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Chapter 14

GENERATING ABNORMAL INDUSTRIAL
CONTROL NETWORK TRAFFIC FOR
INTRUSION DETECTION SYSTEM
TESTING

Joo-Yeop Song, Woomyo Lee, Jeong-Han Yun, Hyunjae Park, Sin-Kyu
Kim and Young-June Choi

Abstract Industrial control systems are widely used across the critical infrastruc-
ture sectors. Anomaly-based intrusion detection is an attractive ap-
proach for identifying potential attacks that leverage industrial control
systems to target critical infrastructure assets. In order to analyze the
performance of an anomaly-based intrusion detection system, extensive
testing should be performed by considering variations of specific cyber
threat scenarios, including victims, attack timing, traffic volume and
transmitted contents. However, due to security concerns and the po-
tential impact on operations, it is very difficult, if not impossible, to
collect abnormal network traffic from real-world industrial control sys-
tems. This chapter addresses the problem by proposing a method for
automatically generating a variety of anomalous test traffic based on
cyber threat scenarios related to industrial control systems.

Keywords: Industrial control systems, anomaly detection, traffic generation

1. Introduction
Industrial control systems are used in a variety of critical infrastructure

assets such as power plants, waterworks, railways and transportation systems.
The security of industrial control systems in the critical infrastructure is a grave
concern due to the increased risk of external attacks and the potentially serious
impact on operations [7, 23]. Therefore, it is important to develop sophisticated
systems that can rapidly and accurately detect anomalous industrial control
network behavior due to potential attacks.
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Intrusion detection systems, which have been used for decades to detect
and respond to abnormal operations in information technology systems and
networks, are increasingly used in operational technology infrastructures such
as industrial control networks. Intrusion detection systems are classified as
misuse detection systems and anomaly detection systems [5]. Misuse detection
relies on attack signatures – patterns and characteristics – to identify attacks.
Therefore, misuse detection is ineffective against zero-day attacks and clever
variants of known attacks. In addition, the massive network flows, diversity
of attacks and increasing numbers of new attacks make it difficult for modern
misuse detection systems to keep up with the threats.

Anomaly detection relies on deviations from normal usage patterns that are
specified or learned. The approach is attractive for use in industrial control
networks because of their stable structure, predictable traffic and relatively low
traffic volumes [1, 20]. An anomaly-based intrusion detection system learns a
statistical model of normal activities, which it compares against data pertaining
to current activities in order to detect behavioral abnormalities, including those
caused by undetected or zero-day attacks.

The same cyber attack can be executed on different targets at different
times and with variations in its content. Depending on the environment, an
anomaly-based intrusion detection system may or may not detect the same
attack. Therefore, to evaluate the performance of an anomaly-based intrusion
detection system, extensive testing has to be conducted using variations of each
cyber threat scenario, including the targets, attack timing, traffic characteris-
tics and transmitted content. Unfortunately, due to security concerns and the
potential operational impact, it is very difficult, if not impossible, to evaluate
cyber threat scenarios on real-world industrial control systems.

A solution to this problem is to use a testbed that models a real industrial
control network and the physical infrastructure. The testbed can then be em-
ployed to collect normal and abnormal traffic. However, a high-fidelity testbed
is expensive to implement and operate; in any case, it would never completely
model the actual assets. Additionally, it is infeasible to create and analyze a
large number of cyber attack scenarios, especially when each scenario can have
numerous variations.

Efforts have been made to collect real-world traffic using honeypots [19], but
such traffic does not adequately model real industrial control environments.
A possible solution is to generate abnormal industrial control network traffic
by modifying normal traffic to model cyber threat scenarios while maintaining
the characteristics of the normal traffic to the extent possible. For each cyber
threat scenario, the nature of anomalous network traffic varies. Therefore, the
characteristics of abnormal traffic could be modified based on the specific points
of time, target sessions and characteristics of the cyber threat scenarios, and a
number of cases could be generated to perform accurate performance analysis.
However, depending on the specific scenario, it may be difficult to manually
modify normal traffic based on variants of the cyber threat scenario.
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Figure 1. Abnormal test traffic generator.

To address these problems, this chapter proposes a method for automatically
generating a variety of anomalous test traffic based on cyber threat scenarios
related to industrial control networks. Figure 1 presents a schematic diagram
of the abnormal test traffic generator. The automated generation of abnormal
traffic requires a method that clearly describes the cyber threat scenarios to be
tested. The method involves the specification of “actions” on industrial con-
trol network traffic. The characteristics of the point of occurrence, target and
abnormal traffic are accordingly adjusted. This creates a number of abnormal
scenario cases and abnormal traffic is generated by modifying normal traffic
according to each case. Test data can also be generated by combining multiple
scenarios.

Packets are the basic communications units of network traffic. In the case of
TCP networks, the transmitted data is split into packets, and it is difficult to
describe the traffic characteristics by considering individual packets in isolation.
On the other hand, in industrial control networks, it is difficult to distinguish
transactions since the protocols are often proprietary in nature. Yun et al. [22]
have proposed a method for distinguishing transactions in industrial control
network traffic. The method, which is shown in Figure 2, distinguishes trans-
actions when the inter-packet arrival time is larger than a predefined threshold.
Thus, although the transmitted data is divided into multiple packets, the test
traffic is generated in units of transactions that model abnormal traffic more
effectively.
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Figure 2. Distinguishing transactions by inter-packet arrival time.

2. Related Work
Some intrusion detection system testing tools generate network traffic that

corresponds to known cyber attacks or Snort rules [10, 16, 17]. These tools are
useful for measuring the detection rates of intrusion detection systems that rely
on attack signatures. However, in order to use these tools for performance anal-
yses of anomaly-based intrusion detection systems, it is necessary to properly
mix the generated attack traffic and normal traffic.

Industrial control system testbeds can be used to analyze vulnerabilities,
threats and the impacts of attacks. A testbed may be developed using real
systems, simulators or a combination of real and simulated systems. Popular
simulation tools include Simulink, Stateflow and dSPACE [2, 8, 11]. The tools
support automatic code generation, task scheduling and fault management ap-
plications for modeling, simulation and testing. Some researchers have used
programmable logic controllers and control protocol emulators for constructing
honeypots that provide anomalous traffic [3].

SCADA system testbeds have been developed at the national level for se-
curity research and analysis. One example is the National SCADA Testbed
(NSTB) developed by the U.S. Department of Energy [2]. Other SCADA
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testbeds have been evaluated by the U.S. National Institute of Standards and
Technology (NIST) and the British Columbia Institute of Technology (BCIT)
in Canada. In Europe, testbeds are operational in Grenoble, France; CERN
in Geneva, Switzerland; and at the European Joint Research Centre in Ispra,
Italy [14]. Christiansson and Luiijf [4] discuss the development of a European
SCADA security testbed. Japan also uses an industrial control system testbed
for various purposes, including vulnerability analysis [9].

The National SCADA Testbed [2] combines state-of-the-art facilities at na-
tional laboratories with expert research, development, analysis and training to
identify and address security vulnerabilities and threats in the energy sector.
The test and research facilities include field-scale control systems, and advanced
visualization and modeling tools.

Other SCADA testbeds have been developed to support similar activities as
the National SCADA Testbed. However, they are large and expensive, and are
only available to selected researchers. The complexity and scale of a testbed
can be reduced, but the results obtained do not adequately model real-world
systems. The absence of high-fidelity testbeds that provide open access to
researchers has made it very difficult to independently evaluate the research
results published in the SCADA systems security literature.

Two other test methods are possible. The first relies on data gathered from
real-world systems. In this case, it is possible to perform practical analyses of
real traffic. However, it is difficult to conduct evaluations because attack sce-
narios involve traffic that often does not exist in the captured traffic, requiring
attack traffic to be generated artificially.

The second method is to use publicly-available test data provided by or-
ganizations that operate testbeds. In the field of industrial control systems,
some datasets have been made available, including for secure water treat-
ment [6], S7Comm [18] and Modbus [13]. These datasets enable researchers
to quantitatively evaluate the performance of different security techniques and
tools. However, when testing anomaly detection systems, it is necessary to
experiment with many variations of each abnormal situation. Unfortunately,
publicly-available datasets do not maintain adequate amounts of such data.

3. Abnormal Traffic Generation
Given normal traffic and an attack scenario, the test traffic generator (TG)

automatically generates a variety of abnormal traffic by changing: (i) target
packets (i.e., packets selected to represent anomalies in normal traffic); (ii)
generation times (i.e., specific times during which attacks occur repeatedly or
regularly in normal traffic); and (iii) applied IP addresses (i.e., changes to the IP
source address and/or IP destination address of packets to specific IP addresses
corresponding to attack scenarios).

First, the traffic generator selects normal traffic for a certain condition that
forms the basis of the scenario. Next, it modifies the selected normal traffic
according to the scenario. The basic traffic generation process is as follows:
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Preprocessing: The traffic generator receives PCAP-type normal traffic
and selects the traffic related to the specific communications section (IP,
edge, session and service) specified by the user and uses it to generate
abnormal traffic. The selected traffic is referred to as “base traffic.”

Target Traffic Extraction: The traffic generator receives the number
and length of the target traffic from the user. It then extracts the target
traffic by randomly selecting the start time from the base traffic. The
target traffic is part of the base traffic and is used to generate abnormal
traffic. A variety of abnormal traffic is generated for a single attack
scenario by extracting target traffic at various points in time from the
base traffic and using it to generate abnormal traffic.

Target Traffic Modification: The traffic generator modifies the tar-
get traffic packets according to the attack scenario to generate abnormal
traffic. The traffic is transformed by performing an “action” on target
traffic. An action involves modifying, adding or deleting some packets or
transactions. This creates test traffic corresponding to cyber attacks. The
characteristics of the abnormal traffic expected according to the attack
are defined as “actions.”

In a real industrial control system, it is highly likely that various types of
cyber attacks are performed periodically on multiple devices. To simulate
this, n cyber attacks as expressed as n actions, and multiple actions are
performed in parallel or sequentially on abnormal traffic. The user selects
the number of actions according to the attack scenario and creates a
scenario file by selecting elements such as the attack time and frequency,
target packet selection criterion and packet transformation method for
each action.

A variety of cases can be created by changing the details of an action
based on some condition without fixing it to specific values. In other
words, the various test traffic corresponding to an attack scenario can be
automatically generated and used for performance evaluation, improving
the reliability of the results.

The traffic generator implements packet-based and transaction-based traf-
fic modifications. A packet is the basic unit of network communications.
However, when data is transmitted in the network, it is broken up into
multiple packets. For example, when using the TCP protocol, data is
divided into several packets and the receiver sends a response to each
packet. It is difficult to express the characteristics of such traffic by ex-
amining individual packets. An attack is more likely to manifest itself in
a transaction than in an individual packet.

3.1 Time and Periodicity of Actions
Multiple actions on target traffic can be performed simultaneously according

to each attack cycle. The user has to select the number of actions based on
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Figure 3. Combination of two actions.

the attack scenario, and then set the attack cycle, attack start time and attack
end time for each action.

Figure 3 shows that, when Action 1 is applied, the test traffic, which is the
output of Action 1, is generated from the base traffic. When Action 2 is applied
to the test traffic transformed by Action 1, test traffic on which Action 1 and
Action 2 are simultaneously applied is generated. This procedure generates test
traffic corresponding to multiple combined attacks. Since multiple attacks can
occur at the same time in a real environment, it is possible to express this situ-
ation via multiple action definitions. This can also be used to evaluate whether
or not a specific attack type is classified correctly under multiple attacks. If
scenarios that define actions are shared and reused, then experimental results
and intrusion detection performance can be compared using common actions in
normal traffic corresponding to each user. A user can create and test individual
traffic with shared actions or traffic with multiple actions in combination with
other actions. This produces a variety of anomalous traffic for testing purposes.

3.2 Target Packets of an Action
In order to transform traffic, the target packets used for transformation

should be selected for each target data. The target data is part of the target
traffic and is segmented at a specific time. A cyber attack on an actual indus-
trial control system involves a specific target IP address, edge (IP address to
IP address), session and service. Therefore, the user should specify the criteria
for selecting target packets in a scenario.
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The traffic generator provides packet-based and transaction-based transfor-
mations. When transforming traffic on a transaction-by-transaction basis, the
user should select a target transaction instead of a target packet.

The user options for selecting target packets are summarized as follows:

I. Target Types:

1. Attack occurs at a specific IP address.

2. Attack occurs at a specific edge (IP address, IP address).

3. Attack occurs on a specific session (IP address, port, protocol, port, IP
address).

4. Attack occurs on a specific service (protocol, port).

II. Number of Target IP Addresses (NTI), Edges (NTE), Sessions (NTSS),
Services (NTS):

1. Enter a constant value.

2. Enter an occurrence rate (x1%).

– NTx1 = x1% of the number of IP addresses/edges/sessions/services used
in target traffic.

III. Target IP Address Selection:

1. Input a target IP address/edge/session/service and use it in all the target
data.

2. Select a target IP address/edge/session/service randomly for each target
data. If a smaller number of IP addresses is used for specific target data,
then all the IP addresses in the target data become target IP addresses.
The same is true for edge and session.

3. Randomly select target traffic and use it all the target data.

IV. Number of Target Packets (NTP):

1. Enter a constant value.

2. Enter an occurrence rate (x2%).

– NTP = total number of packets in target traffic × x2%/number of target
data.

Based on the four options listed above, the traffic generator selects NTP

packets in the target traffic.

3.3 Traffic Modification by an Action
The traffic generator supports four operations for directly modifying target

packets or transactions:

Payload Change: Change the payload of the target packet based on
the byte section provided by the user.
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Packet Transmission Rate Change: Change the packet transmission
rate by modifying the packet number of normal traffic by adding or delet-
ing a packet to normal traffic or changing the byte length of the target
packet.

Packet Replacement/Addition: Replace the target packet or add an
attack packet to the target packet.

Header Change: Change the transmission time and IP address of a
target packet. For example, to represent a replay attack, the headers
containing the transmission time of the target packet and IP address
information should be changed and added to the normal traffic. In order
to represent a packet forgery in an intermediate attack on a specific (IP
address, IP address) interval, a target packet is selected in the interval
and the payload of the selected target packet is modified and added to
the normal traffic.

The user options for target traffic transformation are stored in the scenario
file. The options are summarized as follows:

I. Payload Change:

1. Change confirmation

(a) Make a change. When changing to TR, the same option applies to
all the packets in TR.

(b) Do not make a change. The remaining options (2 and 3) are not
input.

2. Enter a payload change interval (byte).

3. How to change the payload.

(a) Enter the change value.

(b) Change to a random value.

II. Packet Transmission Rate Change:

1. Change confirmation.

(a) Make a change. When changing to TR, the same option applies to
all the packets in TR.

(b) Do not make a change. The remaining options (2 and 3) are not
input.

2. Count change (increase, decrease or maintain the number of packets).

(a) Increase: Number of test traffic packets is greater than the number of
target traffic packets. Increase the amount of test traffic by copying
the target packet based on the packet growth rate (x3%) selected by
the user.

(b) Reduction: Number of test traffic packets is smaller than the number
of target traffic packets. Reduce the number of test traffic by deleting
part of the target packet based on the packet reduction rate (x3%)
selected by the user. NAP = NTP × x3%.
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(c) No change: Number of test traffic packets and number of target traffic
packets do not change.

3. Count change (increase, decrease or maintain the number of packets).

(a) Increase: Change the byte length of the target packet by appending
a random value to the end of the target packet.

(b) Reduction: Remove the payload part of the target packet to change
the byte length of the target packet.

(c) No change.

III. Packet Replacement/Addition:

1. Delete the target packet and replace it with an attack packet.

2. Add an attack packet to the target packet.

IV. Header Change:

1. Change confirmation.

(a) Make a change. When changing to TR, the same option applies to
all the packets in TR.

(b) Do not make a change. The remaining options (2, 3 and 4) are not
input.

2. Transmission time change.

(a) Sequential offset: Transmission time of the target packet is shifted by
an offset time provided by the user and employed as the transmission
time of the attack packet (at this time, the packet leaving the action
period is discarded).

(b) Sequential random: Keep only the transmission order of the target
packet and randomly transmit the generated attack packet in the
action period.

(c) Random: Randomly transmit the generated attack packet in the ac-
tion period.

(d) No change.

3. IP address change.

(a) Randomly change the target packet IP address to an IP address in
the base traffic and use it as the IP address of the attack packet.

(b) Change the target packet IP address to a user-specified IP address.

(c) No change.

4. Session change.

(a) Change within the target session.

(b) Change the session associated with the transmission/reception of the
target packet.

(c) Randomly select one of the (IP address, port) values in the target
traffic.

(d) Change the session to a user-specified session on a transaction-by-
transaction basis.

(e) No change.
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Source : 1.1.1.1  -> 5.5.5.5
Destination : 2.2.2.2 -> 1.1.1.1

ETH IP TCP Payload

Packet n. PCAP Header

Time : 131788020.75651   -> 131791620.75651 (-3600s) 

Payload Data : ABCDEF -> AB47@F

ETH IP TCP Payload

Packet 1. PCAP Header

ETH IP UDP Payload

Packet 2. PCAP Header

………

Selected Packet List

Figure 4. Example of packet modification.

Figure 4 shows an example of packet modification. Packets in the selected
list are modified based on the input condition values. The packets are then
combined with normal traffic to generate anomalous traffic.

A user may define traffic modifications based on specific cyber threat sce-
narios by listing the actions that yield the following effects:

By specifying a protocol, it is possible to express abnormal behavior using
a protocol vulnerability or to select abnormal behavior that occurs at a
specific point (IP address). By changing the IP addresses in common
packets, it is possible to represent a distributed denial-of-service attack
that transmits packets from various IP addresses to specific IP addresses,
or a man-in-the-middle attack that intercepts packets from certain IP
addresses and sends them to other IP addresses.

Network attacks can occur simultaneously or repeatedly at various time
intervals. It is possible to represent attacks that occur at specific times
and an attack that occurs repeatedly.

Increasing the amount of traffic can represent abnormal behavior corre-
sponding to a denial-of-service attack. Reducing the amount of traffic can
represent abnormal behavior corresponding to intentional packet drops.
Since this method increases or decreases the amount of traffic at several
levels, the denial-of-service criterion can be determined by considering the
general packet volume and throughput in the network environment. If
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throughput information is not available, it is possible to predict a denial-
of-service attack by specifying an acceptable scale factor.

By changing IP addresses, it is possible to express abnormal behavior
such as communications at unexpected locations or communications at
abnormal times at various locations. Details such as IP addresses, times
and transmission content can be created for various cases by changing
these configurations in a fixed or random manner or in a specific range.
In other words, it is possible to create a large number of cases for a single
scenario. The resulting automatically-generated test traffic can support
highly-reliable evaluations of intrusion detection system performance.

4. Implementation
In the experiments, PCAP traffic was collected from a real industrial con-

trol network and passed to the traffic generator. The traffic collection was
accomplished using an application programming interface (API) – libpcap for
Unix/Linux systems and WinPcap for Windows systems. Since the PCAP
traffic was collected in an industrial control network, it contained information
about the real environment.

The traffic generator created anomalous PCAP traffic from the collected
PCAP traffic, which was added to the original PCAP traffic to create the test
PCAP traffic. Since the real environment was reflected in the original traffic,
the test traffic captured normal operations as well as attacks. After creating the
test traffic, it may be sent to a network, machine learning system or a security
device (intrusion detection system or firewall) for learning and testing.

The traffic generator was written in Python 2.7. Wireshark was employed to
leverage its PCAP splitting and merging functions (editcap and mergecap).
The scapy library was used for PCAP read and write functions and the
multiprocessing library was used for speed up. The performance was in-
creased by dividing a large-capacity PCAP file into 1,000 units using editcap
and then reading it with multiprocessing. Note that the selection of 1,000
units was arbitrary and a user may increase or decrease the number of units
based on memory availability.

4.1 Preprocessing
The traffic generator receives PCAP-type normal traffic from the collected

network traffic and generates base traffic by selecting only the traffic related
to specific IP addresses/edges/sessions/services designated by a user. The user
inputs a CSV file with preprocessing options to the traffic generator as shown
in Table 1. Note that “–” means any and “r(n)” means select the number
n randomly. If multiple rules (preprocessing conditions) are provided as in
Table 1, then the packets that satisfy at least one rule are included in the base
traffic.

The following options are included in Table 1:
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Table 1. Preprocessing options.

Option IPsrc Portsrc Protocol IPdest Portdest Bidirectional

1 IP1 – – – – No
2 IP2 – – IP3 – No
3 IP4 Port1 – IP5 Port2 Yes
4 – – Proto1 – – No
5 IP6 Port3 Proto2 IP7 Port4 Yes
6 r(50) – – – – No

Option 1: All the packets sent from and received at IP1 (IP address
selection).

Option 2: All the packets sent between IP2 and IP3 (edge selection).

Option 3: All the packets sent from IP4-Port1 to IP5-Port2 (session
selection).

Option 4: All the packets using Proto1 (service selection).

Option 5: All the packets sent from IP6-Port3 to IP7-Port4 using Proto2.

Option 6: Fifty randomly-selected IP addresses from among the IP ad-
dresses in the input data, and all the packets transmitted from and re-
ceived at the 50 IP addresses.

The traffic generator can also provide information about the IP address-
es/edges/sessions/services for traffic that a user can employ to create an attack
model. Each file provides a list of IP addresses/edges/sessions/services used by
the traffic. If base traffic is already available, the traffic generator can proceed
directly to the target traffic generation step without any preliminary work.

4.2 User Configuration File
The traffic generator modifies normal traffic according to the characteristics

of an attack scenario to create abnormal traffic. A user inputs a scenario
(discussed in Sections 3.2 and 3.3 and Table 1) in the form of a CSV file that
embodies the characteristics of the test method and attack scenario. The traffic
generator then creates: (i) target traffic according to the options listed in the
scenario file; (ii) divides the target traffic into target data representing attack
periods; and (iii) generates abnormal traffic by performing actions on the target
data. The abnormal traffic that is generated is also in the PCAP format and
has the same size as the target traffic.

Table 2 shows a scenario file that simulates a query injection attack by
changing the payloads of randomly-selected target packets in target traffic.
Since only the payload is changed, not the header, it corresponds to a man-
in-the-middle (MiTM) attack. The target traffic is divided into five pieces of
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Table 2. Generation of abnormal traffic for a query injection attack.

Target - Number of target traffic (NT ): 100
Traffic - Length of target traffic(LT ): 5min
Generation

Target - Number of actions (NAct): 1
Data - Attack period (PA): 1min
Generation - Starting point (tA1): 0min

- Ending point (tA2): 5min
(Five target data of one minute in length are generated)

Action Target - Action period (tA1 ∼ tA2): 0 ∼ 60 s
Packet Total period and action period set to same value
Type - Target type: 2. Attack occurs at a specific

edge (IP address, IP address)
- Number of target IP addresses/edges/sessions/
services: 2. Enter the occurrence rate (x1%)
NTE = 1% of number of edges in target traffic
- How to specify target edge:
3. Randomly select target traffic and
use the same in all target data

Target - Number of target packets (NTP ):
Packet 2. Enter occurrence rate = 0.01%
Selection NTP = Packets in target traffic × 0.0001/5

- Select target packets:
1. Randomly select NTP target packets
from packets using target edge in target data

Target Payload 1. Change confirmation:
Traffic (a) Perform the change
Transformation 2. Enter payload change

interval: 1∼5 bytes
3. How to change payload:
(c) Change to random value

Traffic 1. Change confirmation:
Volume (b) No change

Replacement/ 1. Delete target packet and
Addition replace it with attack packet

Header 1. Change confirmation:
(b) No change

target data of one minute each to perform an action. If the action period and
total period are the same, then the target data length would be meaningless
because the attack does not have any periodicity.

When it is executed, the traffic generator produces the target packet list,
modified packet list, test traffic and test traffic log information. By comparing
the target packet list against the modified packet list, it is possible to con-
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Figure 5. Traffic generation for a query injection attack.

firm whether or not traffic modifications were performed based on the attack
scenario. The test traffic log stores the options pertaining to the scenario file
and information about traffic generation. After the test traffic is generated
using the scenario file and the collected industrial control network traffic, the
resulting target traffic and modified packets are shown in Figure 5.

The proposed approach can change protocol commands as desired (e.g., to
DNP3, IEC61850 or Modbus). Injection is modeled by specifying the byte
portion that contains the command and changing it to another command de-
sired by the user. This method handles bytes; therefore, if the structure of the
protocol is known, the desired protocol commands can be generated.

5. Conclusions
The principal challenge in conducting research on securing industrial con-

trol networks from cyber attacks is the lack of availability of real-world network
traffic that reflects normal and anomalous operations. Although it is possible to
collect traffic under normal operating conditions, due to security concerns and
the potential impact on operations, it is very difficult, if not impossible, to col-
lect abnormal network traffic from real-world industrial control systems. While
testbeds can overcome this limitation, they are expensive to implement and
operate; moreover, they will never completely model their real counterparts.
Additionally, it is infeasible to create and analyze a large number of cyber
attack scenarios, especially when each scenario can have numerous variations.

This chapter has addressed the problem by proposing a method for auto-
matically generating a variety of anomalous test traffic based on cyber threat
scenarios related to industrial control systems. The proposed method starts
with normal traffic that is collected from a real industrial control network.
Leveraging abnormal scenarios provided by users, the method automatically
generates anomalous (attack) traffic based on target connections, time, traffic
amounts and transmission content that satisfy the scenarios. The anomalous
traffic is added to the original traffic to create the test traffic for developing
and evaluating intrusion detection systems.
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Future research will enhance the automated traffic generation process to
capture novel and multistage attacks. Additionally, it will attempt to model
the potential impacts of traffic with manipulated packets and/or transactions
on real industrial control devices.
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