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On the Complexity of Various Parameterizations of Common Induced Subgraph Isomorphism *

In the Maximum Common Induced Subgraph problem (henceforth MCIS), given two graphs G1 and G2, one looks for a graph with the maximum number of vertices being both an induced subgraph of G1 and G2. MCIS is among the most studied classical NP-hard problems. It remains NP-hard on many graph classes including forests. In this paper, we study the parameterized complexity of MCIS. As a generalization of Clique, it is W[1]-hard parameterized by the size of the solution. Being NP-hard even on forests, most structural parameterizations are intractable. One has to go as far as parameterizing by the size of the minimum vertex cover to get some tractability. Indeed, when parameterized by k := vc(G1) + vc(G2) the sum of the vertex cover number of the two input graphs, the problem was shown to be fixed-parameter tractable, with an algorithm running in time 2 O(k log k) . We complement this result by showing that, unless the ETH fails, it cannot be solved in time 2 o(k log k) . This kind of tight lower bound has been shown for a few problems and parameters but, to the best of our knowledge, not for the vertex cover number. We also show that MCIS does not have a polynomial kernel when parameterized by k, unless NP ⊆ coNP/poly. Finally, we study MCIS and its connected variant MCCIS on some special graph classes and with respect to other structural parameters.

Introduction

A common induced subgraph of two graphs G 1 and G 2 is a graph that is isomorphic to an induced subgraph of both graphs. The problem of finding a common induced subgraph with the maximum number of vertices (or edges) has many applications in a number of domains including bioinformatics and chemistry [START_REF] Grindley | Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm[END_REF][START_REF] Koch | An algorithm for finding maximal common subtopologies in a set of protein structures[END_REF][START_REF] Mcgregor | Use of a maximal common subgraph algorithm in the automatic identification of the ostensible bond changes occurring in chemical reactions[END_REF][START_REF] Raymond | Maximum common subgraph isomorphism algorithms for the matching of chemical structures[END_REF][START_REF] Yamaguchi | Finding the maximum common subgraph of a partial k-tree and a graph with a polynomially bounded number of spanning trees[END_REF]. In the decision version of the problem, we are given an integer k and the question is to decide whether there is a solution with at least k vertices. We say that the solution size k is the natural parameter of the problem.

Concerning its classical complexity, Maximum Common Induced Subgraph is NP-complete, and remains so on forests. When the common subgraph is required to be connected, the problem is in P for trees [START_REF] Garey | Computers and Intractability: A guide to the theory of NP-completeness[END_REF]. Moreover, Maximum Common Induced Subgraph is also in P when the two input graphs are connected and (both) have bounded treewidth and bounded degree [START_REF] Akutsu | A polynomial time algorithm for finding a largest common subgraph of almost trees of bounded degree[END_REF].

A particular case of Maximum Common Induced Subgraph is the well known Induced Subgraph Isomorphism (ISI) decision problem, where the question posed is whether G 1 is isomorphic to an induced subgraph of G 2 . In other words, it is equivalent to Maximum Common Induced Subgraph where k = |G 1 |. In this case, G 1 is called the pattern graph and G 2 is called the host graph. ISI is known to be NP-hard, even when G 2 is an interval graph and G 1 is a proper interval graph, but it becomes polynomial-time solvable when G 1 is in addition connected [START_REF] Heggernes | Induced subgraph isomorphism on proper interval and bipartite permutation graphs[END_REF]. Unlike Subgraph Isomorphism, Induced Subgraph Isomorphism remains NP-hard when both the host graph and the pattern graph consist of a disjoint union of paths [START_REF] Damaschke | Induced subgraph isomorphism for cographs is np-complete[END_REF]. From the parameterized complexity viewpoint, the problem is W [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF]-hard in general for the natural parameter, by a straightforward reduction from k-Clique. Therefore MCIS is also W [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF]-hard. Moreover, ISI (and, therefore, MCIS) remains W [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF]-hard even when both graphs are interval graphs [START_REF] Marx | Cleaning interval graphs[END_REF]. On the other hand, ISI is FPT on nowhere dense graphs, being expressible by a first-order formula of length function of the natural parameter k [START_REF] Grohe | Deciding first-order properties of nowhere dense graphs[END_REF]. This generalizes what was previously known about ISI on H-minor free graphs [START_REF] Flum | Fixed-parameter tractability, definability, and model-checking[END_REF] and graphs of bounded degree [START_REF] Cai | Random Separation: A New Method for Solving Fixed-Cardinality Optimization Problems[END_REF]. We observe that whenever ISI in FPT on a certain graph class, then so is MCIS. To see this, note that an arbitrary instance (G 1 , G 2 , k) of MCIS can be reduced in fpt-time to instances of ISI by enumerating each graph H on k vertices and checking whether H is an induced subgraph of G 1 and G 2 . This implies that ISI and MCIS have the same parameterized complexity with respect to the natural parameter.

Another way of dealing with the hardness of a problem is to study its complexity with respect to auxiliary (or structural) parameters, to better understand its algorithmic behavior (see for example [START_REF] Fellows | Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity[END_REF]). Being NP-hard on disjoint union of chordless paths [START_REF] Damaschke | Induced subgraph isomorphism for cographs is np-complete[END_REF], MCIS is hard on graphs with bounded treewidth as well as graphs where the size of the minimum feedback vertex set is bounded. Thus the problem is paraNP-hard when parameterized by the treewidth of the input graphs, or by a bound on the sizes of their minimum feedback vertex sets. Therefore, we need to look for "bigger" parameters. And indeed, if the parameter k is a bound on the sizes of the minimum vertex covers of the input graphs, then the problem is in FPT, with a running time of O((24k) k ) = 2 O(k log k) [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF]. In this paper, we show that this algorithm cannot be significantly improved: unless the Exponential Time Hypothesis (ETH) fails, there is no algorithm solving MCIS in time O * (2 o(k log k) ), where the O * notation suppresses the polynomial factors. We also prove that MCIS does not have a polynomial-size kernel in this case unless NP ⊆ coNP/poly. These two latter results answer open problems raised in [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF]. Finally, we show that Maximum Common Connected Induced Subgraph (MCCIS), where the solution should be a connected graph, is also fixed-parameter tractable when parameterized by k := vc(G 1 ) + vc(G 2 ).

Preliminaries

Two finite graphs

G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ) are isomorphic if there is a bijection π : V 1 → V 2 such that ∀u, v ∈ V 1 : uv ∈ E 1 ⇔ π(u)π(v) ∈ E 2 . Given a graph G = (V, E), a graph G ′ = (V ′ , E ′ ) is an induced subgraph of G if V ′ ⊆ V and E ′ = E(V ′ ) = {uv ∈ E | u, v ∈ V ′ }, i.e.
E ′ is the edge set with both extremities in V ′ . We also say that G ′ is the subgraph of G induced by V ′ .

The girth of a graph G is the length of the shortest cycle contained in G. Contracting an edge uv consists of deleting uv and replacing the vertices u and v by a single vertex w in the incidence relation (edges incident on u or v become incident on w). A graph H is a minor of graph G if H is obtained from a subgraph of G by applying zero or more edge contractions. Given a fixed graph H, a family F of graphs is said to be H-minor free if H is not a minor of any element of F .

The Maximum Common Induced Subgraph problem is defined formally as follows.

Maximum Common Induced Subgraph (MCIS):

• Input: Two graphs G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ). • Output: An induced subgraph G ′ 1 of G 1 isomorphic to an induced subgraph G ′ 2 of G 2 with a maximum number of vertices.
Maximum Common Connected Induced Subgraph (MCCIS) is defined as MCIS with the additional restriction that the solution must be connected.

For completeness, we also give the definition of Induced Subgraph Isomorphism:

Induced Subgraph Isomorphism (ISI):

• Input: Two graphs G 1 = (V 1 , E 1 ) and G 2 = (V 2 , E 2 ). • Output: An induced subgraph G ′ 2 of G 2 isomorphic to G 1 if it exists.
Induced Connected Subgraph Isomorphism (ICSI) is defined as ISI but G 1 must be connected.

Parameterized complexity A parameterized problem (I, k) is fixed-parameter tractable (or in the class FPT) with respect to parameter k if it can be solved in f (k) • |I| c time (i.e. in fpttime), where f is any computable function and c is a constant (see [START_REF] Downey | Fundamentals of Parameterized Complexity[END_REF][START_REF] Niedermeier | Invitation to Fixed Parameter Algorithms[END_REF] for more details about fixed-parameter tractability). The parameterized complexity hierarchy is composed of the classes

FPT ⊆ W[1] ⊆ W[2] ⊆ • • • ⊆ XP. The class XP contains problems solvable in time f (k) • |I| g(k)
, where f and g are unrestricted functions. A problem is said to be paraNP-hard if it is NP-hard even for a constant value of the parameter (it hence cannot be in XP). A W[1]-hard problem is not fixed-parameter tractable, unless FPT = W [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF], and one can prove W[1]-hardness by means of a parameterized reduction from a W[1]-hard problem. This is a mapping of an instance (I, k) of a problem A 1 in g(k) • |I| O(1) time (for any computable function g) into an instance (

I ′ , k ′ ) for A 2 such that (I, k) ∈ A 1 ⇔ (I ′ , k ′ ) ∈ A 2 and k ′ ≤ h(k) for some function h.
A powerful technique to design parameterized algorithms is kernelization. In short, kernelization is a polynomial-time self-reduction algorithm that takes an instance (I, k) of a parameterized problem P as input and computes an equivalent instance (I ′ , k ′ ) of P such that |I ′ | h(k) for some computable function h and k ′ k. The instance (I ′ , k ′ ) is called a kernel in this case. If the function h is polynomial, we say that (I ′ , k ′ ) is a polynomial kernel. It is well known that a problem is in FPT iff it has a kernel, but this equivalence yields super-polynomial kernels (in general). To design efficient parameterized algorithms, a kernel of polynomial (or even linear) size in k is important. However, some lower bounds on the size of the kernel can be shown unless some polynomial hierarchy collapses. To show this result, we will use the cross composition technique developed by Bodlaender et al. [START_REF] Bodlaender | Kernelization lower bounds by crosscomposition[END_REF].

Definition 1 (Polynomial equivalence relation [START_REF] Bodlaender | Kernelization lower bounds by crosscomposition[END_REF]). An equivalence relation R on Σ * is said to be polynomial if the following two conditions hold: (i) There is an algorithm that given two strings x, y ∈ Σ * decides whether x and y belong to the same equivalence class in time (|x| + |y|) O (1) . (ii) For any finite set S ⊆ Σ * the equivalence relation R partitions the elements of S into at most (max x∈S |x|) O(1) classes.

Definition 2 (OR-cross-composition [START_REF] Bodlaender | Kernelization lower bounds by crosscomposition[END_REF]). Let L ⊆ Σ * be a set and let Q ⊆ Σ * × N be a parameterized problem. We say that L cross-composes into Q if there is a polynomial equivalence relation R and an algorithm which, given t strings x 1 , x 2 , . . . , x t belonging to the same equivalence class of R, computes an instance The Exponential Time Hypothesis (ETH) is a conjecture by Impagliazzo et al. asserting that there is no 2 o(n) -time algorithm for 3-SAT on instances with n variables [START_REF] Impagliazzo | Which problems have strongly exponential complexity?[END_REF]. The ETH, together with the sparsification lemma [START_REF] Impagliazzo | Which problems have strongly exponential complexity?[END_REF], even implies that there is no 2 o(n+m) -time algorithm solving 3-SAT. Many algorithmic lower bounds have been proved under the ETH, see for example [START_REF] Lokshtanov | Known algorithms on graphs of bounded treewidth are probably optimal[END_REF].

(x * , k * ) ∈ Σ * × N in time polynomial in t i=1 |x i | such that: (i) (x * , k * ) ∈ Q ⇔ x i ∈ L for some 1 i t. (ii) k * is
We say that a parameterized problem is fixed-parameter enumerable if all feasible solutions can be enumerated in O(f (k)|I| c ) time, where f is a computable function of the parameter k only, and c is a constant.

Parameterized Complexity with respect to the natural parameter

We study the parameterized complexity of Induced Subgraph Isomorphism, Maximum Common Induced Subgraph, Induced Connected Subgraph Isomorphism, and Maximum Common Connected Induced Subgraph with respect to the natural parameter. We will in particular study these problems in graphs of bounded degeneracy, chordal graphs, and graphs of large girth. Proof. Since those problems are W [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF]-hard by a straightforward reduction from k-Clique, it suffices to show membership in W [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF]. In [START_REF] Cesati | The turing way to parameterized complexity[END_REF], it is shown that if a problem can be reduced in FPT time to simulating a non-deterministic single-taped Turing machine halting in at most f (k) steps, for some function f , then it is in W [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF]. The Turing machine can have an alphabet and a set of states of size depending on the size of the input of the initial problem. In our case, we can design a Turing machine that guesses in 2k steps the corresponding right k vertices in G 1 (for I(C)SI this part is not necessary) and the right k vertices in G 2 (our alphabet being isomorphic to an indexing of V (G 1 ) ∪ V (G 2 )) and then check in time O(k 2 ) whether the two induced subgraphs are isomorphic (and that they are connected for ICSI and MCCIS).

In [START_REF] Moser | The parameterized complexity of the induced matching problem[END_REF] it was shown that Maximum Induced Matching1 is W[1]-hard on bipartite graphs. This implies that MCIS is W[1]-hard on bipartite graphs. In fact, we show that MCIS remains W[1]-hard on more restricted graph classes, namely C 4 -free bipartite graphs with degeneracy 2. In particular, those graphs have girth at least 6. This result tells us two things about MC(C)IS. The first is that the fixed-parameter algorithm of Cai et al. [8, Theorem 1] cannot be extended from bounded degree to bounded degeneracy (note that some W-hard problems on general graphs become FPT on graphs with bounded degeneracy, such as the W[2]-complete Dominating Set problem [START_REF] Alon | Linear time algorithms for finding a dominating set of fixed size in degenerated graphs[END_REF]). The second is that short cycles are not making MC(C)IS W [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF]-hard; they are W [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF]hard even without them. In [START_REF] Raman | Short cycles make W -hard problems hard: FPT algorithms for W -hard problems in graphs with no short cycles[END_REF], the authors present fixed-parameter algorithms on graphs of girth 5, for some problems which are W-hard on general graphs. MCIS and MCCIS are also resistant to this approach. Theorem 5. Induced Subgraph Isomorphism and Induced Connected Subgraph Isomorphism are W[1]-complete even when both graphs are C 4 -free bipartite graphs with degeneracy at most 2.

Proof. The incidence graph I(G) of any graph G = (V, E), obtained by subdividing each edge of G once, has degeneracy 2. Indeed, graph I(G) is the bipartite graph (V ⊎ E, F ) where the edges of F are all the ue for which u ∈ V , e ∈ E, and u is an endpoint of e. All the vertices e ∈ E of I(G) have degree 2. Therefore, they can be removed first. Then, what is left in I(G) is the independent set V .

We transform any input G = (V, E), k > 3 of k-Clique, into the instance I(K k ), I(G) of I(C)SI, where both graphs have degeneracy 2. The problem consists of finding the incidence graph of a k-clique within the incidence graph of G. We show that it is equivalent to finding a k-clique in G. Obviously, if there is a k-clique S in G, then the graph I(G)[S ∪ E(S)] is isomorphic to I(K k ). Now, let us assume that I(K k ) is isomorphic to an induced subgraph of I(G). We denote by a 1 , . . . , a k the vertices of I(K k ) with degree k -1, and by b 1 , . . . , b ( k 2 ) the vertices of I(K k ) with degree 2. We denote by ψ : The absence of triangles and cycles of length four in the input graphs does not make the problems tractable. We show that the absence of a long induced cycle does not help either (in [START_REF] Arumugam | Algorithmic aspects of dominator colorings in graphs[END_REF], the authors show that the W[2]-hard problem Dominator Coloring is in FPT when the input graph is chordal). More specifically, all four problems are W[1]-hard on chordal graphs. In fact, we can even show that these problems remain W[1]-hard on a proper subclass of chordal graphs called split graphs. A split graph is a graph whose vertex set can be partitioned into a set inducing a clique and an independent set.

V (I(K k )) → V (I(G)) the isomorphism from graph I(K k ) to an induced subgraph of I(G). Let u i = ψ(a i ) for each i ∈ [k], and v j = ψ(b j ) for each j ∈ [ k 2 ]. We set S = {u 1 , . . . , u k , v 1 , . . . , v ( k 2 ) }. For every i ∈ [k], u i ∈ V since the degree of a i in I(K k ) is k -1 > 2 (hence, the degree of u i in S is also k -1 > 2). Now, for every j ∈ [ k 2 ], v j ∈ E since v j has two neighbors in V (recall that I(G) is bipartite). Therefore, u 1 , . . . , u k are k vertices in V inducing precisely k 2 edges. Hence, {u 1 , . . . , u k } is a k-clique in G. Membership in W[1] comes from Theorem 4.

Theorem 7. ISI (hence MCIS) and ICSI (hence MCCIS) remain W[1]-hard on split graphs.

Proof. Similarly to the previous construction, we define I ′ (G) as the graph (V ⊎ E, F ) where the edges of F are the edges ue for which u ∈ V , e ∈ E, and u is an endpoint of e, plus all the edges uv with u, v ∈ V . The graph I ′ (G) is split: V induces a clique in I ′ (G) and E induces an independent set. From an instance G of k-Clique with k > 3, we build the equivalent instance I ′ (K k ), I ′ (G) of MC(C)IS and I(C)SI. The soundness can be obtained in the same way as in the previous proof.

Let us now say some words about the complexity of the connected version. First we note that MCIS is NP-hard on forests while MCCIS is solvable in polynomial-time in this case: given two forests G 1 and G 2 , run the polynomial-time MCIS algorithm of Akutsu on every pair of trees from G 1 and G 2 [START_REF] Akutsu | An RNC algorithm for finding a largest common subtree of two trees[END_REF]. From the parameterized complexity standpoint, Maximum Common Connected Induced Subgraph is FPT whenever Induced Subgraph Isomorphism is FPT since the enumeration of all O(2 k 2 ) possible induced connected subgraphs can be used as described in the introduction. The converse is true on classes of graphs which are closed by adding a universal vertex (i.e., a vertex linked to all the other vertices). An instance (G 1 , G 2 , k) of ISI can be reduced to an equivalent instance (G ′ 1 , G ′ 2 , k + 1) of MCCIS by letting G ′ i be the graph obtained by adding a vertex to G i that is made adjacent to all other vertices of G i .

Structural parameterization

Let us first recall that tw(G) fvs(G) + 1 vc(G) + 1, where tw(G) (resp. fvs(G), vc(G)) represents the treewidth (resp. the feedback vertex set number, the vertex cover number) of G [START_REF] Fellows | Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity[END_REF]. As noted before, if the parameter is the combination of tw(G 1 ) and tw(G 2 ) then MCIS is known to be W[1]-hard. Even more, if the parameter is the combination of fvs(G 1 ) and fvs(G 2 ) (which is bigger than the combination of the treewidth), then the problem is not even in XP since Maximum Common Induced Subgraph and Induced Subgraph Isomorphism are NP-hard on disjoint union of chordless paths, a case where the parameter is equal to 0 [START_REF] Damaschke | Induced subgraph isomorphism for cographs is np-complete[END_REF][START_REF] Garey | Computers and Intractability: A guide to the theory of NP-completeness[END_REF].

Theorem 8 ( [START_REF] Damaschke | Induced subgraph isomorphism for cographs is np-complete[END_REF][START_REF] Garey | Computers and Intractability: A guide to the theory of NP-completeness[END_REF]). Maximum Common Induced Subgraph is paraNP-hard when parameterized by fvs(G 1 ) + fvs(G 2 ) (and hence by tw(G 1 ) + tw(G 2 )).

One can extend this result to make it valid for the connected version. Proof. Given an instance of Induced Subgraph Isomorphism on forests G 1 and G 2 (each with at least 2 trees), we build an instance of Induced Connected Subgraph Isomorphism by adding a universal vertex (connected to every node) in G 1 and in G 2 . Both graph have thus a feedback vertex set of value one. One can see that these two universal vertices must be matched together since they are the only ones with sufficiently high degree. Then, there is a solution for Induced Subgraph Isomorphism iff there is a solution for Induced Connected Subgraph Isomorphism. The result of course holds for MCCIS, too.

It was shown in [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF] that MCIS is in FPT if the parameter is the combination of vc(G 1 ) and vc(G 2 ). Accordingly, the problem has a kernel, but no polynomial bound is known on its size. We show that, in this case, the kernel cannot be polynomial unless NP ⊆ coNP/poly. Theorem 10. Unless NP ⊆ coNP/poly, Maximum Common Induced Subgraph has no polynomial kernel when parameterized by the sum of the sizes of vertex covers in the two input graphs.

Proof. We will define an OR-cross-composition from the NP-complete Clique, problem, where the given instance is a tuple (G c , and the question is whether the graph G c contains a clique on l vertices.

Given t instances, (G c 1 , l 1 ), (G c 2 , l 2 ), . . . , (G c t , l t ), of Clique, where G c i is a graph and l i ∈ N, ∀1 i t, we define our equivalence relation R such that any strings that are not encoding valid instances are equivalent, and (G c i , l i ), (G c j , l j ) are equivalent iff |V (G c i )| = |V (G c j )|, and l i = l j . Hereafter, we assume that V (G c i ) = {1, . . . , n} and l i = l, for any 1 i t. We will build an instance of Maximum Common Induced Subgraph parameterized by the vertex cover (G 1 , G 2 , l ′ , Z) where G 1 and G 2 are two graphs, l ′ ∈ N and Z ⊆ V (G 2 ) is a vertex cover of G 2 computed in fpt-time, such that there is a solution of size l ′ for Maximum Common Induced Subgraph iff there is an i, 1 i t such that there is a solution of size l in G c i . We will now describe how to build G 1 and G 2 .

To build G 2 (see also Figure 1): To build G 1 (see also Figure 2): We set l ′ = |V (G 1 )|, and Z = {p, r} ∪ {e uv |1 u < v n}. It is easy to see that Z is indeed a vertex cover for G 2 and that its size is equal to n(n-1) 2 + 2, which is polynomial in n and hence in the size of the largest instance. Note that the size of the graph G 1 does not depend on t and is polynomial in n, so the size of its vertex cover is also polynomial in n and independent of t.

• V (G 2 ) = {p, q, r} ∪ {a i | 1 i t} ∪ {e uv | 1 u < v n} ∪ {x i | 1 i n}, • E(G 2 ) 1 = {pq, pr, qr}, • E(G 2 ) 2 = {ra i | 1 i t}, • E(G 2 ) 3 = {a i e uv | uv ∈ E(G c i )}, • E(G 2 ) 4 = {e uv x u , e uv x v | ∀1 u < v n}, • E(G 2 ) = E(G 2 ) 1 ∪ E(G 2 ) 2 ∪ E(G 2 ) 3 ∪ E(G 2 ) 4 . r p q a 1 a 2 . . . a t e 1,
a i e uv ∈ E(G 2 ) ⇔ uv ∈ E(G c i ) e uv v u , e uv v v ∈ E(G 2 ), ∀1 u < v n
• V (G 1 ) = {p, q, r, a} ∪ {e i | 1 i l 2 } ∪ {x i | 1 i l}, • E(G 1 ) 1 = {pq, pr, qr, ra}, • E(G 1 ) 2 = {ae i | 1 i l 2 }, • E(G 1 ) 3 = {e i x u , e i x v | ∀1 i l 2 , e i = uv}, • E(G 1 ) = E(G 1 ) 1 ∪ E(G 1 ) 2 ∪ E(G 1 ) 3 . r p q a e 1 e 2 . . . e ( l 2 ) x 1 x 2 . . . x l e i v u , e i v v ∈ E(G 1 ), ∀1 i l 2 , e i = uv
Let us show that G 1 is an induced subgraph of G 2 iff at least one of the G c i 's has a clique of size l.

(⇐) Suppose that G c i has a clique of size l. We denote by S ⊆ V (G c i ) a clique of size exactly l in G c i . We show that there is an induced subgraph S ′ of G 2 of size l ′ , isomorphic to G 1 . We set V (S ′ ) = {p, q, r} ∪ {a i } ∪ {e uv | ∀uv ∈ E(S)} ∪ {x u |u ∈ S}. One can easily check that this subgraph is isomorphic to G 1 .

(⇒) Assume now that G 1 is an induced subgraph of G 2 . Denote by S ′ the subgraph of G 2 isomorphic to G 1 . Note that the only triangle in G 2 is pqr. Indeed, T (V (G 2 ) \ {p}) is bipartite. The triangle pqr in G 1 has therefore to match pqr in G 2 . Moreover, r in G 1 has to match r in G 2 since p and q have no edges besides the clique pqr. The vertex a in G 1 can only match a vertex a i for some i ∈ {1, . . . , t}. Then, e 1 up to e ( l 2 ) in G 1 has to match l 2 vertices in {e uv | 1 u < v n} of G 2 which correspond to actual edges in G c i . Finally, x 1 up to x l in G 1 has to match l vertices among the x j 's in G 2 . Note that the number of edges in E(G 1 ) 3 between the e j 's and the x j 's is exactly 2 l 2 = l(l -1). More precisely, each e j touches 2 edges in E(G 1 ) 3 and each x j touches l -1 edges in E(G 1 ) 3 . In order to get a match in G 2 , one should find a set of l 2 edges inducing exactly l vertices. So, this set of l vertices is a clique in G c i . Note that the parameter of MCIS in the previous reduction is exactly the size of G 1 and the graphs used in the proof are connected. Therefore, we have the following: Corollary 11. Induced Subgraph Isomorphism and Maximum Common Connected Induced Subgraph, parameterized by a bound on the minimum vertex covers of input graphs, do not have a polynomial-size kernel unless NP ⊆ coNP/poly. The algorithm of [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF] is not single-exponential for parameter sum of the vertex cover numbers. In fact, we show that a single-exponential algorithm is very unlikely. This is, to the best of our knowledge, the first result of this type for parameter vertex cover.

Theorem 12. Under the ETH, IS(C)I cannot be solved in time 2 o(k log k) when parameter k is the sum of the vertex cover number of both graphs.

Proof. We give a reduction from k×k Permutation Clique which linearly preserves the parameter k. It is known that this problem does not admit an algorithm with running time 2 o(k log k) unless the ETH fails [START_REF] Lokshtanov | Slightly superexponential parameterized problems[END_REF]. In the k × k Permutation Clique problem, one is given a graph over the set of vertices [k]×[k] and the goal is to find a clique of size k such that in each row and in each column exactly one vertex is part of the clique, where a row is the set of vertices {(i, 1), (i, 2), . . . , (i, k)} for some i ∈ [k], and a column is the set of vertices {(1, j), (2, j), . . . , (k, j)} for some j ∈ [k].

We first describe how the graph G 2 is built from any instance

G = ([k] × [k], E) of k × k Permutation Clique. For each row (resp. column) index i ∈ [k],
we add two vertices r 1 i and r2 i (resp. c 1 i and c 2 i ) that we link by an edge. For j ∈ [2], we set R j = {r j 1 , r j 2 , . . . , r j k } (resp.

C j = {c j 1 , c j 2 , . . . , c j k }) and R = R 1 ∪ R 2 (resp. C = C 1 ∪ C 2 )
. Then, to distinguish row indices from column indices, we add a clique D r of size 6, and we link one designated vertex r of D r to all the vertices in R. We also add a clique D of size 5 with a special vertex v in D such that v is linked to all the vertices in R 1 ∪ C 1 .

Finally, for each edge e = (i, j)(i ′ , j ′ ) of G with i = i ′ and j = j ′ 2 , we add a vertex v(e, 1) that we link to the four vertices r 1 i , c 1 j , r 2 i ′ , and c 2 j ′ , and a vertex v(e, 2) that we link to the four vertices r 2 i , c 2 j , r 1 i ′ , and c 1 j ′ . This ends the construction of G 2 (see Figure 3). The pattern G 1 depends only on k and is defined as the graph one obtains following the above construction when G have all the edges of the form (i, i)(i ′ , i ′ ) and no other edges (in other words, G has a k-clique on the diagonal and nothing else).

Both G 1 and G 2 have R∪C∪D r ∪D as a vertex cover of size 4k+11.

G 2 has |E|+4k+11 = O(k 4 ) vertices and G 1 has 2 k 2 + 4k + 11 = O(k 2 ) vertices.
To avoid confusion about vertices in G 1 and G 2 we will denote the vertices and sets of vertices of G 1 with a tilde. We now show that the reduction is valid.

Suppose there is a solution {(a 1 , b 1 ), . . . , (a k , b k )} to the instance of k × k Permutation Clique. Then, G 1 is an induced subgraph of G 2 with the following mapping. We map r to r and ṽ to v. We map Dr \ {r} to D r \ {r} and D \ {ṽ} to D \ {v} in an arbitrary way. Then, for each i ∈ [k] and j ∈ [2], we map rj i to r j ai and cj i to r j bi . We observe that this mapping is one-to-one since (a 1 , b 1 ), . . . , (a k , b k ) is a permutation clique, i.e., {a 1 , a 2 , . . . ,

a k } = [k] = {b 1 , b 2 , . . . , b k }.
Finally, for any j ∈ [2], and any i

= i ′ ∈ [k] we map ṽ(e, j) to v((a i , b i )(a i ′ , b i ′ ), j). Note that vertex v((a i , b i )(a i ′ , b i ′ ), j) always exists precisely because {(a 1 , b 1 ), . . . , (a k , b k )} is a clique.
Conversely, if there is a solution to the IS(C)I instance, we will show that there is a permutation k-clique in G. There is only one clique of size 6 in G 2 , so the clique Dr of size 6 has to be mapped to D r . Then, r, as the unique vertex of Dr of degree larger than 5, should be mapped to r. Now, for the same reasons, D should be mapped to D and ṽ to v. Vertices of R1 ∪ C1 are the only 2k unmatched vertices having ṽ as a neighbor, so those vertices should be matched to the only 2k unmatched vertices having v as a neighbor, namely R 1 ∪ C 1 . For similar reasons, R should be mapped to R. Now, R2 ∪ C2 can only be mapped to R 2 ∪ C 2 as the only unmatched vertices having exactly one neighbor in R1 ∪ C1 (R 1 ∪ C 1 ).

Thus, the 4k vertices of R∪ C can only be mapped to R∪C, such that for j ∈ [START_REF] Abu-Khzam | On the complexity of various parameterizations of common induced subgraph isomorphism[END_REF], Rj is mapped to R j and Cj is mapped to C j . The edges r1 i r2

i and r 1 i r 2 i (resp. c1 i c2 i and c 1 1 c 2 i ) further constrains the mapping: if r1 i is mapped to r 1 i ′ then r2 i has to be mapped to

r 2 i ′ (resp. if c1 i is mapped to c 1 i ′
then c2 i has to be mapped to c 2 i ′ ). Hence, we can see the mapping from R ∪ C to R ∪ C as two permutations σ r and σ c on k elements, such that for j ∈ [START_REF] Abu-Khzam | On the complexity of various parameterizations of common induced subgraph isomorphism[END_REF], for i ∈ [k], rj i is mapped to r j σr (i) and cj i is mapped to c j σc(i) . Then, the current partial mapping can be extended to a solution only if {(σ r (1), σ c (1)), . . . , (σ r (k), σ c (k))} is a clique in G. Indeed, ∀j ∈ [START_REF] Abu-Khzam | On the complexity of various parameterizations of common induced subgraph isomorphism[END_REF], ∀i = i ′ ∈ [k], ṽ((i, i)(i ′ , i ′ ), j) can only be mapped to a potential v((σ r (i), σ c (i))(σ r (i ′ ), σ c (i ′ )), j) so that vertex has to exist, meaning that there should be an edge in G between (σ r (i), σ c (i)) and (σ r (i ′ ), σ c (i ′ )). 

r 2 4 R 1 R 2 R c 1 1 c 2 1 c 1 2 c 2 2 c 1 3 c 2 3 c 1 4 c 2 4 C 1 C 2 C v(e 1 , 1) v(e 1 , 2) v(e 2 , 1)
v(e 2 , 2) Figure 3: The overall construction of G 2 . We represented only two edges of G: e 1 = (2, 1)(3, 2) and e 2 = (3, 1)(4, 3). For the sake of readability, the edges encoding e 1 are enhanced to distinguish them easily from the edges encoding e 2 . and contradict the ETH.

Despite the fact that ISI and MCIS have the same parameterized complexity with respect to the natural parameter, they exhibit different behaviors when considering structural parameters. In fact, the latter is paraNP-hard when parameterized by the vertex cover of only one of the two graphs, whereas ISI is FPT when parameterized by the vertex cover of the second (host) graph. To see this, note that when the host graph has a vertex cover of size k, the minimum size of a vertex cover in the pattern graph must be bounded by the parameter k; otherwise we have a NO-instance. The claim follows from the fixed-parameter tractability of MCIS in this case [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF].

Given the negative result of Theorem 9, the next question we pose is whether MCCIS is in FPT with respect to the size of a minimum vertex cover. In [START_REF] Abu-Khzam | Maximum common induced subgraph parameterized by vertex cover[END_REF], a parameterized algorithm is presented for MCIS when the parameter is a bound on the minimum vertex cover number of the input graphs. However, that algorithm cannot help us much for solving MCCIS since it relies on the existence of a feasible solution of size at least ≈ n -k which consists of mapping the two big independent sets of the two graphs onto each other. Of course, this is not a feasible solution for MCCIS. In the following we prove that MCCIS is fixed-parameter tractable w.r.t. k := vc(G 1 ) + vc(G 2 ).

Theorem 13. Maximum Common Connected Induced Subgraph parameterized by

k := vc(G 1 ) + vc(G 2 ) is fixed-parameter tractable. Proof. In time O * (2 k ) (even O * (1.2738 k ) [ 10 
]), we can find minimum vertex covers C 1 and C 2 in G 1 and G 2 respectively. Let I (j) be the independent set V (G j ) \ C j for j ∈ {1, 2}. By assumption, our parameter k is max(C 1 , C 2 ), so we can enumerate all tripartitions of C 1 and C 2 in time O * (9 k ). We denote by C 1,m , C 1,u and C 1,i (respectively C 2,m , C 2,u and C 2,i ) the three sets of a tripartition of C 1 (respectively C 2 ). For j ∈ {1, 2}, C j,u corresponds to the vertices of C j that are not matched, so they may be deleted. C j,m comprises the vertices matched to C 3-j,m (that is, to the vertex cover of the other graph), and C j,i are the vertices matched to I (3-j) , the independent set of the other graph. See Figure 4.

We observe that for j ∈ {1, 2}, I (j) can be partitioned into at most 2 k classes of twins:

I (j) 1 , I (j) 2 , . . . I (j)
2 k . A class of twins in this context is a set of vertices with an identical neighborhood in the vertex cover and there are at most 2 k subsets of C j . Potentially, some classes can be empty: they correspond to a subset of the vertex cover C j that is not the (exact) neighborhood of any vertex in I (j) .

At this point, we can enumerate the mappings between C 1,m and C 2,m in time O * (k k ) and the mappings between C j,i and I (3-j) 

in time O * ((2 k ) k ) = O * (2 k 2 )
. Indeed, to match a vertex u with a vertex v or a twin of v is equivalent. Thus, in time O * ((9k) k 2 k 2 ) we can enumerate all the solutions of MCIS where only vertices of I (1) could still be matched to vertices of I (2) . The optimal map of the independent sets can be done in polynomial time by matching the greatest number of vertices in each equivalent twin class (which is the size of the smaller of the two equivalent twin classes), where a twin class I ) \ C 3-j,u are in one-to-one correspondence.

To find a solution for MCCIS, the algorithm described in the above proof enumerates all possible maximal common induced subgraphs in time O * ((9k) k 2 k 2 ). The current bottleneck to improve it is when we try to match vertices of the vertex cover with vertices of the independent set. For the not connected version of the problem, a trivial argument can bound the size of the independent set (if this one is big, there is a trivial solution), which cannot be used for the connected version. As such, it can be used as an enumeration algorithm for MCIS.

Corollary 14. Maximum Common Induced Subgraph parameterized by

k := vc(G 1 ) + vc(G 2 ) is fixed-parameter enumerable.
Let us finish this section with some general considerations. Note that for ISI, the parameter vc + fvs is not the same as fvs + vc. In the latter, the parameter is a bound on the vertex cover of G 2 (as well as the feedback vertex set of G 1 ) which makes ISI in FPT, while it remains open for vc+fvs. We also note that ISI is not in XP w.r.t. vc(G 1 ) by a simple reduction from Independent Set: let G 2 be an edgeless graph on k vertices, then its vertex cover number is 0.

C 1 I (1) = G 1 [V 1 \ C 1 ] C 1,u C 1,m C 1,i G 1 I (1) 1 . . . I (1) 2 k C 2 I (2) = G 2 [V 2 \ C 2 ] C 2,u C 2,m C 2,i
We now turn our attention to the case where MCIS is parameterized by a combination of the natural parameter and some structural parameter. We note that, in general, such parameterization reduces the problem's complexity. This is most often due to the fixed-parameter tractability of MCIS in H-minor free graphs (again, since ISI is FPT in this case [START_REF] Flum | Fixed-parameter tractability, definability, and model-checking[END_REF]). For example, consider the case where the parameter is the sum of some bound t on the feedback vertex set of the input graphs and the natural parameter k. The problem is FPT in this case since graphs of t-feedback vertex set are H-minor free where H is the "fixed" graph consisting of a disjoint union of t + 1 triangles. The same applies to parameterization by treewidth and the natural parameter by considering H to be the complete graph on t + 2 vertices, for example.

Conclusion

We studied the Maximum Common Induced Subgraph and Maximum Common Connected Induced Subgraph problems with respect to the solution size on special graph classes such as forests, bipartite graphs, bounded degree graphs, bounded degeneracy graphs, graphs without small (length 3 or 4) cycles. The two problems are fixed-parameter tractable on H-minor free graphs, which include forests, and bounded degree graphs, but they are W[1]-complete on bipartite graphs of girth 6 and degeneracy 2. This ruled out at the same time two approaches to get fixedparameter algorithms on subclasses of graphs for W-hard problems.

We then considered the use of structural parameters, such as a bound on the minimum vertex covers of the input graphs. Although both MCIS and MCCIS are in FPT in this case, we proved that no kernel of polynomial bound can be obtained unless NP ⊆ coNP/poly and that they cannot be solved in time 2 o(k log k) under the ETH. We noted that MCIS is not even in XP with respect to other (smaller) auxiliary parameters, such as treewidth and feedback vertex set. A few open problems remain to be addressed. For example, is MCIS/MCCIS in FPT when parameterized by the combination of the vertex cover number and the feedback vertex set number, or by the vertex cover number and the treewidth? Moreover, it would be interesting to know whether the algorithm for MCCIS of Theorem 13 can be improved to match the lower bound.

Theorem 4 .

 4 MCIS, MCCIS, ISI, and ICSI are W[1]-complete.

Corollary 6 .

 6 Maximum Common Induced Subgraph and Maximum Common Connected Induced Subgraph remain W[1]-complete on bipartite graphs of girth 6 and degeneracy 2.

Theorem 9 .

 9 Induced Connected Subgraph Isomorphism, and as a corollary Maximum Common Connected Induced Subgraph, are paraNP-hard when parameterized by fvs(G 1 ) + fvs(G 2 ).
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 1 Figure 1: Illustration of the construction of G 2 .
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 2 Figure 2: Illustration of the construction of G 1 .

  An algorithm solving IS(C)I in time poly(|G 1 |, |G 2 |)2 o(k log k) with k := vc(G 1 ) + vc(G 2 ) would therefore translate into an algorithm running in time 2 o(k log k) for k × k Permutation Clique r

  in I (j) is equivalent to a twin class I (3-j) s in I (3-j) if the vertices of N (I (j) r ) \ C j,u and N (I(3-j) s
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 4 Figure 4: Illustration of the proof of Theorem 13. Dashed boxes represent the classes inside the independent set. Arrows represent the matching between sets of vertices. Sets C 1 (resp. C 2 ) represents a vertex cover for G 1 (resp. G 2 ).

  bounded by a polynomial in max t i=1 |x i |+log t.

	Proposition 3 ([7]). Let L ⊆ Σ * be a set which is NP-hard under Karp reductions. If L
	cross-composes into the parameterized problem Q, then Q has no polynomial kernel unless NP ⊆
	coNP/poly.

  2 e 1,3 . . . e 1,n e 2,3 . . . e n-1,n

	x 1	x 2	. . .	x n

where one looks for a largest subset of vertices that induce a disjoint union of edges

We ignore the other edges since they are not relevant in finding a permutation clique.
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