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Chapter 15

VARIABLE SPEED SIMULATION FOR
ACCELERATED INDUSTRIAL CONTROL
SYSTEM CYBER TRAINING

Luke Bradford, Barry Mullins, Stephen Dunlap and Timothy Lacey

Abstract Industrial control systems employ a variety of hardware, software and
network protocols to control physical processes that are critical to soci-
etal functions. It is vital that industrial control system operators receive
quality training to defend against cyber attacks. Hands-on training ex-
ercises with real-world control systems enable operators to learn defen-
sive techniques and understand the real-world impacts of their control
decisions. However, cyber attacks and operator actions have unforeseen
effects that can take a significant amount of time to manifest and po-
tentially cause physical harm to systems, making high-fidelity training
exercises costly and time-consuming.

This chapter presents a methodology for accelerating training exer-
cises by simulating and predicting the effects of cyber events in partially-
simulated control systems. A hardware-in-the-loop simulation compris-
ing a software-modeled water tank and a commercially-available pro-
grammable logic controller are used to demonstrate the feasibility of
the methodology. The experimental results demonstrate that the ef-
fects of cyber events can be accurately simulated at speeds faster than
real time, significantly enhancing operator training regimens.

Keywords: Industrial control systems, training, hardware-in-the-loop simulation

1. Introduction
Most critical infrastructure operators lack the training to prevent and prop-

erly respond to sophisticated cyber attacks against industrial control systems [1].
Additionally, information security personnel lack an understanding of industrial
control systems and cannot predict the impacts of changes to control systems
and networks. Adversaries know that cyber attacks launched against industrial
control systems have the potential to cause significant physical harm to crit-
ical infrastructure assets. The ability to cause physical damage and the lack
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of well-trained personnel render industrial control systems attractive targets
for adversaries. Exacerbating the lack of cyber-capable control system opera-
tors is the fact that most training programs provide instruction at the basic or
intermediate knowledge levels [7].

The absence of thorough, advanced training regimens for industrial control
system security is primarily due to the lack of robust facilities that provide
experience with real-world control system components, physical systems and
processes. Consequently, there is an urgent need for training environments
that blend real control system components with physical processes to enable
trainees to understand the effects of cyber attacks and defensive actions. Since
cyber effects often take significant amounts of time to manifest themselves,
replicating their impacts in a learning environment becomes infeasible. Addi-
tionally, unforeseen consequences of cyber events have the potential to cause
catastrophic damage to the equipment used for training. The potential dam-
age to equipment makes high-fidelity training exercises prohibitively expensive.
Thus, a critical component of any solution is the ability to quickly model the
effects of cyber attacks so that more time can be devoted to analysis and eval-
uation, which correspond to higher levels of learning [4].

An ideal training environment is a full-scale, real-world facility with several
interconnected processes [7]. However, using such an environment for train-
ing is expensive and time-consuming. To address these challenges, this chap-
ter proposes a methodology for augmenting industrial control system security
training environments by enabling exercise coordinators to rapidly model and
predict the effects of cyber events. The methodology engages a hardware-in-
the-loop (HiL) simulation and commercially-available programmable logic con-
trollers (PLCs) to increase the speed of a physical process while enabling the
programmable logic controllers to operate as intended. The speed-up feature
enables trainees to gain valuable expertise and to understand the consequences
of their actions while limiting the possibility of physical damage to equipment.

2. Background
This section provides background information about industrial control sys-

tems, cyber training environments and hardware-in-the-loop simulation, and
discusses related work.

2.1 Industrial Control Systems
The United States describes the critical infrastructure as systems and assets,

both physical and virtual, so crucial to the country that their destruction or
incapacity would threaten U.S. national security, the economy, power supply,
public health, public safety and other areas [5]. Presidential Policy Directive
21 [6] lists sixteen U.S. critical infrastructure sectors, including energy, trans-
portation, water and communications. Assets in all the critical infrastructure
sectors engage industrial control systems in order to achieve increased automa-
tion, efficiency and maintainability.
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Industrial control systems monitor and control industrial processes with the
help of sensors, actuators, control units and networks [9]. In an industrial
control system, control units receive data from sensors. Based on the data
received from sensors, the control units direct actuators to control the processes
being monitored by the sensors in order to produce the desired outputs [9].
An industrial control system can be implemented locally, such as within the
confines of a factory, or across numerous devices and pieces of equipment over
a large geographical area, such as a power grid. Industrial control systems
are typically systems of systems that control multiple interconnected, mutually
dependent processes that function together to achieve industrial objectives.

2.2 Cyber Training Environments
Plumley et al. [7] have specified various levels of cognitive complexity for

control system training environments. Their goal was to create an industrial
control system educational framework that could offer training regimens for a
range of organizational budgets and needs. The primary determiner of the level
of a training environment is the realism it provides in the context of real in-
dustrial control systems. The complexity of the training scenarios that can be
provided by a training environment depends on the amount of realism provided.
The level of cognitive complexity increases as the training environment realism
increases [7]. With this in mind, Plumley and colleagues created and mapped
four levels of industrial control system training environments to Bloom’s Tax-
onomy [4] in order to create a comprehensive industrial control system training
framework. Training environments capable of administering exercises at higher
levels of thinking map to higher levels of the taxonomy while providing access
to all the lower levels of the taxonomy.

Bloom’s Taxonomy, which was created by Benjamin Bloom (1913-1999),
classifies educational objectives based on cognitive complexity [4]. The taxon-
omy is widely used by educators to structure courses that enable students to
learn, apply knowledge, think critically and create new ideas. Bloom’s Taxon-
omy was revised in 2001 to comprise six categories of educational goals [7]. The
taxonomy progresses from the lowest cognitive level of basic understanding to
the highest cognitive level, which is the creation of original ideas. Bloom’s Tax-
onomy offers a means for aligning educational tools to specific levels of cognitive
complexity. Bloom emphasized the acquisition of concrete knowledge before in-
creasing the complexity of a training regimen. In other words, it is imperative
that trainees master their current levels in the taxonomy before proceeding to
higher levels. This is why, in many high-risk or critical fields, training involves
several levels of simulation, where the complexity of each level progressively
increases until trainees are proficient enough to attempt real tasks using real
equipment.

A Level 1 training environment is entirely software defined. It uses software
to simulate an industrial controller or control system. Level 1 environments
encompass the lowest two levels of Bloom’s Taxonomy – remembering and
understanding [7].
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A Level 2 training environment includes an automated process that creates
real physical effects. However, instead of employing the same hardware and
software used in industry, it incorporates simple embedded systems (e.g., Ar-
duino and Raspberry Pi devices) that are programmed to monitor and control
physical processes using common programming languages (e.g., C and Python).
Level 2 environments cover the applying and analyzing levels of Bloom’s Tax-
onomy [7].

A Level 3 environment uses real hardware and software. The hardware and
software control a partial industrial control system [7]. For example, a Level 3
environment for training prison guards would enable them to control the locks
on a block of prison cell doors. These environments are not full-scale industrial
control systems, but they enable trainees to familiarize themselves with real-
world equipment, industrial networks and process systems. Since they are not
full-scale systems, they cannot provide an understanding of real-world systems,
where a malfunction in one process can affect other processes due to system
interdependencies. Level 3 environments reach the evaluating level of Bloom’s
Taxonomy. Trainees can compare observations against standard operational
criteria and data. Realistic data enables them to make realistic evaluations
that transfer to real-world systems. To maximize realism and minimize cost
and space, Level 3 environments employ hardware-in-the-loop simulations of
industrial processes that are controlled by real hardware. Hardware-in-the-
loop simulations eliminate the need to incorporate large and expensive physical
equipment in training environments by replacing them with accurate simula-
tions that interface with real-world industrial control hardware.

A Level 4 environment is a real-world, full-scale industrial control system
training facility. The training facility is essentially identical to its real-world
counterpart [7]. Level 4 environments reach the highest level of thinking in
Bloom’s Taxonomy – creating. In the context of industrial control system
training, this type of cognitive complexity cannot be achieved without the real
system. Trainees have the ability to view and manipulate every component in
the actual industrial environment. New methods and solutions can be devised,
tested and applied to the real system, and their effects can be observed.

Cyber attacks are often slow moving and are, therefore, difficult to detect.
Stuxnet, the most famous malware to target industrial control systems, took
months to conduct its attacks [11]. Since cyber attacks often employ the low-
and-slow attack paradigm, it can take a long time to witness their effects. Thus,
a key component of a realistic industrial control system training environment is
a means for speeding up the progress of slow moving attacks and their impacts
during training activities.

2.3 Hardware-in-the-Loop Simulation
The industrial control system training environment discussed in this chapter

is a Level 3 system that can speed up simulations of physical processes, en-
abling trainees to quickly detect and observe the progression of cyber events,
and predict their effects. It employs a hardware-in-the-loop simulation of an in-
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dustrial process that is controlled by an actual programmable logic controller.
Hardware-in-the-loop simulation is a common technique used in industry to
develop and evaluate complex, real-time, embedded systems [8]. It yields a
simulated process under control that creates a realistic test environment for
embedded systems. During testing, the embedded system interacts with the
process simulation. A key component of hardware-in-the-loop simulation is the
electrical emulation of sensors and actuators, which serves as the interface be-
tween the simulation and embedded system under test. The process simulation
determines the values of the electrically-emulated sensors. These values are
read by the embedded system under test as feedback. The control algorithm
running on the embedded system under test outputs actuator control signals
based on the feedback received. The output control signals produce changes
to the variable values in the simulation, including the values measured by the
sensors. Thus, hardware-in-the-loop simulation incorporates a complete control
loop.

Hardware-in-the-loop simulation is commonly used to test embedded sys-
tems because, in many cases, it is more efficient (and safer) than connecting
the embedded system directly to a real process. For example, the simulation
can enhance the quality of testing by increasing the scope of test scenarios
and overcoming the testing limitations imposed by a real process. Using a real
process also prevents the embedded system from being tested under failure con-
ditions. Furthermore, the simulation assists in developing embedded systems
under tight schedules that do not allow testing to be delayed until a process
prototype becomes available. Finally, it is more economical to conduct testing
using a high-fidelity, real-time hardware-in-the-loop simulation instead of a real
process.

2.4 Related Work
Saco et al. [8] noted that the ideal learning environment for industrial con-

trol system operators is a real-world plant, but they acknowledged that such
environments would be large, expensive and potentially dangerous to be used
by novices. Recognizing the need for high-fidelity simulation tools that could
provide effective training regimens, Saco and colleagues proposed a hardware-
in-the-loop, real-time simulation system. MATLAB Simulink, a software tool
for modeling dynamic systems, was used to model the control algorithm and
plant (water tank with an inflow pump and pneumatic drainage valve). The
control algorithm was converted to a C program using the Simulink Real Time
Workshop software. The C code was downloaded to real-time prototyping hard-
ware (dSpace 1102 floating-point controller board) and executed independently
of MATLAB. After the C code was downloaded to the board and executed, the
controller hardware was able to control the water level in the tank simula-
tion. The functionality provided by Simulink enabled trainees to implement
and refine their own (similar) hardware-in-the-loop systems to gain better un-
derstanding of the physical system and control principles.
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Thornton and Morris [10] state that the ideal environment for studying cy-
ber attacks against industrial control systems is a real system with real hard-
ware, software and communications technologies. Since such environments are
prohibitively expensive, Thornton and Morris developed a virtual laboratory
testbed that was mobile, sharable and expandable. The testbed incorporated
a Simulink gas pipeline simulation with sensors and actuators, a virtual pro-
grammable logic controller simulated with Python, and a human-machine inter-
face (HMI). The Simulink gas pipeline and the virtual logic controller commu-
nicated via JavaScript Object Notation (JSON) attribute-value pairs contained
in user datagram protocol (UDP) packets. The virtual logic controller commu-
nicated with other devices such as the human-machine interface and physical
programmable logic controllers via Modbus/TCP, a standard industrial con-
trol system protocol. Communications between the virtual logic controller and
physical logic controllers enabled the virtual laboratory testbed to produce ac-
curate control system network traffic for analysis.

Unfortunately, the two environments described above do not incorporate
real-world control system hardware. Incorporating industrial control system
hardware brings simulated environments much closer to real industrial systems,
especially when attempting to understand normal operations and attack sce-
narios. Moreover, the two environments cannot speed up operations to quickly
model the effects of attacks and provide more time for operator training and
analysis. For example, without a speedup capability, low and slow attacks such
as Stuxnet cannot be replicated quickly enough to observe their effects and
learn from them in a reasonable timeframe.

3. Methodology
This section describes the proposed methodology, including the test systems

and experimental design.

3.1 Test Systems
The test environment incorporated two systems that implemented a water

tank control loop. A Lab-Volt 3531 training system was used as the base-
line, real-world control system [3]. A simulated water tank system replicated
the operation of the Lab-Volt training system. The Lab-Volt system and the
simulated water tank incorporated the control loop shown in Figure 1. The
programmable logic controller in each control loop maintained the water level
in the tank at a user-defined set point. It polled the water level sensor to ob-
tain the current water level in the tank. Based on the current water level, the
controller sent a command to the drainage valve to increase or decrease the
outflow rate.

Lab-Volt 3531 Training System. Figure 2 shows the Lab-Volt 3531
system components. An Allen-Bradley ControlLogix 1756-L55 programmable
logic controller that was programmed using RSLogix 5000 from Rockwell Au-
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Figure 1. Test system control loop.

Figure 2. Lab-Volt 3531 training system.

tomation served as the primary control unit. The inflow rate of water into the
cylindrical tank (8” diameter and 36” height) was controlled by an alternat-
ing current pump driven by an Allen-Bradley PowerFlex 40 variable frequency
drive (VFD). A differential pressure transmitter (DPT) continuously moni-
tored the inflow rate using a Venturi tube, which created a differential pressure
proportional to the rate of flow through the tube. Taps at the high pressure
and low pressure portions of the tube were connected to the differential pres-
sure transmitter, which measured the pressure difference and computed the
flow rate. The differential pressure transmitter sent the flow rate value to the
programmable logic controller as a 4-20mA analog signal. The programmable
logic controller employed a proportional-integral-derivative (PID) control strat-
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egy to determine the appropriate pump speed in order to ensure that the water
inflow rate remained constant at the set point. The computed pump speed
was transmitted to the variable frequency drive as an analog value. An Allen-
Bradley PanelView Plus 600 human-machine interface was used to monitor and
configure the system.

A globe type valve located at the bottom of the tank enabled water to
exit the tank and drain into the holding basin. The valve closed partially
or completely based on the analog signal it received from the programmable
logic controller. The valve was pneumatically operated and equipped with a
spring-and-diaphragm actuator. A plug in the valve restricted the flow of water
into the tank outlet. The plug was designed to have a fixed linear relationship
between the distance traveled by the valve stem and the amount of flow allowed
through the valve. When the valve received an analog signal from the logic
controller, the current-to-pressure converter of the valve linearly transformed
the analog signal to a pneumatic pressure, which was applied to the surface
of the valve diaphragm, producing a force that overcame the spring force and
moved the plug up or down. The plug restricted the flow of water through the
valve from 0% to 100%. The percentage of flow allowed through the valve is
referred to as the valve position.

A second differential pressure transmitter measured the pressure in the bot-
tom tank to compute its water level. The water level value was transmitted
to the programmable logic controller as a 4-20mA analog signal. The pro-
grammable logic controller used a PID control strategy to determine the valve
position based on the water level value supplied by the differential pressure
transmitter. The controller transmitted the desired valve position to the valve
as a 4-20mA analog signal. The PID control strategy maintained the water
level in the tank with minimal overshoot, undershoot and set point deviation.

Simulated Water Tank. The process simulator experiment employed a
hardware-in-the-loop simulation of the physical process and a ControlLogix
1756-L55 programmable logic controller. Figure 3 shows the simulated and
real components of the test system. The hardware-in-the-loop simulation en-
abled the system to use real industrial control system hardware without having
to incorporate physical equipment such as pumps and tanks. The simulated
physical process managed by the programmable logic controller mirrored the
Lab-Volt water tank system. A pump filled the tank with water at a constant
inflow rate and a drainage valve at the bottom of the tank allowed water to
exit. The simulation accurately replicated the behavior of the Lab-Volt system.

The simulated water tank was implemented as a MATLAB Simulink model.
Simulink is a graphical programming environment that can model a variety of
systems by selecting blocks from various block libraries and connecting them via
input/output (I/O) arrows. Each block includes customizable features; some
blocks enable users to write custom code. Simulink simplified the modeling
process because it eliminated the need to write code for complex mathematical
functions. Its graphical environment assisted in visualizing the system.
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Figure 3. HiL simulation of the Lab-Volt 3531 system.

A MATLAB function block was developed to capture the water tank dy-
namics. The function block implemented Equations (1) through (5) below that
define the dynamics and physical characteristics of the water tank.

The cross-sectional area of the water tank A (in2) is computed as:

A = πr2 (1)

where r is the radius of the tank in inches.
The height (level) of water in the tank H in inches is computed as:

H =
V ol

A
(2)

where V ol is the volume of water in the tank (in3).
The inflow rate Qin (in3/min) is computed as:

Qin = 588.9 (3)

Note that Qin is a user-provided value that could be changed at any point in
time during the simulation; it was set to 588.9 in3/min.

The outflow rate Qout (in3/min) is computed as:

Qout = VP · VC ·
√

H (psi) (4)

where VP is the position of the drainage valve that ranges from zero to one
(VP = 0.5 corresponds to the valve being half closed); and VC is the dimension-
less valve constant/flow coefficient (VC = 6). Note that Qout increases as the
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Figure 4. Simulink water tank graphical user interface.

height (level) of water in the tank increases. This reflects the effect of water
pressure on the outflow rate.

The rate of change of water volume ΔV ol (in3/min) in the tank with respect
to time is computed as:

ΔV ol = Qin − Qout (5)

The signal generated by the ΔV ol output was fed to an integrator block, which
calculated the integral of the derivative with respect to time in order to compute
the volume V ol; initially V ol = 0, meaning that the tank was empty. This was
reflected as an initial condition in the configuration options of the integrator
block.

The Simulink Dashboard library supports the rapid development of graphi-
cal user interfaces (GUIs) for monitoring and controlling simulated processes.
Figure 4 shows the graphical user interface for the simulated water tank. The
interface includes a knob block for setting the inflow rate and gauge blocks for
monitoring the water level, volume, current drainage valve configuration and
outflow rate. The interface also has three light blocks that indicate if the cur-
rent water level in the tank is at a critical level. By default, the lights shine
green. When the water level reaches a critical height, the corresponding light
shines red. The three lights correspond to whether the tank is less than 10%
full, greater than 90% full and greater than 95% full, respectively.

Figure 5 shows a speedup block from the Real-Time Pacer library, which en-
abled the simulation speed to be increased or decreased as desired. The speedup
block was configured by entering a number that represented the speedup factor
for the simulation. For example, a speedup factor of two doubled the speed of
the simulation.

A MATLAB function block reported the current water level in the tank
to the programmable logic controller every 0.1 seconds. In order to maintain
this reporting rate, the sample time tS of the MATLAB function block was
adjusted according to the simulation speedup factor f . When the simulation



Bradford, Mullins, Dunlap & Lacey 293

Figure 5. Simulink speedup block.

Figure 6. Setting the sample time.

was executed in real time, the sample time was set to 0.1 seconds as shown
in Figure 6. A speedup factor of two required the sample time to be set to
0.2 seconds and a speedup factor of ten required the sample time to be set to
1 second. In general, the sample time tS is computed as:

tS =
f

10
(6)
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Figure 7. Simulated water tank.

A Y-box served as the interface between the simulated water tank and pro-
grammable logic controller by providing an electrical emulation of the sensors
and actuators. The Y-box, which was created to support the development of
hardware-in-the-loop simulations, received currents and voltages as inputs and
generated currents and voltages as outputs based on commands received over
a universal serial bus (USB) port [2]. The inputs and outputs enabled the Y-
box to interface with a programmable logic controller in the same manner as
regular sensors and actuators. The simulation and the Y-box communicated
via a serial link. The test system utilized the same model programmable logic
controller and ladder logic used to control the Lab-Volt system. Note that the
ladder logic used for the simulation did not include the PID controller that
controlled the inflow rate.

In the Simulink model, the inflow rate was set as a constant parameter.
Minimal changes were made to the ladder logic to enable the programmable
logic controller to operate in the simulated environment. The project path
was updated with the IP address of the programmable logic controller used
in the simulated system. Also, the module numbers were updated to match
the hardware present in the programmable logic controller used to control the
simulated system. The code section containing the PID controller that adjusted
the inflow rate was not configured to activate because it was not used by the
Simulink model. Figure 7 shows the setup of the simulated system.
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Table 1. Run names.

Name Meaning

LVTn Lab-Volt 3531 Trial n
Simx1Tn HiL System Real-Time Trial n
Simx2Tn HiL System 2 × Real-Time Trial n
Simx10Tn HiL System 10 × Real-Time Trial n

3.2 Experimental Design
Validation testing was performed to verify the accuracy and consistency of

the simulation. The experiments compared the operation of the simulation
against the operation of an actual water tank, specifically, against the Lab-Volt
training system. The experiments sought to demonstrate that the simulation
reflected the normal operation of a real water tank when executed at real time
and at faster simulation rates. Previous pilot studies showed that the Lab-Volt
system was consistent from run to run. Specifically, the standard deviation of
the average differences between Lab-Volt runs was less than 0.01%. Thus, water
level recordings from only three Lab-Volt runs were used in the experiments.

The water tank simulation was also executed three times at each speed
specified in Table 1 for a total of nine runs; Table 1 shows the names of the
runs executed in the experiments. The water level recordings from the three
Lab-Volt runs were compared against the water level recordings from the nine
simulated water tank runs. In order to ensure accurate comparisons, all the
Lab-Volt and simulation runs followed the procedure shown in Figure 8, which
depicts a typical Lab-Volt run in the experiments.

Each run in the experiments comprised the following steps:

The pump was started, which caused the water level in the tank to rise.

A Python script was executed to read and write tags in the programmable
logic controller ladder logic. The script set the water level set point to
30% full and began to record the current water level and the time at half-
second intervals starting at zero seconds. Water levels for the simulation
and Lab-Volt runs were measured as percentages, where 0% corresponded
to an empty tank and 100% corresponded to a full tank.

As the water level in the tank approached 30%, the Python script moni-
tored the rising water level to detect the water level steady state at 30%.
In the experiments, steady state was considered to be reached when the
water level reached the set point and remained at the set point with min-
imal deviations (less than ±0.5% from the set point). A well-tuned PID
controller ensured that the process variable reached the set point with
minimal overshoot (less than 3%). The PID controller then corrected
the overshoot and the process variable remained close to the set point
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Figure 8. Experimental procedure.

with minimal deviations. The Python script detected the steady state
by checking if the current water level was within ±0.1% of the set point.
After meeting this threshold, the Python script waited for 25 seconds to
enable the PID controller to correct any initial overshoot. After this time,
the Python script sent a confirmation that the steady state was reached.
Pilot studies demonstrated that a wait time of 25 seconds was adequate
for the PID controllers in the simulation and Lab-Volt system to correct
initial overshoots and achieve the water level steady state.

After the script detected the steady state at 30%, it changed the water
level set point to 60%. The water level in the tank began to rise and the
script waited to detect when the water level was steady at 60%.

After the script detected that the water level had reached steady state at
60%, it stopped collecting data and ended the run.

Each run in the experiments yielded a curve with water level on the y-axis
and time on the x-axis. In order to ensure consistent analysis, the experiments
considered an interval of time in which all three Lab-Volt runs achieved steady
state at 30%, rose to 60% and achieved steady state at 60%.

After the three Lab-Volt runs were completed and the raw data was collected,
another Python script adjusted the three curves so that they reached 45% at the
same time (designated as zero seconds). In the first Lab-Volt curve, the Python
script used linear interpolation to compute the time at which the curve reached
45% and subtracted this time from all other times in the curve. The script
repeated this process for the other two Lab-Volt curves. These adjustments
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shifted the curves so that that they centered at zero seconds with a height of
45%, the midpoint between the 30% and 60% set points.

After the three curves were adjusted, an 80-second time interval was selected.
During this time interval, the three Lab-Volt runs completed the required be-
havior of achieving steady state at 30%, rising to 60% and achieving steady
state at 60%. Before the curves from different runs were compared, all the
curves were adjusted so that they reached 45% at zero seconds. Subsequent
analysis compared only the portions of the curves within the 80-second time
interval to ensure consistent comparisons. The consistency enabled accurate
comparisons of each run against every other run in the experiments.

Table 2 shows the matrix used to compare all the runs. Note that the
simulation run names are shortened in the matrix. Simx1Tn is denoted as
Sx1Tn, Simx2Tn is denoted as Sx2Tn and Simx10Tn is denoted as Sx10Tn.

The experiments compared the curves from the trials by considering the
average difference between them. The average difference corresponded to the
average distance between the water level for the first curve and the water level
for the second curve at each point in time. In order to compute the average
difference between two curves, a Python script first adjusted the timestamps
for each curve to account for speedup. For example, when the Sx1T1 run was
being compared against the Sx10T1 run, all the timestamps in the Sx10T1
run were multiplied by ten to account for the speedup in the Sx10T1 run. The
matrix cell represented by this comparison has row Sx10T1 and column Sx1T1.

Next, the Python script adjusted both curves so that they reached 45%
at the same time, which was designated as zero seconds. In the case of the
Sx1T1 curve, the Python script used linear interpolation to compute the time
when the curve reached 45% and subtracted this time from all the other times
in the curve. The script repeated this process for the Sx10T1 curve. These
adjustments shifted both curves so that that they centered at zero seconds for
a water level of 45%, the midpoint between the 30% and 60% set points.

At this point, the script removed all the portions from the two curves that
were not included in the 80-second time interval. Then, the script iterated
through the remaining timestamps for the Sx1T1 curve and employed linear
interpolation to determine the corresponding heights in the Sx10T1 curve. At
this point, the Python script had three curves – the Sx1T1 curve, the Sx10T1
curve and the new Sx10T1 curve containing only the timestamps from the
Sx1T1 curve and their associated water levels computed via linear interpolation.
The matching timestamps enabled the Sx1T1 and Sx10T1 runs to be compared
in a straightforward manner.

Finally, the Python script iterated through the Sx1T1 curve and the new
Sx10T1 curve. For each timestamp, the script calculated the absolute value of
the difference between the water level in the Sx1T1 curve and the water level in
the new Sx10T1 curve. After iterating through both curves, the Python script
added all the absolute values, divided the sum by the number of timestamps
and returned the quotient as the average difference between the two runs.
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Two evaluation metrics were employed in the experiments. The first metric
measured whether or not the simulation completed the required behavior of
achieving the water level steady state at 30%, raising the water level to 60%
and achieving the water level steady state at 60% within the 80-second time
interval. If a simulation run completed the required behavior within the time
interval, then the run passed the first metric; otherwise, it failed the metric.

The second metric considered the average difference between two runs. The
experiments used the mean of the average differences between the three Lab-
Volt runs as the threshold for the second evaluation metric. A high-fidelity
simulation was expected to have a similar average difference when compared to
the Lab-Volt system. If the average difference between two runs was less than
or equal to the mean of the average differences between the Lab-Volt runs, then
the runs passed the second metric; otherwise, they failed the metric.

4. Experimental Results
This section describes the experimental results.

4.1 Metric 1 (Required Behavior)
All the simulation runs completed the required behavior within the 80-second

time interval. Regardless of the simulation speed, all the simulation runs passed
the first evaluation metric. In order to verify that each run passed the first
metric, all the runs were graphed. For each graph, the portion of the graph
containing the 80-second time interval was visually inspected to ensure that
the simulation run achieved the required behavior.

Figures 9, 10 and 11 demonstrate the accuracy of the simulation in real-time,
two times the speed and ten times the speed, respectively. Note that the time
scales for the Simx2 and Simx10 graphs were multiplied by their respective
speedup factors to match real time. Each of the three graphs represents a
typical comparison of the simulation against the Lab-Volt system. The slopes
of the Lab-Volt run and the Simx1, Simx2 and Simx10 runs are almost identical.
The slight differences in the slopes is most likely due to variations of the inflow
rate in the Lab-Volt system. As mentioned above, the PID controller in the Lab-
Volt system that maintained a constant inflow rate produced minor fluctuations
in the inflow rate whenever it was forced to adjust the speed of the pump.
Another possible cause for the slight differences in the slopes is the trial-and-
error method used to tune the PID controller in the simulation. The main
differences between the graphs occur as they approach 60% steady state. The
differences are due to a control delay in the Lab-Volt system, corresponding
to the amount of time between the programmable logic controller sending a
command to the valve and the valve adjusting the plug to the correct position.
The simulation did not model this control delay and was, therefore, not affected
by the delay.

Figure 12 shows how well the simulation runs with speedup factors of two
and ten match the simulation run executed at real time. Note that the time
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Figure 9. Lab-Volt vs. Simx1.

Figure 10. Lab-Volt vs. Simx2.
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Figure 11. Lab-Volt vs. Simx10.

Figure 12. Simx1 vs. Simx2 vs. Simx10.



302 CRITICAL INFRASTRUCTURE PROTECTION XII

Figure 13. Lab-Volt vs. simulation.

scales for the Simx2 and Simx10 graphs were multiplied by their respective
speedup factors to match real time. The primary differences between the Simx1,
Simx2 and Simx10 graphs occur as they approach the 60% steady state. The
differences most likely result from the trial-and-error method used to tune the
PID controller in the simulation.

Table 3. Simulation accuracy – average differences (%).

Comparison Mean Min Max StDev

Lab-Volt vs. Lab-Volt 0.055 0.045 0.061 0.009
Lab-Volt vs. Simx1 0.203 0.198 0.210 0.005
Lab-Volt vs. Simx2 0.194 0.182 0.204 0.007
Lab-Volt vs. Simx10 0.245 0.193 0.278 0.031

4.2 Metric 2 (Average Difference)
Figure 13 and Table 3 summarize the average differences between the Lab-

Volt system and the simulation.
The average difference when comparing the Lab-Volt runs is well below 0.1%.

When executed at real time, the average difference between the Lab-Volt and
simulation runs ranges from 0.198% to 0.21%. When executed at two times
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Table 4. Run consistency – average differences (%).

Mean Min Max StDev

Lab-Volt 0.055 0.045 0.061 0.009
Simx1 0.021 0.014 0.026 0.006
Simx2 0.037 0.031 0.048 0.009
Simx10 0.102 0.045 0.131 0.049

faster than real time, the average difference between the Lab-Volt and simula-
tion runs ranges from 0.182% to 0.204%. When executed at ten times faster
than real time, the average differences between the Lab-Volt and simulation
runs ranges from 0.193% to 0.278%. The mean of the average differences for
all the comparisons between the simulation and the real water tank is 0.214%,
which is well above 0.055%, the mean of the average differences between the
Lab-Volt runs. These results demonstrate that the average difference between
the simulation and Lab-Volt runs is significantly greater than the average dif-
ference between the Lab-Volt runs regardless of the simulation speed. Thus,
the proposed simulation does not pass the second evaluation metric.

Although the simulation does not pass the second evaluation metric, all the
simulation results are relatively consistent as shown in Figure 13. In fact, all the
simulation runs produce relatively low average differences ranging from 0.182%
to 0.278%. The mean of the average differences for the Simx2 runs is slightly
lower than the mean for the Simx1 runs.

A permutation test comparing the average differences from the Simx1 and
Simx2 runs produced a p-value of 0.01354, which is greater than the 0.01 thresh-
old for the 99% confidence level. Thus, the permutation test showed that no
significant difference exists between the mean of the average differences for the
Simx2 runs and the mean of the average differences for the Simx1 runs at the
99% confidence level. The null hypothesis that the two means are equal can-
not be rejected because the p-value is greater than 0.01. This implies that the
simulation accuracy is the same when the simulation is run at real time and
at two times real time. Overall, the experimental results demonstrate that the
proposed simulation consistently models the Lab-Volt system with less than
±0.28% error on average at any point in time. The average differences between
the simulation and the real water tank are consistently low with a standard
deviation of 0.028%, even when the simulations were executed at speeds much
faster than real time.

4.3 Consistency
Table 4 demonstrates the consistency of multiple runs of the Lab-Volt system

and the simulation. The first row of the table represents the consistency of the
Lab-Volt system from run to run. The mean of the average differences between
Lab-Volt runs is 0.055%, the minimum average difference is 0.045% and the
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Table 5. Effect of speedup – average differences (%).

Comparison Mean Min Max StDev

Simx1 vs. Simx1 0.021 0.014 0.026 0.006
Simx1 vs. Lab-Volt 0.203 0.198 0.210 0.005
Simx1 vs. Simx2 0.070 0.056 0.081 0.008
Simx1 vs. Simx10 0.256 0.220 0.280 0.025

maximum average difference is 0.061%. The standard deviation for the Lab-
Volt runs is 0.009%. The other rows in the table demonstrate the consistency
of the simulation from run to run at each speed. When executed at real time,
the average differences between the simulation runs are more consistent than
the average differences between the Lab-Volt runs. The consistency in the
average differences decreases as the simulation speed increases. The table shows
that there is much less consistency from run to run when the simulation was
executed with a speedup factor of ten. This decrease in consistency may be due
to the reduced precision of the linear interpolation technique used to compute
the curves for the Simx10 runs. Since the simulations generated fewer points
when they were executed at higher speeds, there were fewer reference points for
the linear interpolation computations. Consequently, the Simx10 curves have
higher variability.

4.4 Simulation Speedup
Table 5 summarizes the average differences between: (i) simulation runs

executed at real time; (ii) simulation runs executed at real time versus the
Lab-Volt system; (iii) simulation runs executed at real time versus simulation
runs executed with a speedup factor of two; and (iv) simulation runs executed
at real time versus simulation runs executed with a speedup factor of ten.

The first row in Table 5 shows that the simulation yields consistent results
from run to run when executed at real time. The second and third rows demon-
strate that, when executed at real time, the simulation is consistent with the
Lab-Volt system and the simulation executed with a speedup factor of two,
respectively. The fourth row shows that the average difference between the
simulation executed at real-time is consistent with the simulation executed
with a speedup factor of ten. The average differences between the simulation
executed at real time and the simulation executed with a speedup factor of
two are much lower than the average differences between the simulation exe-
cuted at real time and the simulation executed with a speedup factor of ten.
As mentioned above, this difference is due to the imprecise tuning of the PID
controller in the simulation, which has a greater effect when the simulation is
executed with a speedup factor of ten.
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5. Conclusions
The proposed methodology has been designed to accelerate the pace of indus-

trial control system training exercises. The methodology incorporates commer-
cial programmable logic controllers to enable trainees to work with real control
system components. A hardware-in-the-loop simulation is employed to speed
up the simulated physical process, providing trainees with an understanding
of the impacts of their control actions during normal operations, attacks and
other cyber events. While consistency and accuracy are lost at high simula-
tion speeds, the experimental results reveal that the physical process responds
appropriately. In each test case, when a trainee changed the set point, the
programmable logic controller responded to the change and adjusted the water
level in the tank. Simulation runs were performed at real time, twice as fast
as real time and ten times as fast as real time. As expected, the fidelity of the
accelerated simulation runs depends on the accuracy and fidelity of the physical
process model. Nevertheless, the environment incorporating a simulated sys-
tem in conjunction with a full-scale industrial control system enables trainees
to gain operational expertise efficiently, safely and at reduced cost.

While this researchhas demonstrated the feasibility of the simulation speedup
methodology, additional work is required to decrease the negative impacts in-
duced by increasing the simulation speed. The simulation should also be tested
to determine how well it copes with diverse operating conditions and models the
effects of attacks and other cyber events. Additionally, refinements should be
made to improve the consistency and accuracy of the simulation. Other future
improvements include: (i) devising a universal approach for tuning PID con-
troller parameters; (ii) incorporating additional interconnected processes and
components; (iii) testing the upper bound of the speedup factor to determine
how fast the proposed methodology can accurately and consistently accelerate
cyber events; and (iv) formulating an approach for seamlessly and concurrently
transferring cyber events from full-scale, real-world testbeds such as Level 4
environments to the simulation system.

Note that the views expressed in this chapter are those of the authors and do
not reflect the official policy or position of the U.S. Air Force, U.S. Department
of Defense or U.S. Government.
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