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Seismic inverse problem

Reconstruction of subsurface Earth properties from seismic
campaign: collection of wave propagation data at the surface.

Surface ΓSource

Receivers
set Σ

Subsurface area of interest Ω
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Seismic data

We work with back-scattered partial data from one-side illumination
on large domain.
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Seismic data

Inverse problem: from seismic traces to subsurface?
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nonlinear, ill-posed inverse problem.
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2 Time-Harmonic Inverse Problem, FWI
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Time-harmonic wave equation

We consider propagation in acoustic media, given by the Euler’s
equations, heterogeneous medium parameters κ and ρ:{

−iωρ(x)v(x) = −∇p(x),

−iωp(x) = −κ(x)∇ · v(x) + f (x).

p: scalar pressure field,
v : vectorial velocity field,
f : source term,

κ: bulk modulus,
ρ: density,
ω: angular frequency.

The system reduces to the Helmholtz equation when ρ is constant,

(−ω2c(x)−2 −∆)p(x) = 0,

with c(x) =
√
κ(x)ρ(x)−1.
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Dual-sensors devices

The inverse problem aims the recovery of the subsurface medium
parameters from surface measurements of pressure and normal
(vertical) velocity:

F : m = (κ, ρ) → {Fp ; Fv} =
{
p(x1), p(x2), . . . , p(xnrcv );

vn(x1), vn(x2), . . . , vn(xnrcv )
}
.

Surface ΓSource

Receivers
set Σ

Subsurface area of interest Ω

D. Carlson, N. D. Whitmore et al.

Increased resolution of seismic data from a dual-sensor streamer cable – Imaging of primaries and multiples
using a dual-sensor towed streamer
SEG, 2007 – 2010

CGG & Lundun Norway (2017–2018)

TopSeis acquisition (www.cgg.com/en/What-We-Do/Offshore/Products-and-Solutions/TopSeis)
Florian Faucher – Reciprocity Waveform Inversion – March 12–14, 2019 8/22
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Full Waveform Inversion (FWI)

FWI provides a quantitative reconstruction of the subsurface
parameters by solving a minimization problem,

min
m∈M

J (m) =
1

2
‖F(m)− d‖2.

I d are the observed data,

I F(m) represents the simulation using an initial model m:

P. Lailly

The seismic inverse problem as a sequence of before stack migrations
Conference on Inverse Scattering: Theory and Application, SIAM, 1983

A. Tarantola

Inversion of seismic reflection data in the acoustic approximation
Geophysics, 1984

A. Tarantola

Inversion of travel times and seismic waveforms
Seismic tomography, 1987
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FWI, iterative minimization

Initial model m0Observations

Forward problem Fω(mk )

Misfit functional J

k = 0
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FWI, iterative minimization

Initial model m0Observations

Forward problem Fω(mk )

Misfit functional J

Optimization procedure

1. Gradient
2. Search direction sk
3. Line search αk

update model
mk+1 = mk + αk sk

Update ω

k = 0

k = k + 1
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FWI, iterative minimization

Initial model m0Observations

Forward problem Fω(mk )

Misfit functional J

Optimization procedure

1. Gradient
2. Search direction sk
3. Line search αk

update model
mk+1 = mk + αk sk

Update ω

k = 0

k = k + 1

Numerical methods

I Adjoint-method for the gradient computation, L-BFGS method,

I forward problem resolution with Discontinuous Galerkin methods,

I parallel computation, HPC, large-scale optimization,

I Rk: the code also works for elastic anisotropy and viscous media.
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FWI, iterative minimization

Initial model m0Observations

Forward problem Fω(mk )

Misfit functional J

Optimization procedure

1. Gradient
2. Search direction sk
3. Line search αk

update model
mk+1 = mk + αk sk

Update ω

k = 0

k = k + 1

I > 105: unknowns per physical parameter,

I > 106: matrix size for discretization,

I we also study stability and convergence of the algorithm . . .
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3 Reconstruction procedure using dual-sensors data

Florian Faucher – Reciprocity Waveform Inversion – March 12–14, 2019 11/22



Intro Inverse Problem Reconstruction procedure Experiments Conclusion

Minimization of the cost function

The appropriate misfit functional to minimize with pressure and
vertical velocity measurements.

I Compare the pressure and velocity fields separately:

JL2 =
∑
source

1

2
‖F (s)

p − d
(s)
p ‖2 +

1

2
‖F (s)

v − d
(s)
v ‖2.

I Compare the fields multiplication for all combinations:

JG =
1

2

∑
s1

∑
s2

‖d (s1)T
v F (s2)

p − d
(s1)T
p F (s2)

v ‖2.

G. Alessandrini, M.V. de Hoop, F. F., R. Gaburro and E. Sincich

Inverse problem for the Helmholtz equation with Cauchy data: reconstruction with conditional
well-posedness driven iterative regularization
preprint
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Minimization of the cost function

JG =
1

2

∑
s1

∑
s2

‖d (s1)T
v F (s2)

p − d
(s1)T
p F (s2)

v ‖2.

From Euler’s equation, vn(x i ) = −i(ωρ)−1∂np(x i ).
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Minimization of the cost function

JG =
1

2

∑
s1

∑
s2

‖d (s1)T
v F (s2)

p − d
(s1)T
p F (s2)

v ‖2.

From Euler’s equation, vn(x i ) = −i(ωρ)−1∂np(x i ).

I Cauchy data: the cost function follows Green’s identity.
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Minimization of the cost function

JG =
1

2

∑
s1

∑
s2

‖d (s1)T
v F (s2)

p − d
(s1)T
p F (s2)

v ‖2.

From Euler’s equation, vn(x i ) = −i(ωρ)−1∂np(x i ).

I Cauchy data: the cost function follows Green’s identity.

I Reciprocity gap functional in inverse scattering.

D. Colton and H. Haddar

An application of the reciprocity gap functional to inverse scattering theory
Inverse Problems 21 (1) (2005), 383398.

G. Alessandrini, M.V. de Hoop, R. Gaburro and E. Sincich

Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data
arXiv:1702.04222, 2017

G. Alessandrini, M.V. de Hoop, F. F., R. Gaburro and E. Sincich

Inverse problem for the Helmholtz equation with Cauchy data: reconstruction with conditional
well-posedness driven iterative regularization
preprint
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Stability results

Lipschitz type stability is obtained for the Helmholtz equation with
partial Cauchy data.

‖c1 − c2‖ ≤ C
(
JG(c1, c2)

)1/2

I Using back-scattered data from one side in a domain with free
surface and absorbing conditions,

Surface ΓSource

Receivers
set Σ

Subsurface area of interest Ω

I for piecewise linear parameters.

G. Alessandrini, M.V. de Hoop, R. Gaburro and E. Sincich

Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data
arXiv:1702.04222, 2017

G. Alessandrini, M.V. de Hoop, F. F., R. Gaburro and E. Sincich

Inverse problem for the Helmholtz equation with Cauchy data: reconstruction with conditional
well-posedness driven iterative regularization
preprint
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Additional possibilities

It allows the non-collocation of numerical and observational
sources:

JG =
1

2

∑
s1

∑
s2

‖d (s1)T
v F (s2)

p − d
(s1)T
p F (s2)

v ‖2.

I s1 is fixed by the observational setup,

I s2 is chosen for the numerical comparisons.
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4 Numerical experiments
Comparison of misfit functions
Changing the numerical acquisition with JG
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Experiment setup

3D velocity model 2.5× 1.5× 1.2km using dual-sensors data.
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Experiment setup

We work with time-domain data acquisition.
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Experiment setup

We work with time-domain data (pressure and velocity).
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I 100 m depth,
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For the reconstruction, we apply a Fourier transform of the time data.
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Comparison of misfit functional

We respect the observational acquisition setup and perform the
minimization of JL2 or JG , frequency from 3 to 15Hz.

JL2 =
∑
source

1

2
‖F (s)

p − d
(s)
p ‖2 +

1

2
‖F (s)

v − d
(s)
v ‖2.

JG =
1

2

∑
source

∑
source

‖d (s1)T
v F (s2)

p − d
(s1)T
p F (s2)

v ‖2.
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Comparison of misfit functional

We respect the observational acquisition setup and perform the
minimization of JL2 or JG , frequency from 3 to 15Hz.

d
ep

th

x

y

(a) True velocity

d
ep

th

x

y

(b) Starting velocity

Florian Faucher – Reciprocity Waveform Inversion – March 12–14, 2019 18/22



Intro Inverse Problem Reconstruction procedure Experiments Conclusion

Comparison of misfit functional

We respect the observational acquisition setup and perform the
minimization of JL2 or JG , frequency from 3 to 15Hz.
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Comparison of misfit functional

We respect the observational acquisition setup and perform the
minimization of JL2 or JG , frequency from 3 to 15Hz.
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But the major advantage of JG is the possibility to consider
alternative acquisition setup.

Florian Faucher – Reciprocity Waveform Inversion – March 12–14, 2019 18/22



Intro Inverse Problem Reconstruction procedure Experiments Conclusion

Experiment with different obs. and sim. acquisition

minJG =
1

2

∑
s1

∑
s2

‖d (s1)T
v F (s2)

p − d (s1)T
p F (s2)

v ‖2.

Acquisition for the measures s1

I 160 sources,

I 100 m depth,

I point source,
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Experiment with different obs. and sim. acquisition
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I 100 m depth,

I point source,

0

0.5

1

x
y

A
m
p
li
tu
d
e

Arbitrary numerical acquisition s2

I 5 sources,

I 80m depth,

I multi-point sources,
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I No need to known observational source wavelet.

I Differentiation impossible with least squares types misfit.
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Experiment with different obs. and sim. acquisition

Data from frequency between 3 to 15 Hz, domain size 2.5×1.5×1.2
km, Simulation using 5 sources only.
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Experiment with different obs. and sim. acquisition

Frequency from 3 to 15 Hz, 2.5 × 1.5 × 1.2 km,
Simulation using 5 sources only. -33% computational time.
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5 Conclusion
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Conclusion

Seismic inverse problem using pressure and vertical velocity data:

I appropriate cost function to minimize,
I allow minimal information on the acquisition setup,
I other applications,
I perspective: design the most efficient numerical setup,
I Rk: possible for elastic media with measures of traction.
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Conclusion

Seismic inverse problem using pressure and vertical velocity data:

I appropriate cost function to minimize,
I allow minimal information on the acquisition setup,
I other applications,
I perspective: design the most efficient numerical setup,
I Rk: possible for elastic media with measures of traction.

Quantitative reconstruction algorithm toolbox for time-harmonic wave,

I Discontinuous Galerkin discretization in HPC framework,
I large scale optimization scheme using back-scattered data,
I acoustic, elastic, anisotropy, 2D, 3D, attenuation.

P- and S-wavespeed reconstructions
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Conclusion

Seismic inverse problem using pressure and vertical velocity data:

I appropriate cost function to minimize,
I allow minimal information on the acquisition setup,
I other applications,
I perspective: design the most efficient numerical setup,
I Rk: possible for elastic media with measures of traction.

Quantitative reconstruction algorithm toolbox for time-harmonic wave,

I Discontinuous Galerkin discretization in HPC framework,
I large scale optimization scheme using back-scattered data,
I acoustic, elastic, anisotropy, 2D, 3D, attenuation.

Thank you
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Stability of the Helmholtz Inverse Problem

‖c−2
1 − c−2

2 ‖ ≤ C
(
‖F (c−2

1 )− F (c−2
2 )‖

)

G. Alessandrini

Stable determination of conductivity by boundary measurement
Applicable Analysis 1988

N. Mandache

Exponential instability in an inverse problem for Schrödinger equation
Inverse Problems 2001
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‖c−2
1 − c−2

2 ‖ ≤ C
(
‖F (c−2

1 )− F (c−2
2 )‖

)
initial
model

target simulationobservation

δ

I Stability associate data and model correspondence

I Reconstruction is based on the iterative minimization of the
difference between observation and simulation using an initial
model.

G. Alessandrini

Stable determination of conductivity by boundary measurement
Applicable Analysis 1988

N. Mandache

Exponential instability in an inverse problem for Schrödinger equation
Inverse Problems 2001
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(
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Conditional Lipschitz stability: assumptions

I c(x) is bounded B1 ≤ c−2(x) ≤ B2 in Ω

I c(x) has a piecewise constant representation of size N

c(x)−2 =
N∑

k=1

ckχk(x)

I Ω has Lipschitz boundary

‖c−2
1 − c−2

2 ‖L2(Ω) ≤ C ‖F (c−2
1 )− F (c−2

2 )‖ (1)

G. Alessandrini and S. Vessella

Lipschitz stability for the inverse conductivity problem
Advances in Applied Mathematics 2005

E. Beretta, M. V. de Hoop, F. and O. Scherzer

Inverse boundary value problem for the Helmholtz equation: quantitative conditional Lipschitz stability
estimates.
SIAM Journal of Mathematical Analysis 2016
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Formulation

The stability constant is bounded

1

4ω2
eK1N1/5 ≤ C ≤ 1

ω2
e(K(1+ω2B2)N4/7) (2)

I depends on the partitioning N and the frequency ω

E. Beretta, M. V. de Hoop, F. and O. Scherzer

Inverse boundary value problem for the Helmholtz equation: quantitative conditional Lipschitz stability
estimates 2016
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Conditional Lipschitz stability for Cauchy data

In the case of partial Cauchy data (p and ∂νp), we have that, we
can obtain a Lipschitz type stability:

‖c−2
1 − c−2

2 ‖ ≤ C
(
JG(c−2

1 , c−2
2 )
)1/2

Where c−2
1 and c−2

2 are piecewise linear.
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