

Packaging Solution for SiC Power Modules with a Fail-to-Short Capability APEC, Anaheim, USA

Ilyas DCHAR¹, Cyril BUTTAY^{2*}, Hervé MOREL²

¹SuperGrid Institute, Villeurbanne, France ²Laboratoire Ampère, Villeurbanne, France

21/3/2019

Introduction

Power Module Design & Manufacturing

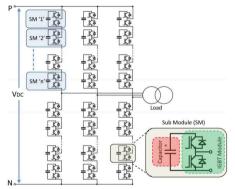
Test of the Failure Mode

Conclusions

SuperGrid Institute

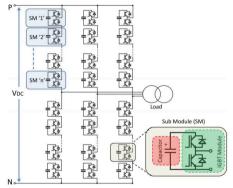
Outline

Introduction


Power Module Design & Manufacturing

Test of the Failure Mode

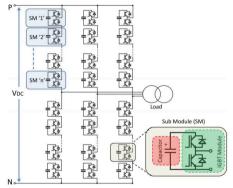
Conclusions



Source: I. Yaqcub PhD thesis, 2015 [1]

HVDC Converters

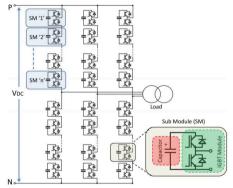
- Rated at 100s kV (ex 320 kV for France-Spain link)
- Series of 100s of transistors (800 for same converter)
- ► Transistors fail randomly
 - Should not stop converten
 - Failed device turned to short circuit
- → Need for Fail-To-Short Packaging



Source: I. Yaqcub PhD thesis, 2015 [1]

HVDC Converters

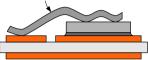
- Rated at 100s kV (ex 320 kV for France-Spain link)
- Series of 100s of transistors (800 for same converter)
- Transistors fail randomly
 - Should not stop converter
 - Failed device turned to short circuit
- → Need for Fail-To-Short Packaging


Source: I. Yaqcub PhD thesis, 2015 [1]

HVDC Converters

- Rated at 100s kV (ex 320 kV for France-Spain link)
- Series of 100s of transistors (800 for same converter)
- Transistors fail randomly
 - Should not stop converter
 - Failed device turned to short circuit

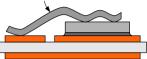
Need for Fail-To-Short Packaging


Source: I. Yaqcub PhD thesis, 2015 [1]

HVDC Converters

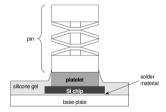
- Rated at 100s kV (ex 320 kV for France-Spain link)
- Series of 100s of transistors (800 for same converter)
- Transistors fail randomly
 - Should not stop converter
 - Failed device turned to short circuit
- → Need for Fail-To-Short Packaging

Wirebond


- Standard packaging: Fail-to-Open
- Wirebonds act as fuses or blown away
- → Need for massive contacts
- "Press pack"-type packages introduced
- Initially for single die, now for multichip

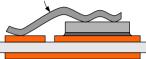
When failure occurs:

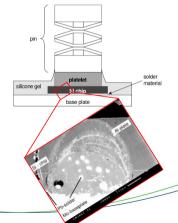
- Temperature rises
- Die and surrounding metal melt
- They form a conductive area
- Strong package contains explosion


Wirebond

- Standard packaging: Fail-to-Open
- Wirebonds act as fuses or blown away
- → Need for massive contacts
- "Press pack"-type packages introduced
- Initially for single die, now for multichip

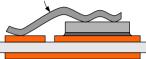
When failure occurs:


- Temperature rises
- Die and surrounding metal melt
- They form a conductive area
- Strong package contains explosion

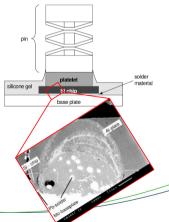


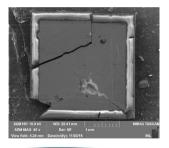
source: Gunturi, S. et al. Innovative Metal System for IGBT Press Pack Modules (ISPSD 2003) [2]

Wirebond


- Standard packaging: Fail-to-Open
- Wirebonds act as fuses or blown away
- → Need for massive contacts
- "Press pack"-type packages introduced
- Initially for single die, now for multichip
- When failure occurs:
 - Temperature rises
 - Die and surrounding metal melt
 - They form a conductive area
 - Strong package contains explosion

Wirebond

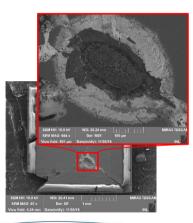

- Standard packaging: Fail-to-Open
- Wirebonds act as fuses or blown away
- → Need for massive contacts
- "Press pack"-type packages introduced
- Initially for single die, now for multichip
- When failure occurs:


SuperGrid

- Temperature rises
- Die and surrounding metal melt
- They form a conductive area
- Strong package contains explosion

Is a FTS package Possible for SiC?

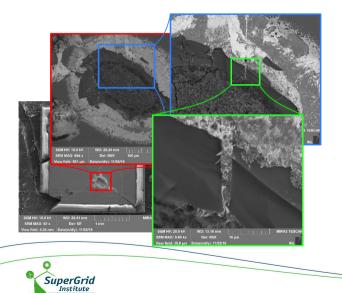
source: Gunturi, S. *et al.* Innovative Metal System for IGBT Press Pack Modules (ISPSD 2003) [2]

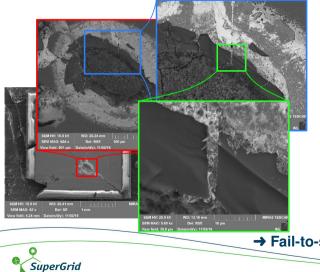


► Dies fracture because of failure

SiC and metal remain separate

Tiny metal filaments form


Dies fracture because of failure
SiC and metal remain separate
Tiny metal filaments form


- ► Dies fracture because of failure
- SiC and metal remain separate
- ► Tiny metal filaments form

- Dies fracture because of failure
- SiC and metal remain separate
- ► Tiny metal filaments form

Institute

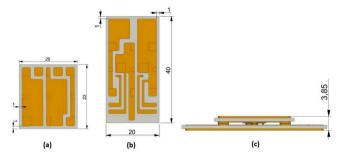
- ► Dies fracture because of failure
- SiC and metal remain separate
- ► Tiny metal filaments form

Fail-to-short behaviour possible with SiC

Outline

Introduction

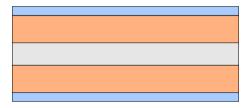
Power Module Design & Manufacturing


Test of the Failure Mode

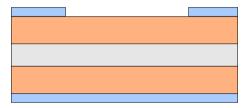
Conclusions

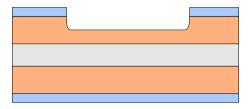
Module Structure

- "Sandwich structure": massive interconnects
- Silver sintering: high temperature bonding
- Salient features: for topside contact with dies
- Two SiC MOSFETs: multi-chip module (half -bridge config.)



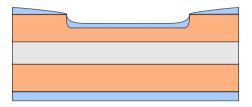
► DBC with 500 µm copper, 500 µm Al₂O₃


- Halfway-etching to form protrusions
- Second etching step to form circuit
- ► Ag finish

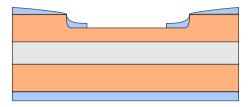

- ► DBC with 500 µm copper, 500 µm Al₂O₃
- Halfway-etching to form protrusions
- Second etching step to form circuit
- ► Ag finish

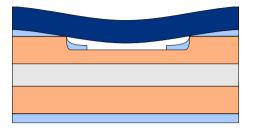
- ► DBC with 500 µm copper, 500 µm Al₂O₃
- Halfway-etching to form protrusions
- Second etching step to form circuit
- ► Ag finish

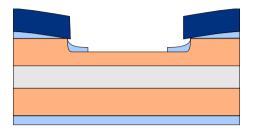
- ► DBC with 500 µm copper, 500 µm Al₂O₃
- Halfway-etching to form protrusions
- Second etching step to form circuit
- ► Ag finish

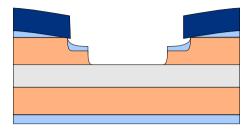


- ► DBC with 500 µm copper, 500 µm Al₂O₃
- Halfway-etching to form protrusions
- Second etching step to form circuit

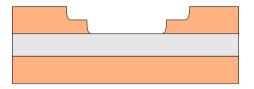



- ► DBC with 500 µm copper, 500 µm Al₂O₃
- Halfway-etching to form protrusions
- Second etching step to form circuit
- ► Ag finish

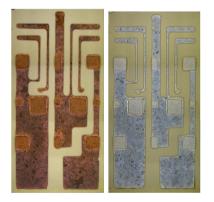

- ► DBC with 500 µm copper, 500 µm Al₂O₃
- Halfway-etching to form protrusions
- Second etching step to form circuit
- ► Ag finish


- ► DBC with 500 µm copper, 500 µm Al₂O₃
- Halfway-etching to form protrusions
- Second etching step to form circuit
- ► Ag finish

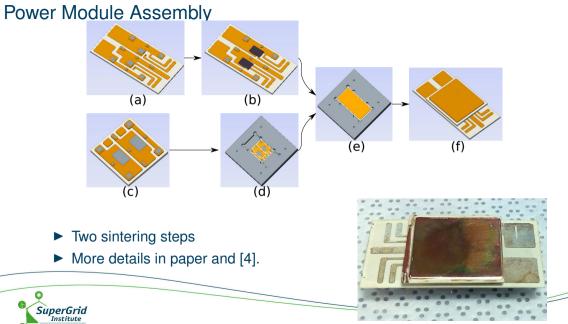
- ► DBC with 500 µm copper, 500 µm Al₂O₃
- Halfway-etching to form protrusions
- Second etching step to form circuit
- ► Ag finish



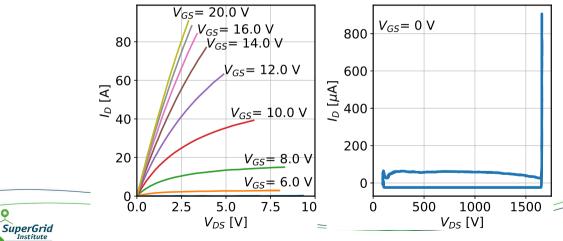
- DBC with 500 μm copper, 500 μm Al₂O₃
- Halfway-etching to form protrusions
- Second etching step to form circuit


► Ag finish

SuperGrid



- ► DBC with 500 µm copper, 500 µm Al₂O₃
- Halfway-etching to form protrusions
- Second etching step to form circuit
- ► Ag finish



Electrical Validation

► 4 modules made (7 dies functionnal)

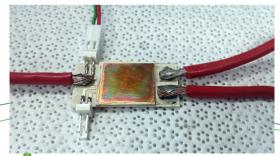
► 3 encapsulation schemes: none/Silicone gel/epoxy

Outline

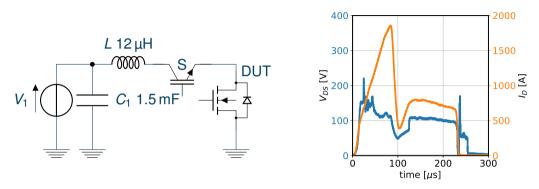
Introduction

Power Module Design & Manufacturing

Test of the Failure Mode

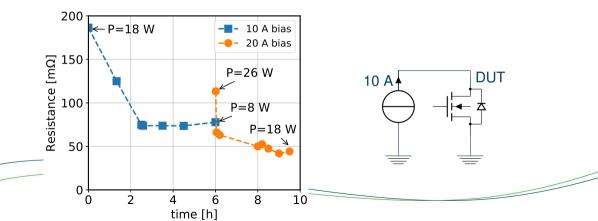

Conclusions

Test Setup – 1


Sample	Encapsulant	Clamp	Switch	
Module A	None	Yes	MOS 1	
Module A	NONE	165	MOS 2	
Module B	Silicone	Yes	MOS 1	
Module B	Silicone	165	MOS 2	
Module C	Epoyu	No	MOS 1	
Module C	Ероху	INU	MOS 2	
Module D	Silicone	Yes	MOS 1	
	Silicone	165	—	

- Dies tested individually
- "Clamp" used for modules A, B and D
- MOS 2 of module D not connected

Test Setup – 2

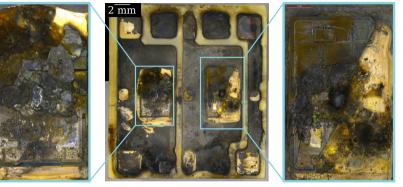

Short circuit test for various energy levels (1 to 20 J)

- Inductance consequence of tester wiring
 - Activation of protection switch S causes complex waveforms

Test Setup – 3

- After failure, modules are biased for 6 h at 10 A
- Short-circuit failure mode considered stable if R_{final} < R_{init}
- In some cases longer test, with 20 A

Results


	Encapsulant	Clamp	Switch	E [J]	R_{init} [mΩ]	R_{final} [mΩ]	Failure mode
Α	None	Yes	MOS 1	—	186	77	SC
			MOS 2	8.8	201	128	SC
В	Silicone	Yes	MOS 1	20	165	120	SC
			MOS 2	1	188	167	SC
С	Ероху	No	MOS 1	9.7	_	_	OC
			MOS 2	—	—	—	_
D	Silicone	Yes	MOS 1	2.24	180	158	SC
			_	—	_	—	_

Module C separated during first test, causing open circuit

All other modules exhibited stable short circuit

Analysis

- Dies largely broken because of short circuit
- Change in color, oxydation of module
 - caused by high temperature during stability test
- Metal inflitrated in SiC cracks

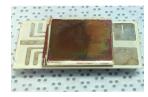
Outline

Introduction

Power Module Design & Manufacturing

Test of the Failure Mode

Conclusions


Conclusions - 1

Sandwich module proposed for fail-to-short behaviour

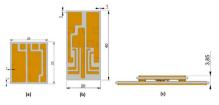
- Relatively simple manufacturing process
- Silver sintering as single bonding material
- No degradation of SiC dies performance observed
- Allows for dual-side cooling

Short-circuit test up to 2000 A

- "Clamped" modules were found to fail in short-circuit
- Stable short-circuits observed after 6 h
- Final resistances 3-7 times higher than R_{pSm} of SiC MOSFETs

Conclusions - 1

SuperGria


Sandwich module proposed for fail-to-short behaviour

- Relatively simple manufacturing process
- Silver sintering as single bonding material
- No degradation of SiC dies performance observed
- Allows for dual-side cooling
- Short-circuit test up to 2000 A
 - "Clamped" modules were found to fail in short-circuit
 - Stable short-circuits observed after 6 h
 - ► Final resistances 3-7 times higher than *R*_{DSon} of SiC MOSFETs

19/22

Conclusions – 2

Fail-to-Short behaviour with SiC dies requires:

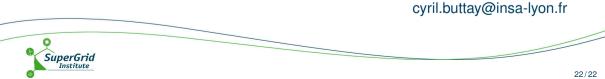
- ► To prevent the Ceramic tiles from separating
- → Need for strong mechanical clamp/frame
- → Soft encapsulant probably better for gases to escape
- ► To provide massive interconnects:
 - Wirebonds would act as fuses
 - Need to supply metal to fill the cracks in the dies
 - Heat dissipation at failure points help reducing the resistance

Conclusions – 2

Fail-to-Short behaviour with SiC dies requires:

- To prevent the Ceramic tiles from separating
- → Need for strong mechanical clamp/frame
- ➔ Soft encapsulant probably better for gases to escape
- ► To provide massive interconnects:
 - Wirebonds would act as fuses
 - Need to supply metal to fill the cracks in the dies
 - Heat dissipation at failure points help reducing the resistance

Bibliography I


- I. Yaqub, *Investigation into stable failure to short circuit in IGBT power modules*. Phd thesis, University of Nottingham, Nottingham, jul 2015.
- S. Gunturi, J. Assal, D. Schneider, and S. Eicher, "Innovative Metal System for IGBT Press Pack Modules," in *Proceedings of the International Symposium on Power Systems and Devices (ISPSD)*, (Cambridge, UK), p. 4, Apr. 2003.
- I. Dchar, C. Buttay, and H. Morel, "SiC power devices packaging with a short-circuit failure mode capability," *Microelectronics Reliability*, 2017.
 - C. Buttay, R. Riva, B. Allard, M.-L. Locatelli, and V. Bley, "Packaging with double-side cooling capability for SiC devices, based on silver sintering," in *44th Annual Conference of the IEEE Industrial Electronics Society (IECON 2018)*, Proceedings of the 44th Annual Conference of the IEEE Industrial Electronics Society (IECON 2018), (Washington, United States), IEEE, Oct. 2018.

Thank you for your attention

https://www.supergrid-institute.com

This work was supported by a grant overseen by the French National Research Agency (ANR) as part of the "Investissements d'Avenir" Program (ANE-ITE-002-01).

