ω
φ2
ε(x) dx −−−→

ε→0
1

and

ε

∫
Ω
|∇φε(x)|2 dx =

∫
Ω
|x− x̄i|2 φ2

ε(x) dx −−−→
ε→0

|x̄i − x̄i|2 = 0,

we obtain
R(Lε, φε) −−−→

ε→0
−rM .

This concludes the proof of (4.41).

Step 2: proof of (4.42). The pair (λε, ψε) satisfies the eigenvalue problem{
−Lε ψε = λε ψε, in Ω,

∇ψε · ν = 0, on ∂Ω,

and integrating over Ω we find∫
Ω

(−λε − r(x)) ψε(x) dx = 0.

Hence ∫
Ω

(rM − r(x)) ψε(x) dx −−−→
ε→0

0. (4.45)
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Finally, for any ϕ ∈ C
(
Ω
)

with supp(ϕ) ∩ arg max(r) = ∅ we have∣∣∣∣∫
Ω
ϕ(x)ψε(x) dx

∣∣∣∣ =

∣∣∣∣∫
Ω

ϕ(x)

rM − r(x)
(rM − r(x)) ψε(x) dx

∣∣∣∣
6 max

x∈supp(ϕ)

∣∣∣∣( ϕ(x)

rM − r(x)

)∣∣∣∣ ∫
Ω

(rM − r(x)) ψε(x) dx.

The latter integral inequality along with the asymptotic result (4.45) yields∫
Ω
ϕ(x)ψε(x) dx −−−→

ε→0
0 ∀ϕ ∈ C

(
Ω
)

s.t. supp(ϕ) ∩ arg max(r) = ∅.

This concludes the proof of (4.42).

Remark 4. The results of Theorem 3 imply that if arg max(r) = {x̄1} then the long-time
limit of nε(t, x) when ε→ 0 is given by the measure rM δx̄1(x).

Remark 5. The proof of Theorem 3 can be adapted to the case where the function r(x)
attains its maximum only on the boundary ∂Ω. We expect that this can be done, as in
Laplace’s method, by adjusting the normalising constant C in (4.44), depending on the
nature of the maximum at the boundary (stationary or not). However, we consider here
only the simpler case corresponding to Theorem 3, which suffices for our purposes.

Remark 6. Since rM > 0, the expression (4.43) for the Rayleigh quotient is such that if ε
is small enough then −λε > 0. Hence, based on the result of Proposition 1, we have that
ρε(t) will not vanish as t→∞ when ε is sufficiently small.

In the framework of the results established by Theorem 3, to fully characterise the long-
time limit of nε(t, x) when ε→ 0 it is necessary to assess whether there exists a unique set
of admissible coefficients a1, . . . , aN (i.e. if the limit measure is unique); if so, one needs
to identify the values of the coefficients that define the only admissible limit measure.

A case where we expect the limit measure to be unique is when the set Ω and the
function r(x) are symmetric with respect to the hyperplane S defined according to (2.16).
In this case, a complete characterisation of the limit measure is given by the following
proposition.

Proposition 2. Under the assumptions of Theorem 3, letting N = 2 and making the
additional symmetry assumptions (2.17) and (2.18), we have

ψε(x) −−−⇀
ε→0

1

2

(
δx̄1(x) + δx̄2(x)

)
. (4.46)

Proof. Under the symmetry assumptions (2.17) and (2.18) the points x̄1 ∈ Ω and x̄2 ∈ Ω
are symmetric with respect to the hyperplane S, i.e.

if x̄1 = (x̄1 1, x̄1 2, . . . , x̄1 d) then necessarily x̄2 = (−x̄1 1, x̄1 2, . . . , x̄1 d).

Moreover, in the case where N = 2, the result established by Theorem 3 implies that

ψε(x) −−−⇀
ε→0

a δx̄1(x) + (1− a) δx̄2(x), for some a > 0.
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Finally, Lemma 2 ensures that ψε is symmetric with respect to the hyperplane S, and
Lemma 4 in turn ensures that the weak limit point of ψε for ε → 0 is symmetric with
respect to the hyperplane S as well. Hence a = 1

2 and there is a unique limit point given
by

1

2
δx̄1(x) +

1

2
δx̄2(x).

Since the sequence ψε is bounded in L1(Ω), the Banach-Alaoglu Theorem ensures that it
is relatively (weakly-∗) compact in M1(Ω). This along with the uniqueness of the limit
point gives the convergence of the whole sequence ψε, i.e.

ψε(x) −−−⇀
ε→0

1

2

(
δx̄1(x) + δx̄2(x)

)
,

which concludes the proof of Proposition 2.

Furthermore, an almost exhaustive characterisation of the limit measure in the absence
of particular symmetries is provided by the following proposition, whereby the function
ζ : arg max (r)→ R+ defined as

ζ(x̄i) :=
d∑
j=1

√
|λij |, (4.47)

where (λij)16j6d are the eigenvalues of Hi (each counted with its multiplicity), is used to
characterise the concavity of the function r(x) at the maximum points, as it was previously
done in semi-classical analysis [20,21].

Proposition 3. Under the assumptions of Theorem 3,

ψε concentrates on the set arg min (ζ) as ε→ 0. (4.48)

In particular, if arg min (ζ) = {x̄m} for some 1 6 m 6 N , then

ψε(x) −−−⇀
ε→0

δx̄m(x). (4.49)

Proof. We start by noting that studying the asymptotic behaviour of ψε when ε → 0 is
equivalent to studying the asymptotic behaviour of the principal eigenfunction ϕε of the
differential elliptic operator ε∆− V with V := −r. The result of Theorem 3 ensures that
the support of the weak limit of ϕε as ε → 0 will be a (possibly improper) subset of the
set arg min (V ) = (x̄1, . . . , x̄N ). Investigating at which points of this discrete set the weak
limit point of the sequence ϕε will actually be concentrated is a fundamental question in
semi-classical analysis. Such a question arises in the study of the dynamics of a particle
confined within the region of space surrounding a minimum point of the potential V (i.e.
a potential well) in the asymptotic regime of small noise (i.e. when ε → 0) [20–22, 41].
Recasting the problem in this way we can use the asymptotic results presented in [20, 21]
which ensure that, under the assumptions of Theorem 3 and when ε tends to 0, the principal
eigenfunction ϕε concentrates on the set arg min(ζ), with ζ defined according to (4.47).
Thus, under the additional assumption that the set arg min(ζ) coincides with the singleton
{x̄m} for some 1 6 m 6 N , we find that ϕε concentrates at the point x̄m as ε → 0,
whence (4.49).
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Remark 7. In the case where d = 1, the assumption arg min (ζ) = {x̄m} reads as

{x̄m} = arg min
x̄i∈arg max r

|r′′(x̄i)|. (4.50)

Remark 8. Comparing the results of Proposition 3 with the results established by Theo-
rem 2 one can see that there is a stark difference between the long-time behaviour of the
solution to the initial-boundary value problem (2.6) for β → 0 and the long-time behaviour
of the solution to the Cauchy problem (2.5). In fact, in the case where the set arg min (ζ)
is reduced to a singleton and n0(x) > 0 for all x ∈ arg max(r), Theorem 2 shows that the
long-time limit of n(t, x) will be given by a sum of multiple Dirac masses with different
positive weights, whereas Proposition 3 shows that the long-time limit of nβ(t, x) for β → 0
will consist of one single Dirac mass.

Remark 9. We remark that when assumption (4.47) is not satisfied, i.e. if the set
arg min (ζ) is not a singleton, it is still possible to go further in reducing the support
of the limit point of the sequence ψε as ε→ 0. However, the conditions determining which
of the coefficients ai will be different from zero become rather convoluted, as shown by the
results of semi-classical analysis presented in [22]. Therefore, we consider here only the
simpler case corresponding to Proposition 3, which suffices for our purposes.

4.2 Numerical solutions

To illustrate the asymptotic results established by Theorem 3, Proposition 2 and Proposi-
tion 3, we solve numerically the initial-boundary value problem (2.6). Numerical solutions
are constructed by approximating the diffusion term via a second-order central difference
scheme [26] and then using the forward Euler method with step size 0.01 to approximate
the resulting system of ordinary differential equations. We select a discretisation of the
interval Ω := [−1, 2] consisting of 1000 points as the computational domain of the inde-
pendent variable x, and let t ∈ [0, tf ] with tf being either 200 or 800. We define β = 10−6,
choose the initial condition (3.33), and use either the definition

r(x) := e
−(x+0.5)2

0.01 + e
−(x−1.5)2

0.01 , (4.51)

or definition (3.34). Definition (4.51) satisfies the assumptions of Proposition 2 with S :=
{0.5} (cf. the plot in Figure 4), whereas definition (3.34) satisfies the assumptions of
Proposition 3 and, as previously noted, it has two maximum points x̄1 ∈ [−1, 0] and
x̄2 ∈ [0, 2] (cf. the plot in Figure 1).

We compute numerically the following integrals

ρ1(t) =

∫ 1
2

−1
nβ(t, x) dx and ρ2(t) =

∫ 2

1
2

nβ(t, x) dx. (4.52)

All numerical computations are performed in Matlab.
The results obtained are summarised in Figure 5 and Figure 6. As we would expect

based on Theorem 3 and Proposition 2, the numerical results displayed in Figure 5 show
that when r(x) is defined according to (4.51) the solution nβ(t, x) becomes concentrated
as a sum of two Dirac masses centred at the points x̄1 and x̄2, the integral ρβ(t) converges

to rM , and the integrals ρ1(t) and ρ2(t) given by (4.52) both converge to
rM
2

.
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Figure 4: Plot of the function r(x) defined according to (4.51).

Figure 5: Dynamics of nβ(t, x) (left panel) and ρβ(t) (right panel) obtained by solving
numerically the Cauchy problem (2.5) with β = 10−6 and with n0(x) and r(x) defined
according to (3.33) and (3.34). The black line in the right panel highlights the value of
rM , while the red line and the blue line correspond to the integrals ρ1(t) and ρ2(t) given
by (4.52), respectively.

On the other hand, the numerical results displayed in Figure 6 show that, in agreement
with the results of Theorem 3 and Proposition 3, when r(x) is defined according to (3.34)
the integral ρβ(t) converges to rM , while the solution nβ(t, x) becomes concentrated as one
single Dirac mass centred at the point x̄2 (left panel), which is the maximum point of the
function r(x) that satisfies condition (4.50) – i.e. |r′′(x̄2)| < |r′′(x̄1)|. As a consequence,
the integral ρ1(t) converges to zero, whereas the integral ρ2(t) converges to rM .

5 Research perspectives

There are several possible generalisations of the prototypical selection model (1.1) and
selection-mutation model (1.3) for which suitable developments of the methods used here
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Figure 6: Dynamics of nβ(t, x) (left panel) and ρβ(t) (right panel) obtained by solving
numerically the Cauchy problem (2.5) with β = 10−6 and with n0(x) and r(x) defined
according to (3.33) and (3.34). The black line in the right panel highlights the value of
rM , while the red line and the blue line correspond to the integrals ρ1(t) and ρ2(t) given
by (4.52), respectively.

would be relevant.

More general saturating nonlocal terms. A natural way to extend our study would
be to replace the saturating term ρ(t) with a more general nonlocal term of the form∫

ΩK(x, y)n(t, y) dy, where the kernel K(x, y) models the effect of competitive interactions
between individuals in the phenotypic state x and other individuals in a generic phenotypic
state y. While the long-time behaviour of the IDE model with such a more general satu-
rating nonlocal term was extensively studied in [24], where the convergence of the solution
to a weighted sum of Dirac masses was also investigated depending on the properties of
the kernel K, the existing literature still lacks a precise characterisation of the long-time
behaviour of the solutions for the corresponding PDE model, with the exception of the par-
ticular case when K(x, y) ≡ k(y) or possible perturbations of such a particular case [13].
While we expect that extending our results to this particular case would be relatively easy,
the case of a generic kernel K(x, y) is an open problem.

Integral kernel modelling phenotypic variations. Our results could be extended to
the case where the linear diffusion operator in the nonlocal PDE (1.3) is replaced by an
integral term of the form

∫
Ω (M(x, y)n(t, y)−M(y, x)n(t, x)) dy, where the kernel M(x, y)

models the transition of individuals from a generic phenotypic state y to the phenotypic
state x. In [4] it was shown that, when phenotypic variations are modelled through such an
integral kernel, the solution of selection-mutation models like the one considered here will
typically converge to a measure as t→∞, and a criterion was derived to determine whether
the limit measure would be singular or absolutely continuous. Suitable developments of
our methods would make it possible to investigate the dependence of such a criterion on
the weight of mutations compared to selection, which would be captured by a scaling
parameter analogous to our parameter ε.
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Systems of equations. It would also be interesting to extend our results to the case of
systems of IDEs of the form of (1.1) and systems of nonlocal PDEs of the form of (1.3). In
this regard, the results presented in [40] for a specific system of IDEs could prove useful,
since they establish the convergence of the solution to a measure as t → ∞ and provide
a characterisation of its support. As for systems of corresponding nonlocal PDEs, the
convergence of the components of the solution to the principal eigenfunctions of the related
elliptic differential operators when t → ∞ has been proved for a two-by-two competitive
system [25]. Apart from these particular cases, the long-time behaviour of the solutions of
these systems of IDEs and nonlocal PDEs is still an open problem.
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Appendix. Proof of Theorem 1 under assumption (3.22)

We start by noting that ρ(t) is uniformly bounded in L∞([0,∞)). In fact, integrating both
sides of the IDE for n(t, x) over Ω and using Grönwall’s lemma yields

dρ

dt
> (rm − ρ)ρ =⇒ ρ(t) > min (rm, ρ(0)) =: ρm ∀ t ∈ [0,∞) (5.53)

and

dρ

dt
6 (rM − ρ)ρ =⇒ ρ(t) 6 max (rM , ρ(0)) =: ρM ∀ t ∈ [0,∞). (5.54)

Then we prove that ρ ∈ BV ([0,+∞)). In order to do this, we define

q :=
dρ

dt
=

∫
Ω

(r(x)− ρ)n(t, x) dx

so that, upon differentiation, we obtain

dq

dt
=

∫
Ω

(r(x)− ρ)2n(t, x) dx− qρ.

Multiplying both sides of the latter differential equation by −
(
sgn(q)

)
− and estimating the

right-hand side of the resulting differential equation from above we find that

dq−
dt

6 −ρm q− =⇒ (q(t))− 6 (q(0))− e
−ρm t ∀ t ∈ [0,∞). (5.55)

Moreover, for any T > 0 we have∫ T

0
q(t) dt = ρ(T )− ρ(0) 6 ρM . (5.56)

Using the estimates (5.55) and (5.56) we obtain∫ T

0

(
dρ

dt

)
+

dt =

∫ T

0

dρ

dt
dt +

∫ T

0

(
dρ

dt

)
−

dt < ∞

and letting T →∞ we obtain ∫ ∞
0

(
dρ

dt

)
+

dt < ∞.

This estimate along with the fact that ρ ∈ L∞([0,∞)) ensures that ρ ∈ BV ([0,+∞)).
Since ρ ∈ BV ([0,+∞)) we conclude that ρ(t) admits a limit ρ∞ as t → ∞. The fact

that ρ∞ = rM can be proved via contradiction. Suppose that ρ∞ < rM and consider
ε > 0 such that r(x) > rM − ε for all x ∈ B(xi, ε), where B(xi, ε) is the ball of centre
xi ∈ arg max(r) and radius ε. Since ρ(t) → ρ∞ as t → ∞, if ρ∞ < rM then for ε small
enough there exists τε > 0 such that ρ(t) < rM − 2ε for all t > τε. Solving the IDE (1.1)
for t > τε gives

n(t, x) = n(τε, x) er(x)(t−τε)−
∫ t
τε
ρ(s) ds. (5.57)
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Integrating both sides of (5.57) over Ω and estimating from below we find

ρ(t) >
∫
B(xi,ε)

n(τε, x) e(rM−ε)(t−τε)−
∫ t
τε
ρ(s) ds dx > eε(t−τε)

∫
B(xi,ε)

n(τε, x) dx ∀ t > τε,

which implies that ρ(t) → ∞ as t → ∞. Thus we arrive at a contradiction because ρ is
bounded from above. Now suppose that ρ∞ > rM . If so, there exist ε > 0 sufficiently small
and τε > 0 sufficiently large so that ρ(t) > rM + ε for all t > τε. Solving the IDE (1.1) for
t > τε gives (5.57). Moreover, integrating both sides of (5.57) over Ω and estimating from
above yields

ρ(t) 6
∫

Ω
n(tε, x) erM (t−τε)−

∫ t
τε
ρ(s) ds dx 6 e−ε(t−τε)

∫
Ω
n(τε, x) dx ∀ t > τε,

which implies that ρ(t) → 0 as t → ∞. Thus we arrive again at a contradiction because
ρ(t) > rm for all t ∈ [0,∞). In so doing we have proved that ρ∞ = rM .

Since the sequence (n(t, ·))t>0 is bounded in L1(Ω), the Banach-Alaoglu Theorem en-
sures that it is relatively (weakly-∗) compact inM1(Ω). Thus we can extract a subsequence
n(tk, ·) ∈M1(Ω) such that

n(tk, ·) −−−⇀
k→∞

n∞ with n∞ ∈M1(Ω),

where the measure n∞ is nonnegative and its total mass is rM . Finally, since solving the
Cauchy problem (2.5) yields

n(tk, x) = n0(x) er(x)tk−
∫ tk
0 ρ(s) ds

and ρ(t)→ rM as t→∞, we have∫
Ω
ϕ(x)n(tk, x) dx −−−→

k→∞
0 ∀ϕ ∈ C

(
Ω
)

s.t. supp(ϕ) ∩ arg max(r) = ∅,

which implies that

n∞ = rM

N∑
i=1

ai δ(x− xi) with
N∑
i=1

ai = 1.

This concludes the proof of Theorem 1 in the case where assumption (3.22) is satisfied.
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