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Introduction

There are two Artin-Schreier theorems known in literature [START_REF] Knebusch | Einführung in die reelle Algebra[END_REF][START_REF] Lam | Introduction to Quadratic Forms over Fields[END_REF][START_REF] Lang | Algebra[END_REF]. One, more commonly known to number theorists, deals with finite Galois extensions of fields of non-zero characteristics for which the Galois group has the same order as the characteristic. This leads to a statement on the minimal polynomial of a primitive element for the field extension. A second, more commonly known to real algebraists, deals with fields which are not algebraically closed but whose algebraic closure are finite extension of them. This second result, leads to a characterization of real closed fields. Both were published in a 1927 paper written by Emil Artin and Otto Schreier (see [START_REF] Artin | Eine Kennzeichnung der reell abgeschlossenen Körper[END_REF]). The second version is what we are concerned with. However, one should not forget the fact that the second theorem is a consequence of the first one (proof by contradiction). One application of the second theorem is given in a work of Artin in 1927 leading to the solution of the celebrated Hilbert's 17-th problem (see [START_REF] Artin | Über die Zerlegung definiter Funktionen in Quadrate[END_REF]).

Our goal in this paper is to give a generalized Artin-Schreier theorem for von Neumann regular rings, by using a generalization of algebraic closure for reduced commutative rings first proposed by Enochs [START_REF] Enochs | Totally Integrally Closed Rings[END_REF] in the 60's:

The maximum integral and essential extension of a reduced commutative ring exists and is unique up to isomorphism and is called the algebraic closure of the ring.

Specifically we will prove the following theorem:

Theorem 1. Let A be a Baer real ring integrally closed in its total quotient and let Ā be its algebraic closure. Suppose Ā is a finitely generated A-module, then i) A is a real closed ring ii) If A is von Neumann regular, then

A[ √ -1] = Ā
To prove the above theorem we would need some Galois-like theory for reduced rings. There has been several attempts extending some Galois theory of fields to commutative rings. The most recent one can be found in [START_REF] Bhargava | On a notion of "Galois closure" for extensions of rings[END_REF][START_REF] Gioia | On the Galois closure of commutative algebras[END_REF]. However, one school of thought on the Galois theory for commutative rings, remains most popular and was introduced by Chase, Harrison and Rosenberg [START_REF] Chase | Galois theory and Galois cohomology of commutative rings[END_REF]. In fact, we rely heavily on the work of Raphael who contributed a great deal in the study of algebraic closure of commutative von Neumann regular ring and with Desrochers (in [START_REF] Desrochers | Galois Theory and Algebraic Extensions of Commutative Semiprime Rings[END_REF]) he investigates this idea from [START_REF] Chase | Galois theory and Galois cohomology of commutative rings[END_REF] to develop theory on generalized Galois extensions (and its variations) of von Neumann regular commutative rings. For the purpose of proving the above Theorem, we need not go too deep. We would only need a generalization of normal extension of fields to the category of reduced commutative rings for proving Theorem 1. So we will dedicate a chapter on splitting rings. For a reduced commutative ring A, the splitting ring of a univariate monic non-constant f ∈ A[x] is defined as the extension ring of A consisting of A adjoined with all the roots of f in the algebraic closure of A. We will see in the chapter that the splitting ring of A is in fact a finitely generated A-module if A is a reduced Baer von Neumann regular ring.

Finally we also stress that Theorem 1 would not hold if we remove the condition for A being Baer. This is the case even if all the other conditions of the Theorem applies. This will be shown by a constructive example at the end of this paper.

Preliminaries

Note that some of the results or definitions that we will give in this section can be generalized to other categories (e.g. rings that are not reduced, modules etc.). If σ is any endomorphism (between the same object in a given category) and if k ∈ N, then by σ k we mean the endomorphism created by composing σ with itself k-times.

For a commutative ring A, T (A) denotes the total quotient ring of A. Unless otherwise stated, all rings in this papers are commutative unitary and reduced. All ring homomorphisms are such that 1 is mapped to 1. Let A be a ring, then Spec A is the set of prime ideals of A endowed with the Zariski topology and Min A is the set of minimal prime ideals of A considered as a subspace of Spec A.

Here are some facts and more definitions • A commutative ring A with multiplicative identity 1 is von Neumann regular iff for all a ∈ A there is a b ∈ B (called a quasi-inverse of a) such that a 2 b = a (this is equivalent to the ring being reduced and its prime spectrum having a zero Krull dimension). Products of fields are easy examples of such rings. A less trivial example would be the ring of locally constant real-valued function with domain αN, i.e.

{f : αN → R : f -1 (a) is open for all a ∈ R}
where αN is the Alexandroff one-point compactification of N with discrete topology. The ring in the last example has a prime spectrum which is canonically isomorphic to αN.

• A commutative ring A is said to be Baer if for any set S ⊂ A there is an idempotent e ∈ A (i.e. e = e 2 ) such that the annihilator of S is generated by it, i.e. Ann A (S) = eA. Trivial example of Baer rings are integral domains (in particular also fields) and products of them.

A less trivial example would be the ring of locally constant real-valued function with domain βN, i.e. {f :

βN → R : f -1 (a) is open for all a ∈ R}
where βN is the Stone-ech compactification of N with discrete topology. The last example is because βN is an extremally disconnected space (i.e. a space for which the closure of any open set is again open) and is canonically isomorphic to the prime spectrum of the ring and extremally disconnected prime spectra characterizes Baer von Neumann regular rings (see [START_REF] Mewborn | Regular Rings and Baer Rings[END_REF] Propositon 2.1).

• Let A be a subring of a ring B, then B is an essential extension of A (in the category of commutative rings) if for all b ∈ B\{0} there exists a c ∈ B such that bc ∈ A\{0}. There is a generalized definition for essential extensions in any category C. Let C be a category, then a monomorphism f : a → b is said to be an essential monomorphism (or extension) provided that for all morphism/arrow g : b → c such that the composition g • f : a → c is a monomorphism, it follows that g is a monomorphism. Some authors (e.g. Hochster in [START_REF] Hochster | Totally Integrally Closed Rings and Extremal Spaces[END_REF]) also use tight extension to mean essential extension.

• Let A be a subring of a reduced ring B, then B is said to be a rational extension of A if for all b ∈ B\{0} there exists an a ∈ A such that ab ∈ A\{0}. This definition can be generalized for non-reduced rings but we will confine ourselves to reduced commutative unitary rings. The study of such ring extensions became quite popular in the 50's (notably by Utumi, Lambek, Findlay and Johnson).

• It is known (see [START_REF] Fine | Rings of Quotients of Rings of Functions[END_REF]) that if A is reduced, commutative and unitary then there is a maximum rational extension Q(A), i.e. a rational extension Q(A) of A such that any other rational extension of A is A-isomorphic (i.e. isomorphism fixing A) to a subring of Q(A). Q(A) is called the rational completion or the complete ring of quotients of A. If Q(A) is ringisomorphic to A, then A is said to be rationally complete.

• As used by Raphael (see [START_REF] Desrochers | Galois Theory and Algebraic Extensions of Commutative Semiprime Rings[END_REF], [START_REF] Raphael | Algebraic Extensions of Commutative Regular Rings[END_REF] and [START_REF] Raphael | On Algebraic Closures[END_REF]), we shall call an essential and integral extension of a commutative ring the algebraic extension of this ring. This definition coincides with the classical definition of algebraic extension when working with the category fields. It has been shown (see [START_REF] Borho | Zur Existenz total ganz abgeschlossener Ringerweiterungen[END_REF], [START_REF] Enochs | Totally Integrally Closed Rings[END_REF] and [START_REF] Hochster | Totally Integrally Closed Rings and Extremal Spaces[END_REF]) that a commutative reduced unitary ring A have a maximum algebraic extension Ā, in the sense that any algebraic extension of Ā is A-isomorphic to Ā, which we shall call the algebraic closure of the ring A. When dealing with fields, this definition of algebraic closure also coincides with the classical definition of algebraic closure. Most authors also call the algebraic closure the total integral closure of the ring and in this paper we may sometimes use this name.

• A commutative ring A is said to be real iff for all n ∈ N the following holds

a 2 1 + • • • + a 2 n = 0 ⇔ a 1 , . . . , a n = 0 ∀a 1 , . . . , a n ∈ A
Clearly, every real ring is reduced and the total quotient of a real ring is real as well (specifically, the quotient field of a real domain is real). A real ring A is said to be real closed iff there is no strict algebraic extension of A that is also real. By Zorn's lemma every real ring has an algebraic extension that is real closed. Real closed rings (using this definition) were first introduced by Sankaran and Varadarajan in [START_REF] Sankaran | Formally real rings and their real closures[END_REF]. It was then more extensively studied in the PhD thesis of Capco (who defined this originally as real closed * to distinguish with other definitions with similar name). Real closed rings are also Baer rings (see [START_REF] Capco | Real Closed * Rings[END_REF] Remark 28). Integral domains are real closed iff they are integrally closed in their quotient fields and their quotient fields are real closed fields (see [START_REF] Sankaran | Formally real rings and their real closures[END_REF] Proposition 2). Commutative von Neumann regular rings are real closed iff it is Baer and all the residue fields are real closed (see [START_REF] Capco | Real Closed * Rings[END_REF] Theorem 34).

The proposition below illustrates that one is able to arbitrarily strictly extend any reduced ring integrally (the proposition uses a field but this can be generalized). Thus, as discussed by Raphael [START_REF] Raphael | Algebraic Extensions of Commutative Regular Rings[END_REF], Borho [START_REF] Borho | Zur Existenz total ganz abgeschlossener Ringerweiterungen[END_REF], Enochs [START_REF] Enochs | Totally Integrally Closed Rings[END_REF] and Hochster [START_REF] Hochster | Totally Integrally Closed Rings and Extremal Spaces[END_REF], it is necessary to involve essential extensions when defining algebraic extensions and algebraic closures of commutative reduced rings. Proposition 2. Let K be a field and L be an algebraic extension of K then for any n ∈ N the ring L n (componentwise addition and multiplication) is an integral extension of K.

Proof. There is a natural monomorphism from

K to L n (diagonal homomorphism) that brings each k ∈ K to (k, k, . . . , k) ∈ L n .
In this way we identify K as a subring of L n , but to avoid confusion we write k (instead of k ∈ K) to denote (k, k, . . . , k). Furthermore, there is a canonical

ring homomorphism K[x] → L n [x], between polynomial rings, that maps each ∑ m i=1 a i x i ∈ K[x] to ∑ m i=1 āi x i ∈ L n [x].
We abuse notation and denote the image of f

∈ K[x] (by this homomorphism) by f ∈ L n [x]. Consider now b i ∈ L for i = 1, . . . , n (i.e. an arbitrary (b 1 , b 2 , . . . , b n ) ∈ L n ). There exists non-constant monic polynomials f 1 , f 2 , . . . , f n ∈ L such that b i is a zero of f i for i = 1, . . . , n. So if we consider the polynomial f := ∏ n i=1 f i ∈ K[x], then the canonical image f in L n [x] has a zero (b 1 , b 2 , . . . , b n ). Thus, L n is an integral extension of K.
Observe that we have made several use of the overline symbol. We will continue to make occasional use of this symbol (with its various meaning) where they are needed and whenever this will not cause confusion. To summarize: For a reduced commutative unitary ring A, by Ā we mean the algebraic closure (or sometimes called total integral closure) of the ring. For an element a ∈ A if there is a canonical diagonal monomorphism (as in the above proof) of A into product of rings (or fields) then the canonical image of a is denoted by ā and in this way we identify A as a subring of this product of rings (this should be clear as long as the domain and codomain are clear to the reader). Similarly, there is a canonical map (as in the above proof) that brings a polynomial f ∈ A[x] into a polynomial f over product of rings (again, we use this only if the domain and codomain of this monomorphism is clear to the reader). With this, we hope that we have avoided unnecessary symbolic clutter in this paper without sacrificing clarity.

Notation. Let A be a subring of a ring B then the group Aut(B/A) is the set of ring automorphisms of B fixing A, i.e. the group of A-automorphisms of B.

Notation. Let A be a commutative ring and f ∈ A[x] be a polynomial. Suppose that f is written as follows

f (x) := n ∑ i=0 a i x i
then for any ideal I A, we abuse notation and denote f mod I (or f (x) mod I) as the polynomial

f mod I := n ∑ i=0 (a i mod I)x i ∈ (A/I)[x]

Splitting Rings

Let A be a reduced commutative unitary ring with algebraic closure B and suppose that f ∈ A[x] is monic. Then for S := {b ∈ B : f (b) = 0}, we want to study the ring extension A → A[S]. We start with a Theorem that claims that if A is Baer than we can at least conclude that B is a finitely generated A-module . . . where I is an ideal maximal (Zorn's Lemma) with the property that I ∩ A = ⟨0⟩. This allows the lower right ring monomorphism in the diagram to be an essential extension. Let n := deg(f ) ∈ N and for each p ∈ Min B arbitrarily arrange all n (not necessarily distinct) zeros of f mod p in Quot(B/p) (which is an algebraically closed field, see [START_REF] Hochster | Totally Integrally Closed Rings and Extremal Spaces[END_REF] Corollary 1) as k i,p for i = 1, . . . , n. Suppose that π p : K Quot(B/p) is the canonical projection for every p ∈ Min B. We define k i ∈ K, for i = 1, . . . , n, by setting the projection of k i for each p to be π p (k i ) := k i,p . By the construction we get f (π(k i )) = 0 for all i = 1, . . . , n. Thus, since B is totally integrally closed, π(k i ) ∈ B for all i = 1, . . . , n. We define b i := π(k i ) for i = 1, . . . The condition used in defining π p (e i ) = 1 is necessary because we may have roots of f mod p that are not simple and because, in the ring K, we want to have the identity b = ∑ n i=1 e i k i . Taking the image of this with respect to π we get b = ∑ n i=1 π(e i )b i in the ring K/I. Now e i is an idempotent in K so the projection π(e i ) is an idempotent in K/I. Since B is integrally closed in K/I (this is by the definition of total integral closure, see also [START_REF] Capco | Real Closed * Rings[END_REF] Theorem 29.) we also have b i , π(e i ) ∈ B (all idempotents satisfy the equation x 2 -x = 0) for all i = 1, . . . , n. Since A is Baer, it contains all the idempotents of its total integral closure and hence π(e i ) ∈ A (see [START_REF] Raphael | Algebraic Extensions of Commutative Regular Rings[END_REF] Lemma 1.6). We thus have shown that

b ∈ A[b 1 , . . . , b n ] for all b ∈ S, hence A[S] = A[b 1 , . . . , b n ].
We shall call the ring A[S], in the theorem above, the splitting ring1 of f ∈ A[x] (over A). The above result, however, does not gaurantee us an A-automorphism group that is finitely generated. We give an example of such a group that is not finitely generated and for that we use this very easy Lemma (whose proof we leave to the reader) . . . Lemma 4. Suppose A is a Baer reduced ring, B is a splitting ring of a monic non-constant polynomial f ∈ A[x] and b ∈ B is a zero of f then for any σ ∈ Aut(B/A), σ(b) is a zero of f . Example. In this example, we show a splitting ring B of some f ∈ A[x] (where A is a Baer reduced ring) that provides a group of A-automorphisms of B, Aut(B/A), that is not finitely generated. Let A = Q N (this is a Baer reduced ring!) and consider f (x) := x 2 -2 ∈ A[x]. Note that the algebraic closure of A is A-isomorphic to the integral closure of A in QN (hints for this can be found in the proof of Theorem 38 [START_REF] Capco | Real Closed * Rings[END_REF]). So the ring B := Q( √ 2) N is, in fact, the splitting ring of f (observe that B = A + √ 2A). We first claim that the group G := Aut(B/A) has exponent 2 (thus a torsion group).

Let, for each j ∈ N, π j : B → Q( √ 2) be the canonical projection on the j-th coordinate. Let σ ∈ G, then, one checks that, this induces a well-defined field automorphism

σ j ∈ Aut(Q( √ 2)/Q) for each j ∈ N that maps each a + b √ 2 (a, b ∈ Q) to a + bπ j (σ( √ 2)) (by Lemma 4, π j (σ( √ 2)) ∈ { √ 2, - √ 2}). But σ • σ ∈ G induces (in the same manner) the auto- morphism σ j • σ j ∈ Aut(Q( √ 2)/Q
), for all j ∈ N, and this can only be the identity map. Thus, the group G has a finite exponent 2 and so it is a torsion group. Now suppose that G is finitely generated. Because it is a torsion group with exponent 2, this becomes a trivial Burnside problem and for this case G must necessarily be finite and even commutative. This gives us a contradiction because we know that G is an infinite group: Consider, for every i ∈ N, the element σ ∈ G that induces

σ j := { id j ̸ = i τ otherwise j ∈ N where τ ∈ Aut(Q( √ 2)/Q) is the Q-automorphism of Q( √ 2) such that τ ( √ 2) = - √ 2 and id : Q( √ 2) → Q( √ 2)
is the identity map. This gives us countably but infinitely many number of automorphisms in G.

The above example gave us an automorphism group Aut(B/A) for which the exponent is finite. In general, this is true for any Baer commutative reduced ring A and splitting ring B. To prove this we first show a few nice results about the total quotients T (A) and T (B). has a prime spectrum that is canonically isomorphic to Min A (see [START_REF] Mewborn | Some Conditions on Commutative Semiprime Rings[END_REF] Theorem 4.4). And the result follows since any two essential extension of a Baer von Neumann regular ring that are von Neumann regular will have homeomorphic prime spectra (see [START_REF] Raphael | Algebraic Extensions of Commutative Regular Rings[END_REF] Remark 1.17).

Remark 7.

The Corollary above will give us even more information. If A is a reduced commutative Baer ring and if B is an essential extension of A (then B must necessarily be reduced by Lemma 1.3 in [START_REF] Raphael | Algebraic Extensions of Commutative Regular Rings[END_REF]) then, by Storrer's Satz (see [START_REF] Storrer | Epimorphismen von kommutativen Ringen[END_REF] 10.1), there is a canonical essential extension Q(A) → Q(B) and, by [START_REF] Raphael | Algebraic Extensions of Commutative Regular Rings[END_REF] Lemma 1.7, Q(A) contains all of the idempotents of Q(B) and thus, by [START_REF] Mewborn | Regular Rings and Baer Rings[END_REF] Proposition 2.5 and Storrer's Satz, both A and B are Baer. Thus, by the above Corollary, both T (B) and T (A) are von Neumann regular. Now, there is a canonical essential extension T (A) → T (B) and if we use [START_REF] Raphael | Algebraic Extensions of Commutative Regular Rings[END_REF] Remark 1.17 we conclude that T (A) and T (B) have homeomorphic prime spectra which are homeomorphic to both Min A and Min B.

In short: If A is a reduced commutative Baer ring and B is an essential extension of A then

• B is Baer

• T (A) and T (B) are von Neumann regular

• We have the canonical homeomorphisms

Min A ∼ = Spec T (A) ∼ = Min B ∼ = Spec T (B)
We first only state the theorem that we want to prove: Theorem 8. Let A be a Baer ring and B be the splitting ring of a non-constant monic polynomial f ∈ A[x], then the automorphism group Aut(B/A) is a torsion group with finite exponent. Now, before proving the theorem, we give and prove two lemmas on splitting rings that will be used in the main proof of the theorem: Lemma 9. Let A be a domain and B be the splitting ring of a non-constant monic f ∈ A[x] then the following holds

• B is a domain • Quot(B) is the splitting field of f over Quot(A)
Proof. Any essential extension of A is a domain and a field containing A is an essential extension of A. It easily follows that Ā is the integral closure of A in the algebraic closure of Quot(A) (see also [START_REF] Hochster | Totally Integrally Closed Rings and Extremal Spaces[END_REF] Corollary 1, p.774). Since the splitting ring lies between Ā and A, it must be a domain.

For the second part, let K be the splitting field of f over Quot(A) then one easily sees that Proof. In this proof, for simplicity, (because A is Baer) we identify all the minimal prime spectra of rings between A and Ā with Spec T (A). Let p ∈ Min B, then we have

K = Quot(A)(b 1 , . . . , b n ) = Quot(A)
B/p = A[S]/p = (A/p)[S/p] where S := {b ∈ B : f (b) = 0}
Clearly any element in S/p is a zero of f mod p, so it suffices to show that S/p contains all the zeros of f mod p. Let k ∈ Ā/p be a zero of f mod p (observe that Ā/p is integrally closed and has an algebraically closed quotient field, see e.g. [START_REF] Hochster | Totally Integrally Closed Rings and Extremal Spaces[END_REF] Corollary 1). There is a b ∈ Ā such that b is canonically mapped to k. Define the disjoint clopen sets (recall that T (A) is von Neumann regular)

U 1 := {q ∈ Spec T (A) : f (b) mod q ≡ 0} U 2 := Spec T (A)\U 1
that cover Spec T (A) and from this we can define idempotents in e 1 and e 2 in T (A) by

e i mod q := { 1 q ∈ U i 0 q ̸ ∈ U i i = 1, 2
This implies that c := be 1 + se 2 ∈ S for any s ∈ S (since f (c) ≡ 0 mod q for all q ∈ Spec T (A)). Furthermore, c mod p = k and we so are done.

Finally the proof of Theorem 8. . .

Proof of Theorem 8. Denote G := Aut(B/A) and suppose σ ∈ G. Since σ is an automorphism, for any minimal prime ideal p ∈ Min B the set σ(p) is also a minimal prime ideal of B. Because A is Baer and B is an essential extension of A, we know that there is a canonical homeomorphism from Min B to Min A (see Remark 7) given by Min B → Min A q → q ∩ A Since p ∩ A is a minimal prime ideal of A and σ is an A-automorphism we have Now, let us write for short K p := Quot(A/p A ) and L p := Quot(B/p B ). We have already seen that σ ∈ Aut(A/B) induces a K p -automorphism σ p ∈ Aut(L p /K p ). Similarly, for any k ∈ N, σ k ∈ Aut(A/B) will induce σ k p ∈ Aut(L p /K p ). But L p is the splitting field for f mod p, so if n is the degree of f , the order of σ p will divide n! (e.g. [10] Theorem 3 p.176 discusses this). Thus σ n! induces the identity L p → L p . This is true for any p ∈ Min Ā.

σ(p ∩ A) = p ∩ A ⊂ σ(p) ∩ A ⊂ σ(p)
In 

Generalized Artin Schreier Theorem

We recall and reformulate Remark 109 in [START_REF] Capco | Real Closed * Rings[END_REF] Remark 11. Let A be a reduced ring and B be an overring of A, then there is a canonical map Spec B → Spec A. This map has the property that its image contains Min A.

Recall now Theorem 101 in [START_REF] Capco | Real Closed * Rings[END_REF] Theorem 12. Let A be a Baer reduced ring, then A is integrally closed in T (A) iff for any p ∈ Spec T (A) we have A/(p ∩ A) is integrally closed in T (A)/p.

Proof. See [START_REF] Capco | Real Closed * Rings[END_REF] Theorem 101.

We can combine a few results in [START_REF] Capco | Real Closed * Rings[END_REF] to arrive to the following Theorem [START_REF] Raphael | Algebraic Extensions of Commutative Regular Rings[END_REF] Lemma 1.9). A being Baer implies that Spec A,Spec A[i] and Spec Ā are canonically homeomorphic. We have also previously seen that, for all p ∈ Min A = Spec A and (unique) p ∈ Min A[i] = Spec Ā[i] lying over p, A/p = Quot(A/p) is real closed and have algebraic closure

(A/p)[i mod p] = (A/p)[ √ -1] = A[i]/p
Thus, for all p ∈ Spec A[i], A[i]/p is an algebraically closed field and this is a characterization of algebraically closed von Neumann regular reduced rings (see [START_REF] Hochster | Totally Integrally Closed Rings and Extremal Spaces[END_REF] Proposition 5) and thus A[i] ∼ = Ã Unfortunately, we do not yet know whether the second part of the theorem above is true for reduced rings in general. The complication lies on the fact that we used the characterization for algebraically closed rings (i.e. for each prime ideal, residue domains are algebraically closed). We do not know this in general, because normality does not in general hold for residue domain of non-minimal prime ideals (Proposition 5 in [START_REF] Hochster | Totally Integrally Closed Rings and Extremal Spaces[END_REF] requires algebraic closedness for all residue domain). For von Neumann regular rings, we had the convenience that the residue domains where themselves fields.

In the following, we show why we cannot remove the precondition Baer from the theorem above. . . which are also open in X. Thus e ∈ A X .

• We claim that A Y [e] = A X Let f ∈ A X , then define g 1 : X → K by g 1 (x, i) := f (x, 0)

x ∈ βN, i = 0, 1 and g 2 : X → K by g 2 (x, i) := f (x, 1)

x ∈ βN, i = 0, 1

First we claim that g 1 and g 2 are in A Y , but this is clear since g j (x, 0) = g j (x, 1) ∀x ∈ βN, j = 1, 2

We can then easily check that f = g 1 e + g 2 (1 -e) and thus conclude that

f ∈ A Y [e].
Because X is extremally disconnected and Y is not, we know that A X is Baer and A Y is not Baer. Now define e ′ : X → K the following way (we may choose x = 7 or any value in N ⊂ βN) Because of the preceding Theorem we also know that A X [ √ -1] is a total integral closure of A Y (since A X is Baer). We also note that e is not in A Y [ √ -1] and so the result of the Theorem above does not hold if we remove the condition that the ring should be Baer.

Theorem 3 .

 3 (Splitting Ring) Let A be a commutative reduced Baer ring. Suppose B = Ā and that f ∈ A[x] is a non-constant monic polynomial with coefficients in A. Consider the set S := {b ∈ B : f (b) = 0} then A[S] is a finitely generated module. Specifically, there are b 1 , . . . , b n ∈ B integral over A (where n ≤ deg(f )) such that A[S] = A[b 1 , . . . , b n ] Proof. Define K := ∏ p∈Min B Quot(B/p), we have the following diagram (with all canonical maps)

  , n and claim that A[S] = A[b 1 , . . . , b n ] (and because b 1 , . . . , b n are integral elements of A, A[S] is a finitely generated A-module). Let b ∈ S, then define e i ∈ K for i = 1, . . . , n by π p (e i ) := { 1 b ≡ k i,p mod p and b ̸ ≡ k j,p mod p for j > i 0 otherwiseNote that the e i 's are well-defined because b mod p is a zero of f mod p and the k i,p 's are all the zeros of f mod p.

Theorem 5 . 1 So a 2 Corollary 6 .

 5126 Let A be a reduced commutative unitary ring. Suppose that A has the property that for any a ∈ A, there exists an idempotent e ∈ A such thatAnn(aA) = eA then T (A) is von Neumann regular.Proof. Let a ∈ A and suppose that e ∈ A be an idempotent such that Ann(aA) = eA. We claim tha a + e is a regular element of A. Pick a b ∈ A such that (a + e)b = 0. Then after multiplying by a we get a 2 b = 0. Since A is reduced, we know that b ∈ Ann(aA). Thus, there is a c ∈ A with ce = b. This gives us 0 = ce(a + e) = ce 2So ce = 0 and this leads us to conclude that ce = b = 0. So the annihilator of (a + e)A is 0. In other words, a + e is a regular element.We now know that a + e is invertible in T (A). So we clearly have a + e = (a + e) 2 (a + e) -1 = (a 2 + e)(a + e) -1 ⇒ a 2 (a + e) -1 = a + e -e(a + e) -1 But e = e((a + e)(a + e) -1 ) = (e(a + e))(a + e) -1 = e 2 (a + e) -1 = e(a + e) -(a + e) -1 = a + e -e = a We can therefore conclude that every element of A has a quasi-inverse in T (A). Now let a b ∈ T (A), with a ∈ A and b a regular element of A. Also set a ′ to be the quasi-inverse of a in T (A). Then ( element of T (A) has also a quasi-inverse in T (A). In other words, T (A) is a von Neumann regular ring. Let A be a reduced commutative unitary Baer ring then T (A) is Baer, von Neumann regular and Spec T (A) is canonically homeomorphic to the Min A. Proof. The ring A satisfies (because it is Baer) the condition in Theorem 5, so T (A) is von Neumann regular ring. Now, the smallest von Neumann regular intermediate ring of A and Q(A)

[b 1 Lemma 10 .

 110 , . . . , b n ] = Quot(A[b 1 , . . . , b n ]) where b i , for i = 1, . . . , n, are all the zeros of f in the algebraic closure of Quot(A). This proves the Lemma since B = A[b 1 , . . . , b n ]. Suppose that B is the splitting ring of a non-constant monic f ∈ A[x] over a Baer ring A. It follows that for any p ∈ Min B, B/p is the splitting ring of A/(p ∩ A).

  which would mean, by the above homeomorphism, that σ(p) = p. Set p A := p ∩ A then, since σ(p) = p, σ induces a well-defined A/p A -automorphism B/p → B/p b mod p → σ(b) mod p This in turn canonically induces a Quot(A/p A )-automorphism Quot(B/p) ∼ -→ Quot(B/p) The minimal prime spectra Min Ā, Min B and Min A are all homeomorphic (see Remark 7) and they can all be canonically identified. Now suppose p ∈ Min Ā and, for simplicity, write p A := p ∩ A and p B := p ∩ B. By the Lemmas 9 and 10, B/p B ∼ = A[b 1 , . . . , b n ]/p for some b i ∈ B such that b i mod p (i=1,. . . ,n) are all the roots of f mod p in the algebraic closed field Quot( Ā/p) and Quot(B/p B ) is the splitting field of f mod p over Quot(A/p A ).

  other words, for any p ∈ Min Ā (or p A ∈ Min A) and for any σ ∈ Aut(B/A) we have the equation σ n! (b) ≡ b mod p ∀b ∈ B Since B is reduced, σ n! (b) = b for all b ∈ B and this means that n! is an exponent of the group Aut(A/B).

Example.{ 1 i = 0 0 i = 1

 1 Define the X := βN × {0, 1} with {0, 1} having the discrete topology. Define also Y := X/ ∼ where (x, 1) ∼ (y, 0) ⇔ x, y ∈ βN\N and x = y with the usual quotient topology. Then clearly both X and Y are Stone spaces with X being extremally disconnected. For brevity, we write the image of any (x, i) ∈ X in Y also as (x, i).And we define ψ : X → Y to be the canonical surjection from X to Y .Y=X/~=X=βℕ⊔ βℕ=~10Now we state a few facts:• Y is not extremally disconnected because the closure of the open set{(x, 0) : x ∈ N} ⊂ Yis not open in Y .• Let K be a real closed field and consider the von Neumann regular ringsA Y := {f : Y → K : f -1 (k) is open for all k ∈ K} and A X := {f : X → K : f -1 (k) is open for all k ∈ K}Then both A Y and A X are von Neumann regular rings (see[START_REF] Hochster | Totally Integrally Closed Rings and Extremal Spaces[END_REF] p.779) with prime spectra Y and X respectively. Because of the surjection ψ, we know that the (canonical) map defined by ϕ :A Y → A X f → f • ψ is injective.It is clear that ϕ is a ring monomorphism and so we may identify A Y as a subring of A X .• Define now e : X → K the following way e(x, i) := Let k ∈ K, then if k ̸ ∈ {0, 1} we have e -1 (k) = ∅ which is clearly open in X. For k ∈ {0, 1} we have e -1 (0) = {(x, i) : x ∈ βN, i = 1} e -1 (1) = {(x, i) : x ∈ βN, i = 0}

e

  ′ (x, i) := { 1 x = 7 and i = 0 0 else Then e ′ ∈ A Y because ψ(7, 0) ∈ Y is an isolated point. Finally, we also see that A X = A Y [e] is a rational extension of A Y , since e ′ e ∈ A Y \{0}. Since we are dealing with von Neumann regular rings A X and A Y , we know that these rings are integrally closed in their respective total quotients.

  Now we have sufficient tools to prove Theorem 1 . . . Proof of Theorem 1. i) Let p be a minimal prime ideal of A, then both A/p and Quot(A/p) are real (seeProposition 15). There is a p ∈ Spec Ā such that p ∩ A = p (seeRemark 11). Since Ā/p is a finite integral extension of A/p, we see that Quot( Ā/p) is a finite field extension of Quot(A/p) (seeLemma 16). We know by[START_REF] Hochster | Totally Integrally Closed Rings and Extremal Spaces[END_REF] Theorem 1 that Quot( Ā/p) is an algebraically closed field and so by the classical Artin-Schreier Theorem (see[START_REF] Knebusch | Einführung in die reelle Algebra[END_REF] §1 Theorem in p.18) Quot(A/p) is a real closed field.By Theorem 12 and Remark 7, for any p ∈ Min A, A/p is integrally closed in its quotient field. This quotient field, we have shown, is real closed. Thus, for any p ∈ Min A the integral domain A/p is real closed ([START_REF] Sankaran | Formally real rings and their real closures[END_REF] Proposition 2). Employ Corollary 14 to conclude that the ring A is also real closed. Note that A[i] and Ā are von Neumann regular because an integral extension of a von Neumann regular ring that is reduced is also von Neumann regular (see

Theorem 13. Let A be a Baer reduced ring and suppose that T (A) is a subring of a von Neumann regular real closed B. If, furthermore, A is integrally closed in B then T (A) is a real closed von Neumann regular ring. ii) Let i (or √ -1) be a zero of T 2 + 1 ∈ A[T ] in the splitting ring of A.

this definition is also in accordance to[START_REF] Enochs | Totally Integrally Closed Rings[END_REF], where it probably first appeared
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Proof. This follows immediately from Theorem 99(iii) and Theorem 34 in [START_REF] Capco | Real Closed * Rings[END_REF]. Corollary 14. A real Baer ring B is real closed iff for every minimal prime ideal p ∈ Min B one has B/p is a real closed integral domain.

Proof. "⇒" If B is real closed then it is integrally closed in Q(B) and furthermore Q(B) is real closed (see [START_REF] Capco | Real Closed * Rings[END_REF] Remark 28). Now, by Theorem 13, T (B) is also a real closed von Neumann regular ring. It follows from [START_REF] Sankaran | Formally real rings and their real closures[END_REF] Proposition 2 and Theorem 12 that B/p is a real closed integral domain for any minimal prime ideal p in Spec B (p ∈ Min B is a restriction of a prime ideal in T (B), see Remark 7).

"⇐" Since B is Baer, T (B) is von Neumann regular. So, by the hypothesis, the residue domains of B with respect to prime ideals in Min B is integrally closed in their real closed quotient fields (see [START_REF] Sankaran | Formally real rings and their real closures[END_REF] Proposition 2), and these quotient fields are the residue fields of T (B). Thus the residue fields of the Baer von Neumann regular ring T (B) are real closed and so (see [START_REF] Capco | Real Closed * Rings[END_REF] Theorem 34) T (B) is real closed. Finally, Theorem 12 implies that B is integrally closed in T (B) and so all conditions for [START_REF] Dai | On Real Closed Rings[END_REF] Theorem 3 are satisfied (B is real closed iff Q(B) is real closed and B is integrally closed in Q(B). Note that Q(B) is also the complete ring of quotient of T (B).) and so B is real closed.

The minimal prime ideals of real rings are actually quite important in real algebra. We recall a well-known result that gives us an insight to this Proposition 15. Let A be a real ring and p ∈ Min A then A/p is a real ring (i.e. the prime ideal p is a real ideal).

Proof. A proof can be found in [START_REF] Knebusch | Einführung in die reelle Algebra[END_REF] Kapitel III. §Satz 1. p.104.

In the following easy lemma we see the relationship between integral extension of (containing) domains and their quotient fields and how essential extension plays a role in this relationship. . .

Lemma 16.

Let A and B be integral domains and A ⊂ B as rings, then i. If B is integral over A, then Quot(B) is algebraic over Quot(A).

ii. If B is an essential extension of A and A is integrally closed in B, then Quot(A) is algebraically closed in Quot(B).

Proof. i. This is left as an easy exercise for the reader.

ii. Let b c be an element of Quot(B), with b, c ∈ B and c ̸ = 0. Because B is essential over A, without loss of generality we may assume that c ∈ A. Suppose furthermore that b c is an algebraic element of Quot(A). Then there is a polynomial

with a i ∈ A and x ∈ A\{0} and such that b c a zero of f . So

and therefore bx ∈ B is a zero of

where b i := c n-i x n-i-1 a i ∈ A for i = 0, . . . , n -1. But A is integrally closed in B, so bx ∈ A and thus b/c ∈ Quot(A)