
HAL Id: hal-02075980
https://hal.science/hal-02075980v1

Submitted on 21 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Model-Driven Method for Fast Building Consistent
Web Services from OpenAPI-Compatible Models

David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, Arnaud Lanoix

To cite this version:
David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, Arnaud Lanoix. A Model-Driven Method for
Fast Building Consistent Web Services from OpenAPI-Compatible Models. Model-Driven Engineer-
ing and Software Development, 2019, 6th International Conference, MODELSWARD 2018, Funchal,
Madeira, Portugal, January 22-24, 2018, Revised Selected Papers, �10.1007/978-3-030-11030-7_2�.
�hal-02075980�

https://hal.science/hal-02075980v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Model-Driven Method
for Fast Building Consistent Web Services

from OpenAPI-Compatible Models

David Sferruzza1,3, Jérôme Rocheteau1,2, Christian Attiogbé1, and Arnaud
Lanoix1

1 LS2N - UMR CNRS 6004 / F-44322 Nantes Cedex 3, France
david.sferruzza@ls2n.fr, christian.attiogbe@ls2n.fr,

arnaud.lanoix@ls2n.fr
2 ICAM / 35, avenue du Champ de Manœuvres, 44470 Carquefou, France

jerome.rocheteau@icam.fr
3 Startup Palace / 18, rue Scribe, 44000 Nantes, France

david.sferruzza@startup-palace.com

Abstract. Lots of software companies rely on web technologies to test
market hypotheses in order to develop viable businesses. They often need
to quickly build web services that are at the core of their Minimum Vi-
able Products (MVPs). MVPs must be reliable whereas they are based on
specifications and hypotheses that are likely to change. Web services need
to be well documented, to make it easy to develop applications that con-
sume them. Model Driven Engineering approaches have been proposed
and used to develop and evolve web services on one hand, and docu-
ment them on the other hand. However, these approaches lack the abil-
ity to be suitable for both (i) rapid prototyping, (ii) model verification,
(iii) compatibility with common programming languages and (iv) align-
ment between documentation and implementation. Here we propose a
meta-model to express web services, the related tool to verify models
consistency and an integration of this approach into the OpenAPI Speci-
fication. We adopt a shallow verification process to allow rapid prototyp-
ing by developers who are not formal methods experts, while still offering
design-time guarantees that improve product quality and development
efficiency. Web services are defined using parametric components which
enable to express and formally verify web service patterns and to safely
reuse them in other contexts. We built a tool to check consistency of
extended OpenAPI 3.0 models and associated components implementa-
tions in order to generate corresponding web services. This allows us to
give flexibility and verification support to developers, even in the context
of an incremental development, as illustrated by a case study.

Keywords: Web Applications, Web Services, Model-Driven Engineer-
ing, Formal Verification, Code Generation, OpenAPI 3.0

2 David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Arnaud Lanoix

1 Introduction

Context. Web agencies are software companies that often work with their cus-
tomers to help them develop new projects involving the web. Most of these
customers need web applications to bring value to their own customers. These
web applications are built iteratively to limit their cost while allowing startups
to converge toward a viable market. This approach begins by building a Min-
imum Viable Product (MVP). In this context, it is a web application with a
high level of quality but a limited set of features. MVPs (among other kinds of
web applications) need to be functional, reliable, usable and designed with users’
emotions in mind, with only the features required to test market hypotheses.
In this perspective, it is common to develop standalone web services that will
be consumed by one or several applications which may provide user interfaces
(UIs). For example: one instance of web services can be simultaneously used by
several UIs, such as several mobile applications (Android, iOS, . . .) and a web
application. This allows separation of concerns and centralization of data and
process logic, even in the case where there is only one consumer application.
Therefore, for Startup Palace4, a web agency that evolves in this context, the
process of designing, building and evolving web services is important, because it
is at the center of the MVP approach. When developing a MVP it is important
to focus on features that really bring value to users, also called game-changers.
Other features, called show-stoppers, do not bring value directly but are required
to make the application functional, reliable or usable. Show-stopper features are
often tedious to implement and so error-prone. Furthermore, because of the iter-
ative process and the purpose of MVPs, specifications are likely to evolve, which
can introduce bugs.

Moreover, it is important to design web services in a way that makes them
actually usable. This implies providing a good documentation that can be used
by developers writing consumer applications or by these consumer applications
if they can adapt their behavior dynamically. While this kind of documentation
can take many forms, some standards such as OpenAPI [11] and RAML [15]
are widely used by the industry. These standards define specifications which
describe HTTP APIs of web services and are the center of ecosystems of tools.
This article focuses on OpenAPI 3.0 because it is the standard used at Startup
Palace.

Motivation. Developers need abstractions to be able to safely express, isolate,
reuse and evolve features. Some programming languages do provide such ab-
stractions, along with modern type checkers that are able to statically verify
consistency of programs. But this is not practicable in our context because we
would like to leverage existing expertises of developers instead of forcing them
to learn a new programming language and its ecosystem from scratch. We need
to master the development of show-stoppers. We want to fix a common issue
related to the tools around OpenAPI which rises when the process of evolving

4 https://www.startup-palace.com

https://www.startup-palace.com

A Model-Driven Method for Building Web Services from OpenAPI Models 3

the web services occurs. These tools can be used in two main ways. First, with
a forward engineering process, developers create manually an OpenAPI model,
and use a tool to transform it. For example: a one-time generation of an im-
plementation skeleton in a given technology. Second, with a reverse engineering
process, a tool is used to extract an OpenAPI model from a working implementa-
tion (which can be enhanced by annotations). While the second process is useful
to document existing web services, it cannot leverage the benefits of building
web service using a top-down approach: from a high-level (model) to a low-level
(implementation). Yet [6] shows the advantages of using different languages for
programming-in-the-large and for programming-in-the-small. The first process
makes possible to partially leverage these advantages, but the issue is that it
lacks the ability to keep the OpenAPI model and the implementation aligned
throughout the life of the project. Indeed, implementation is often obtained by
a projection of the model that is then manually modified to implement business
logic. Any following model evolution needs to be projected again which would
require manual modifications to be re-applied from the beginning.

Contribution. This work is an attempt to solve the problem of building web
services using safe abstractions on top of an existing programming language in
order to ease development and reuse of show-stopper features, while keeping the
web services in sync with their documentation (i.e. an OpenAPI model).

We introduce a meta-model to express web services and a corresponding
semantics for verification. This leverages existing theory in Model Driven Engi-
neering (MDE) [3, 16, 17] and a component-based approach in order to provide
an expressive and language-agnostic solution to build web services. This meta-
model does not allow to completely specify web services but is rather limited
to a high-level representation in order to provide support while keeping models
simple.

In [19] we have proposed a tool (i) to check models consistency and (ii) to
generate working web services from a given valid model. As example, every
component preconditions must be fulfilled in their instance contexts in order for
a model to be consistent. This mechanism, coupled with the consistency checking,
gives developers means to quickly and safely write and use components, and to
reuse them in a reliable way.

We integrate the proposed approach in a top-down design process that relies
on extended OpenAPI models. Extensions contain the parts of our meta-model
that do not have any equivalent in the OpenAPI specification: the business
logic. Because the OpenAPI 3.0 meta-model and ours are merged, the resulting
models provide single sources of truth for building both web services and their
documentation.

This article is an extended version of [21], published in the proceedings of
MODELSWARD 2018. It differs by the following aspects:

1. the meta-model was slightly improved in order to add the possibility to
better specify service parameters, to improve the type system and to make

http://www.modelsward.org/?y=2018

4 David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Arnaud Lanoix

re-usability easier by adding a mechanism to bind parameters in component
definitions and in their arguments in instances’ contexts;

2. the whole approach was redesigned as part of a more practical top-down
workflow based on tools such as OpenAPI instead of being completely stan-
dalone;

3. this workflow is tested in a two-steps case study, showing how it works in
the context of incremental development.

The article is structured as follows. Section 2 presents related work. Section 3
describes the meta-model of web services. Section 4 defines consistency of com-
pliant models and shows how they can be checked. Section 5 shows how this
approach can be integrated with OpenAPI. Section 6 introduces a tool to gener-
ate actual implementations from models. Section 7 shows a two-steps case study
that illustrates our approach. Finally, Section 8 concludes the article with some
lessons and future work.

2 Related Work

The use of MDE for development and automatic generation of web services or
web applications is not a new topic [3, 2, 17]. Indeed, this work is built on top
of the approach of SWSG [21] and Reifier [16].

SWSG shares the meta-modeling approach with tools such as M3D (intro-
duced in [3] and extended in [2]) that also focus on building web services using
MDE. One of the main differences between SWSG and M3D is that SWSG
was developed with a focus on design-time support. For example, it allows to
automatically verify some properties about the structural consistency of mod-
els. Even if SWSG is definitely related to existing standards such as BPEL [7]
or WSDL, our approach differs on several aspects. First, we want to avoid the
shortcomings described in [8], that is WSDL models contain too much technical
details and are difficult to understand for humans. Indeed our meta-model is
simpler and less expressive than WSDL or BPEL. Second, this allows SWSG
to provide more support to users; the balance between flexibility and support is
discussed in [27]. Finally, SWSG now relies on OpenAPI.

OpenAPI [11] that is also involved in various research areas. In [4], it was
chosen for its popularity over WADL and other industry standards in order
to automatically transform plain HTML documentations of web services to a
machine-readable format. Moreover, [5] provides a great state of the art of ser-
vice description formats that brings out OpenAPI as the most promising choice
at the moment and enriches it with semantic annotations. It seems to be an
updated version of the work proposed in [26, §3.2]. [18] shows an approach that
is agnostic to service description formats but uses OpenAPI in the article. The
popularity of OpenAPI is also highlighted by its use in other domains. For ex-
ample [30] describes a case where OpenAPI 2.0 is used in combination of other
tools from the life sciences community and points out that the specification ex-
tension mechanism of OpenAPI 3.0 (that we use in this article) might be an

A Model-Driven Method for Building Web Services from OpenAPI Models 5

interesting opportunity of improvement. Another example in the telecommuni-
cation domain is presented in [14] which provides a section to emphasizes the
trade-offs of Model-Driven Engineering and argues that they can be overcomed
“with increased investment in the tools that support the development process”;
we share the same vision in the present proposal.

One of the tools featured in the OpenAPI ecosystem is Swagger Code Gener-
ator [22]. It aims at generating client librairies, server stubs or documentations
from an OpenAPI model. The server stubs generation supports many languages
and frameworks, but, as its name states, only generates stubs. This helps de-
velopers to write new services by generated boilerplate code, which is a tedious
task, but they still need to add a lot of code on top of it. Moreover, when
services evolve, developer need to manually propagate evolutions into the code-
base because Swagger Code Generator isn’t able to merge them automatically.
Our approach solves this issue because it gives flexibility to developers before the
code generation step, making useless editing generated code. It is worth mention-
ing that the code generators in themselves are based on similar model-to-text
mechanisms: Swagger Code Generator uses the mustache5 or the Handlebars6
(depending on the version) template format whereas SWSG uses Twirl7. Finally,
SWSG supports OpenAPI 3.0 models which is not the case of Swagger Code
Generator at the time of writing8.

3 A Meta-Model to Express Web Services

We introduce a meta-model of web services. This meta-model is voluntarily sim-
ple in order to provide two advantages: (i) to give developers good abstractions
to write reusable code while giving them a good flexibility and (ii) to allow tools
to provide support to developers, such as design-time consistency verification
(see Section 4). This is obtained with a trade-off on a lower verification aspects.

3.1 Preliminary Notations

Union. The union or sum type of two types T1 and T2 is denoted T1] T2.

Tuple. A tuple T is a product type between n types T1 to Tn, with n ≥ 2. It
is denoted T ≡ T1 × . . . × Tn. A value t of type T is written as t = (t1, . . . , tn)
where t1 ∈ T1, . . . , tn ∈ Tn. The notation t(x) is also used to designate tx, where
x ∈ {1, . . . , n}.

5 https://mustache.github.io/
6 https://handlebarsjs.com/
7 https://github.com/playframework/twirl
8 The unstable version 3.0.0-rc0 does support OpenAPI 3.0 but is not yet finished
and handle only a few languages and frameworks.

https://mustache.github.io/
https://handlebarsjs.com/
https://github.com/playframework/twirl

6 David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Arnaud Lanoix

Record. A record R is a tuple with labeled elements. It is denoted R ≡ 〈label1 :
T1, . . . , labeln : Tn〉. It is syntactic sugar over a tuple T1 × . . . × Tn and n
functions label1 : R → T1, . . . , labeln : R → Tn. As for tuples, a value r
of type R is written as r = (t1, . . . , tn) where t1 ∈ T1, . . . , tn ∈ Tn. Asso-
ciated functions can also be written r.label1, . . . , r.labeln. For example, for
a record person = (“Batman”, 35) ∈ 〈name : String, age : Int〉 we have
name(person) = person.name = “Batman” ∈ String.

Set. A set whose elements are all of type T has the type P(T).

List. A sequence or list of type T is a set of elements of type T which are ordered.
It is denoted List(T). It is similar to a function from indexes I to values of T ,
that is List(T) : I → T where I is a 1..N and N = card(List(T)). It can also
be written as List(T) ≡ [t1, . . . , tn] where t1, . . . , tn ∈ T .

Projection. The projection of a set or list of tuples S on the ith element of a
tuple is written Prji(S). Similarly, the projection of a set or list of records
S on one of the elements of a record labeli is written Prjlabeli(S). For ex-
ample, for a set of records S ∈ P(〈name : String, age : Int〉) where S =
{(“Batman”, 35), (“Robin”, 26)}, Prjname(S) has type P(String) and is equal
to {“Batman”, “Robin”}.

3.2 A Meta-Model of Web Services

A meta-model of web services is defined by the BNF grammar given in Figure 1.
Figure 2 shows a slightly simplified version of this grammar in the form of a
UML class diagram, to provide a quick glance.

This meta-model does not aim to replace existing standard meta-models like
for instance the OpenAPI Specification [11] or RAML [15], but rather to be
compatible and complementary with them (see Section 5). These meta-models
allow to define programming language-agnostic interface descriptions for HTTP
APIs (i.e. informal contracts) in order to be able for both humans and computers
to discover and understand their capabilities, while our meta-model allows to
express actual implementations of such HTTP APIs. Precisely, our meta-model
is designed in order to match needs and requirements about verification (see
Section 4), generation and ease of writing (see Section 6). For these reasons, and
to be more accessible to practitioners, our approach does not rely on existing
standards such as BPEL [7] or WSDL [8].

Model. A model of web services mi ∈M is specified as a record of three elements:
a set of entities of type E that stands as data model, a set of components of
type C that stands as process model and an ordered list of services of type S
that exposes component to the outer world: M ≡ 〈entities : P(E), components :
P(C), services : List(S)〉.

A Model-Driven Method for Building Web Services from OpenAPI Models 7

model ::= 〈entities : entity*, components : component*,
services : service*〉

identifier ::= [A-Za-z][A-Za-z0-9_]*
entity ::= 〈name : identifier, attributes : variable*〉
term ::= variable | constant

variable ::= 〈name : string, type : type〉
constant ::= 〈type : type, value : object〉

type ::= string | boolean | integer | float | date | datetime | entity-ref
| seq-of | option-of

entity-ref ::= 〈entity : identifier〉
seq-of ::= 〈seqOf : type〉

option-of ::= 〈optionOf : type〉
component ::= atomic-component | composite-component

atomic-component ::= 〈name : identifier, params : variable*, pre : variable*,
add : variable*, rem : variable*〉

composite-component ::= 〈name : identifier, params : variable*,
components : component-instance*〉

component-instance ::= 〈component : identifier, bindings : binding*, aliases : alias*〉
binding ::= 〈param : variable, argument : term〉

alias ::= 〈source : variable, target : variable〉
service ::= 〈method :method, path : path, params : service-parameter*,

component : component-instance〉
method ::= [A-Z]+

path ::= .+
service-parameter ::= 〈location : parameter-location, variable : variable〉

parameter-location ::= query | header | path | cookie | body

Fig. 1. Meta-model BNF grammar

Entity and type. Entities are non-primitive data types. An entity ei ∈ E is
represented by a record of two elements: a name and a set of variables that
represent attributes: E ≡ 〈name : Id, attributes : P(V)〉. An attribute of an
entity can be another entity, making it a recursive type. An identifier idi ∈ Id is a
string that matches the following regular expression: ^[A-Za-z][A-Za-z0-9_]*$.
A variable vi ∈ V is defined by a record composed of a name and a type: V ≡
〈name : String, type : T 〉. A type ti ∈ T can be primitive or parametric. A
primitive type can be one of the followings: String, Boolean, Integer, Float,
Date or DateT ime. Parametric types are represented by records that have one
element by parameter of the type; available parametric types are defined in
Table 1.

Components. Components are units of processes and computations that occur
inside web services. Their execution happens in an isolated context, that can con-
tain variables. They can mutate this context by adding and removing variables.
A component ci ∈ C is defined as the union type of atomic components AC and
composite components CC: C , AC]CC. Both types of components are defined
by a name and a set of variables that express components’ parameters. Because
they have parameters, we call them parametric components. An atomic compo-

8 David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Arnaud Lanoix

Model

name : Identifier

<< abstract >>
Component

method : String
path : String

Service

+ Query
+ Header
+ Path
+ Cookie
+ Body

<< enum >>
Parameter
Location

Composite
Component

Atomic
Component

location : ParameterLocation
ServiceParameter

name : Identifier
Entity

<< abstract >>
Binding

Alias

<< abstract >>
Term

value : object
Constant

name : String
Variable

<< abstract >>
Type

EntityRef

SeqOf

OptionOfDate

Date
Time

String

Boolean

Float

Integer

optionOf
1seqO

f
1

type 1

type 1

entity
1

* entities

se
rvi

ce
s *

* c
om

po
ne

nt
s

1 c
om

po
ne

nt

* com
ponents

params *

com
ponent

bindings *

aliases *

1

argum
ent

variable 1
attributes *

param
s *

* pre

* add

* rem

1

param 1

source 1
target 1

<<
ord

ere
d>

>

<<ordered>>

Component
Instance

Identifier

Fig. 2. Meta-model diagram

nent aci ∈ AC is represented by a record of the following elements: name, pa-
rameters, preconditions (a set of variables that might be needed in the execution
context), additions (a set of variables that will be added to the execution context)
and removals (a set of variables that will be removed from the execution con-
text): AC ≡ 〈name : Id, params : P(V), pre : P(V), add : P(V), rem : P(V)〉.
The last three elements are sometimes referred to as the component’s contract.
A composite component cci ∈ CC is represented by a record of the follow-
ing elements: name, parameters and an ordered list of component instances:
CC ≡ 〈name : Id, params : P(V), components : List(CI)〉. A component in-
stance cii ∈ CI is represented by a record of three elements: a component, a
set of bindings used to instantiate the component by associating arguments to

Table 1. Parametric types

Type constructor Parameters Description
Entity 〈entity : Id〉 A reference to an entity. The element entity

given in parameter must correspond to the
name of an entity defined in the model.

SeqOf 〈seqOf : T 〉 A sequence of elements of a given type.
OptionOf 〈optionOf : T 〉 The optional version of a given type, that is

every element of the given type plus a special
value null that represent the absence of value.

A Model-Driven Method for Building Web Services from OpenAPI Models 9

its parameters and a set of aliases that allow to rename variables of the compo-
nent’s contract on the instantiation context: CI ≡ 〈component : C, bindings :
P(〈param : V, argument : Term〉), aliases : P(〈source : Id, target : Id〉)〉.
Terms can be variables or constant literal values (Const): Term , V] Const.
Atomic components are meant to be along with an implementation written using
a programming language whereas composite components are not. Components
can be seen as an abstraction to encourage separation of concerns and reusability
by leveraging two mechanisms: composition and parametrization.

Service. Services are the entry points of web services. A service si ∈ S is repre-
sented by a record of four elements: a HTTP method, a path, a set of expected in-
put parameters and a component instance: S ≡ 〈method : M,path : P, params :
P(〈location : L, variable : V 〉), component : CI〉. A method mi ∈ M is a valid
HTTP method name, as defined by RFC 72319. A path pi ∈ P is a relative URL
that can contain parameters whose names are to be placed inside braces; for ex-
ample: /user/{id}. A location li ∈ L represents where a given service parameter
can be found in a HTTP request: L ≡ {query, header, path, cookie, body}. In a
model of web services, services are gathered in an ordered list. This abstraction
is very common in web frameworks and is often called router. Instead of consider-
ing a web application as a huge function of HTTP requests to HTTP responses,
a router allows to dispatch HTTP requests to several such functions by filtering
them declaratively by method and by path. That is to reduce complexity of the
whole application by encouraging separation of concerns.

3.3 Concrete Syntax for Models of Web Services

We previously presented a mathematical definition of our meta-model in Sec-
tion 3.2 and an equivalent BNF grammar in Figure 1. These notations are meant
to introduce formal definitions that are used to define properties on the meta-
model, which we do in Section 4. But they are cumbersome to read or write
actual models.

We also introduce a concrete syntax that is more compact and readable.
Because it is equivalent to BNF grammar in Figure 1, we won’t define it formally
here but only provide some intuition on it.

A model is represented, with respect to its formal definition, as an unordered
list of definitions, each on its own lines. A definition starts with an element iden-
tifier: e for entity, s for service, ac for atomic component and cc for composite
component. Element’s properties are placed on their own indented line and pre-
fixed with the property name (or a short alias). Listing 1 gives an example of a
service declaration.

For readability reasons, every item of a service parameters set must be written
on its own line. For example line 4 of Listing 1 shows a param item instead of
the whole params set.

9 https://tools.ietf.org/html/rfc7231

https://tools.ietf.org/html/rfc7231

10 David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Arnaud Lanoix

Listing 1. Definition of a service using the concrete syntax

1 s
2 method POST
3 path /getName/{email}
4 param path email: String
5 ci GetName

The concrete syntax of the other structures of the meta-model is defined in
a similar way. A full example is available in the repository of SWSG10.

3.4 Evaluating a Model of Web Services

Our meta-model gives helpful abstractions to develop web services but the built
models need a rigorous evaluation semantics. The following successive steps de-
scribe how web services based on an instance of this meta-model could handle
incoming HTTP requests.

Routing. First, the application receives a HTTP request. Its list of services is
sequentially scanned until a service matches the request; that is, the HTTP
method is the same and the URL matches the path. If no service matches, then
a static 404 HTTP response is sent back.

Flattening. The component instance contained in the service is reduced to a flat-
tened ordered list of instances of atomic components. Arguments passed to the
different components (through bindings in component instances) are resolved so
that they become only constants (no more variables), and aliases are propagated
to instantiated components and their subcomponents. Instances of composite
components are then recursively replaced by their subcomponents. We define by
cases a function flatten(m, c) (with m ∈M) that flattens a given component:

flatten(m, c) =

[c] if c ∈ AC⋃
ci∈c.components

flatten(m, ci) if c ∈ CC

flatten(m, c.component) if c ∈ CI

flatten(m, resolvec(m, c)) if c ∈ Id

(1)

The function resolvec used in Formula (1) takes two parameters: a model
and a component name. It outputs the definition of the componant with the
given name in the given model. It is of type M × Id → C. When called on a
model that verifies the consistency rules defined in Section 4 and on a component
name extracted from such a model, this function returns a deterministic result.

10 https://gitlab.startup-palace.com/research/swsg/blob/master/examples/
registration/registration.model

https://gitlab.startup-palace.com/research/swsg/blob/master/examples/registration/registration.model
https://gitlab.startup-palace.com/research/swsg/blob/master/examples/registration/registration.model

A Model-Driven Method for Building Web Services from OpenAPI Models 11

Evaluating components. An initial evaluation context is created by extracting
parameters (if present) from the request URL and putting them into an empty
context. This flattened list is then evaluated: every atomic component is executed
given the previous context as an input and produces a new context as an output.
This behavior is very similar to state monads (see [29, § 2.5]).

Responding. Finally, a HTTP response is built. There are two cases to consider.
If one of the evaluated components returned a HTTP response instead of a
new context, the following components are not evaluated and this response is
returned to the client. Otherwise, the context is serialized and encapsulated into
a HTTP response of code 200.

4 Consistency of Web Services

Section 3 showed that our web services meta-model uses components as an ab-
straction to improve separation of concerns and reusability. In order to allow
developers to safely use this abstraction we propose a way to do verification of
models. This verification checks if a model is consistent. It can happen at design-
time – outside any evaluation context – so that inconsistent models won’t be run
in production.

Definition. A model of web services m ∈ M is consistent if it verifies all the
following properties identified by Formulas (2) to (22).

Component name unicity. Every component in a model has a unique name.

∀c, c′ ∈ m.components·(c.name = c′.name⇒ c = c′) (2)

Entity name unicity. Every entity in a model has a unique name.

∀e, e′ ∈ m.entities·(e.name = e′.name⇒ e = e′) (3)

Attribute name unicity. Every attribute of an entity has a unique name.

∀e ∈ m.entities, ∀a, a′ ∈ e.attributes·(a.name = a′.name⇒ a = a′) (4)

Service parameter name unicity. Every parameter of a service has a unique
name.

∀s ∈ m.services,∀p, p′ ∈ s.params·(p.name = p′.name⇒ p = p′) (5)

Parameters of location body unicity. There is a maximum of one parameter per
service that has its location equal to body.

∀s ∈ m.services,∀p, p′ ∈ s.params·
(p.location = p′.location = body⇒ p = p′) (6)

12 David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Arnaud Lanoix

Reference consistency. Table 2 describes the reference locations in a model. It
gives formulas to extract from a model every possible set of references to entities
or components.

Table 2. Exhaustive list of reference locations

Referenced
element

References locations

Component C refsc1 = Prjcomponents.component(m.components ∩ CC)
refsc2 = Prjcomponent.component(m.services)

Entity E

refse1 = Prjentity(Prjattributes.type(m.entities) ∩ EntityRef)
refse2 = Prjentity(Prjparams.type(m.components) ∩ EntityRef)

refse3 = Prjentity(Prjpre.type(m.components ∩AC) ∩ EntityRef)
refse4 = Prjentity(Prjadd.type(m.components ∩AC) ∩ EntityRef)
refse5 = Prjentity(Prjrem.type(m.components ∩AC) ∩ EntityRef)
refse6 = Prjentity(Prjparams.variable.type(m.services) ∩ EntityRef)

Every reference to a component designates an element that exists in the
model.

∀ref ∈ (refsc1 ∪ refsc2),∃c ∈ m.components·(c.name = ref) (7)

Every reference to an entity designates an element that exists in the model.

∀ref ∈ (refse1 ∪ refse2 ∪ refse3 ∪ refse4 ∪ refse5 ∪ refse6),

∃e ∈ m.entities·(e.name = ref) (8)

Component context variable name unicity. Variables in atomic components can-
not have the same name if they are not identical.

∀c ∈ (m.components ∩AC),∀v, v′ ∈ (c.pre ∪ c.add ∪ c.del)·
(v.name = v′.name⇒ v = v′) (9)

Composite component non emptiness. Composite components must have sub-
components.

∀c ∈ (m.components ∩ CC)·(c.components 6= ∅) (10)

Alias source unicity. The source name of an alias is unique in its component
instance.

∀ci ∈ (Prjcomponents(m.components ∩ CC) ∪ Prjcomponent(m.services)),

∀a, a′ ∈ ci.alias·(a.source = a′.source⇒ a = a′) (11)

A Model-Driven Method for Building Web Services from OpenAPI Models 13

Alias target unicity. The target name of an alias is unique in its component
instance.

∀ci ∈ (Prjcomponents(m.components ∩ CC) ∪ Prjcomponent(m.services)),

∀a, a′ ∈ ci.alias·(a.target = a′.target⇒ a = a′) (12)

Recursive reference consistency. An entity is not referenced by its transitive
attributes.

∀e ∈ m.entities·(EntityRef(e.name) /∈ depse(m,EntityRef(e.name))) (13)

where the function depse : M × T → P(T) returns the set of transitive
dependencies of a given type. depse(m, t) is defined as follows:

depse(m, t) =

depse(m, t′) if t = OptionOf(t′)

depse(m, t′) if t = SeqOf(t′)

t′′ ∪
⋃

ti∈t′′
depse(m, ti) if t = EntityRef(name)

depse(m, t) = ∅ otherwise

with t′′ = Prjtype(resolvee(m,name).attributes)

where the function resolvee : M×Id→ E returns the definition of the entity
that as the same name as the one given in the second parameter.

The same is true for composite components that are not referenced from their
transitive subcomponents.

∀c ∈ (m.components ∩ CC)·(c.name /∈ depsc(m, c)) (14)

where the function depsc : M × C → P(Id) returns the set of transitive
dependencies of a given component. depsc(m, c) is defined as follows:

depsc(m, c) =

∅ if c ∈ AC

Prjname(c.components)∪⋃
cii∈c.components

depsc(m, resolvec(m, cii))
if c ∈ CC

where the function resolvec : M × Id → C returns the definition of the
component that has the same name as the one given in the second parameter,
as defined in Section 3.4.

Alias source validity. The source name of an alias corresponds to the name of a
variable of the contract of the instantiated component.

∀ci ∈ (Prjcomponents(m.components ∩ CC) ∪ Prjcomponent(m.services)),

∀a ∈ ci.alias·(c = resolvec(m, ci.component)⇒
a.source ∈ Prjname(c.pre ∪ c.add ∪ c.rem)) (15)

14 David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Arnaud Lanoix

Alias target validity. The target name of an alias corresponds to the name of a
variable that will be added to the execution context by the instantiated compo-
nent.

∀ci ∈ (Prjcomponents(m.components ∩ CC) ∪ Prjcomponent(m.services)),

∀a ∈ ci.alias·
(c = resolvec(m, ci.component)⇒ a.target /∈ Prjname(c.add)) (16)

Service path validity. The set of names of service parameters that have a path
location is exactly the same as the set of parameter names declared in the path
string of a service.

∀s ∈ m.services·({p ∈ s.params|p.location = Path} = extract(s.path)) (17)

where the function extract : P → P(V) extracts parameter names from
a path; that is, for a given path, it returns the contents of the first matching
parenthesis of the regular expression \{([A-Za-z0-9_]+)\}.

Component context immutability. Components don’t override existing variables
of the context. Every atomic component does not add a new variable to its
output context if there is already a variable with the same name in its input
context.

∀c ∈ (m.components ∩AC)·(c.add ∩ c.pre = ∅) (18)

Component precondition exhaustivity. Components depend on the variables they
remove. Every atomic component has each variable it will remove from the con-
text in its preconditions.

∀c ∈ (m.components ∩AC)·(c.rem ⊆ c.pre) (19)

Component instance bindings consistency. Component instances have bindings
that associate a term to a variable. Every binding associates a term to a variable
of the same type.

∀ci ∈ (Prjcomponents(m.components ∩ CC) ∪ Prjcomponent(m.services)),

∀b ∈ ci.binding·(b.variable.type = b.argument.type) (20)

Component instance parameters exhaustivity. Component instances provide val-
ues for every parameter of the instantiated component. Every component in-
stance provides exactly as much arguments as the component it instantiates
needs parameters. Names and types of the arguments match those of the param-
eters.

∀ci ∈ (Prjcomponents(m.components ∩ CC) ∪ Prjcomponent(m.services)),

∃c ∈ m.components·
(c.name = ci.component⇒ Prjparam(ci.binding) = c.params) (21)

A Model-Driven Method for Building Web Services from OpenAPI Models 15

Context validity. Components are instantiated in contexts that fulfill their pre-
conditions. When building flat ordered lists of atomic components for each ser-
vice (see Section 3.4), every atomic component of these lists has its preconditions
fulfilled by its input context:

∀s ∈ S·(flatten(s.component) J s.params) (22)

where J is a function of List(AC)×P(V)→ Boolean in infix notation11 that
is true when applied to a component and a context that satisfies the component’s
preconditions. It is defined by the following semantic rules:

ctx0 ∈ P(V)

[] J ctx0

ctx0 ∈ P(V)
∀i ∈ [0, n], ci ∈ CI

c0.pre ⊆/ ctx0
ctx1 = ctx0 ∪ c0.add \ c0.rem

[c1, . . . , cn] J ctx1

[c0, . . . , cn] J ctx0

pre, ctx ∈ P(V)

∀v ∈ pre·v ∈ ctx ∨ (∃v′ ∈ ctx, v.name = v′.name
∧v′.type = OptionOf(v.type))

pre ⊆/ ctx

pre ⊆/ ctx means that the component’s preconditions pre are satisfied by the
context ctx. We use ⊆/ instead of ⊆ because ⊆ requires the types to be strictly
identical, which we do not want in order to handle optional types.

5 Development Process Integrated to OpenAPI

In Section 3 we introduced a meta-model of web services, along with rules to
check its consistency in Section 4. In Section 5.1 we introduce a common devel-
opment process involving OpenAPI. This gives some background on OpenAPI
and prepares to the merger of our approach in OpenAPI’s in Section 5.2.

5.1 A Common Usage of OpenAPI

The OpenAPI Specification [11] defines a standard to express interfaces to HTTP
APIs in a language-agnostic way. It aims at allowing “both humans and comput-
ers to discover and understand the capabilities of the service without access to
source code, documentation, or through network traffic inspection” [11]: that is
a meta-model. As in MDE, the point of having meta-models is to have tools
that can rely on them in order to safely manipulate models and offer support
to developers. Indeed, an ecosystem of tools was developed around OpenAPI by
11 cs J ctx is equivalent to J (cs, ctx)

16 David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Arnaud Lanoix

various actors. Such tools have several purposes, including but not limited to:
providing an interactive graphical user interface from a model [23, 24], generat-
ing functional tests from a model [1] or generating a model from an annotated
implementation [28].

The Petstore example. To ease the development of tools, some official examples
of OpenAPI models are shipped with the specification. In this article, we focus
on the Petstore example [12]. It describes a simple application that exposes four
services to list, show, add and remove data records representing animals. We
assume that we are in the context of a company such as Startup Palace; that
means the goal is to develop these web services in order for them to be consumed
by user interface applications; for example, desktop and mobile applications for
the owner of the store.

Development process. The common top-down development process follows. First,
developers make several iterations on writing an OpenAPI model. This model
must match the functional specifications and describe web services that are fully
exploitable by consumer applications. For example, the description of one of the
Petstore services is shown in Listing 2. It references schemas that are defined in
another part of the model, as shown in Listing 3.

Listing 2. A service in the Petstore ex-
ample

1 /pets/{id}:
2 get:
3 description: Returns a user based on a

single ID, if the user does not have
access to the pet

4 operationId: find pet by id
5 parameters:
6 - name: id
7 in: path
8 description: ID of pet to fetch
9 required: true

10 schema:
11 type: integer
12 format: int64
13 responses:
14 ’200’:
15 description: pet response
16 content:
17 application/json:
18 schema:
19 $ref: ’#/components/schemas/

Pet’
20 default:
21 description: unexpected error
22 content:
23 application/json:
24 schema:
25 $ref: ’#/components/schemas/

Error’

Listing 3. Schemas in the Petstore ex-
ample

1 components:
2 schemas:
3 Pet:
4 allOf:
5 - $ref: ’#/components/schemas/

NewPet’
6 - required:
7 - id
8 properties:
9 id:
10 type: integer
11 format: int64
12 NewPet:
13 required:
14 - name
15 properties:
16 name:
17 type: string
18 tag:
19 type: string
20 Error:
21 required:
22 - code
23 - message
24 properties:
25 code:
26 type: integer
27 format: int32
28 message:
29 type: string

A Model-Driven Method for Building Web Services from OpenAPI Models 17

When this OpenAPI model is stable enough, developers can use it as a spec-
ification to start building web services and consumer applications. There are
some kinds of tools that can take the OpenAPI model as input and help to build
compliant web services; for example, by generating a skeleton of application us-
ing a given technological stack [10], or by generating automated tests that can
be used to check if the web services are conformant [1].

But all these tools have a major limitation: they require humans to manually
update the OpenAPI model whenever the web services evolve. This is a very com-
mon situation: specifications must evolve either because business requirements
have changed or new constraints have been discovered while developing. Even
if some tools can mitigate this issue, it is likely that developers will eventually
stop maintaining the OpenAPI model after the web services reach production,
making the two diverge over time. In long-term projects, this means giving up
on every advantage provided by OpenAPI and its MDE approach.

To fix this shortcoming, we present in Section 6 an improved version of this
process that leverages a meta-model of web services we introduced in [21]. How-
ever, in order for this new approach to be feasible, we first need to extend the
OpenAPI 3.0 Specification.

5.2 Extending OpenAPI 3.0

Recall that the OpenAPI Specification describes a meta-model to express an
interface to web services. But, unlike our approach, it does not describe how web
services are implemented. To get the best of both our approach and OpenAPI’s,
we propose a way to merge the latter with our meta-model of web services.

To preserve tools compatibility we make use of Specification Extensions, as
defined in OpenAPI 3.0 [11]. This mechanism allows to add data to models
without breaking their compliance to the specification or their ability to be used
by tools designed to be compatible with it. The details of the extensions to
OpenAPI 3.0 can be found in [20]. The following paragraphs present the nature
and the main lines of these extensions for each aspect of our meta-model.

Because an OpenAPI model can be seen as a tree (before references are
resolved) that has the OpenAPI object as root, we make use of the notion of
paths. The components path designate the child of the root named components.
Sub-children are separated using a > symbol; the components > requestBodies
designates the requestBodies child of the components child of the root.

Data model. An OpenAPI 3.0 model can contain a set of Schema objects12. A
Schema object defines a data type for input or output data, which can then be
referenced from elsewhere in the model. This mechanism provides more expres-
siveness than ours and was made for the same purpose. Thus it is a good fit for
the entities of our meta-model.

12 In the components > schemas path.

18 David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Arnaud Lanoix

Processes. On purpose, there are no equivalent of our component system in
OpenAPI 3.0, because it describes processes that are internal to the web services
which is out of OpenAPI’s scope. Accordingly we add two properties in the
Components object of OpenAPI. They contain sets of atomic and composite
component definitions13. Exact schemas of these components follow on from
their definition in our meta-model.

Services. Describing services is the main feature of OpenAPI. As such they can
be specified in a quite expressive way. Yet the service meta-model in OpenAPI
is not a superset of ours because of two lacks that require it to be extended.
First, each service must be associated to a component instance that describes its
behavior14. Second, if a service has a requestBody property (that describes the
type of the data required in the request body), the RequestBody object must
contain a variable name15. When generating the web services code, this is used
to include the request body contents in a variable of the execution context.

From now on, we consider OpenAPI 3.0 extended with the process and service
parts of our meta-model. OpenAPI’s data model is not extended as it was already
powerful enough for our needs.

6 A Tool to Generate Consistent Web Services

To support the approach of automatically building web services from an extended
OpenAPI model (see Section 5), we propose a tool named Safe Web Services Gen-
erator (SWSG) [19] that automates both consistency verification (see Section 4)
and code generation. This tool takes two inputs: a model file (both extended
OpenAPI models and our own concrete syntax are supported), and a path to a
directory which contains implementations of atomic components.

As shown in Figure 3, our tool follows four sequential steps:

1. Model parsing Input model is parsed as concrete syntax of the meta-model
(see Section 3.3) or as an extended OpenAPI model (see [20]).

2. Model transformation If the parsed model was an OpenAPI model, it is
transformed to match our meta-model.

3. Model consistency verification The model is checked in order to establish
its consistency (see Section 4).

4. Code generation The model and the implementations of atomic compo-
nents are used to generate an implementation of the web services they rep-
resent.

13 Their paths are components > x-swsg-ac and components > x-swsg-cc.
14 In the x-swsg-ci property of the service.
15 In a x-swsg-name property.

A Model-Driven Method for Building Web Services from OpenAPI Models 19

OpenAPI
model Model parsing Syntax

OK?

Failure

Start Transforming to
SWSG model

Consistent? Consistency
checkingGeneration

AC
implementations

Web
services

Transformation
OK?

Stop

Failure

Failure

yes

yes

yes

no

no

no

1 2

34

Fig. 3. SWSG process

Model transformation. Transforming extended OpenAPI models to SWSG mod-
els is quite straightforward, except for schemas/types. OpenAPI defines some
primitive types and relies on a modified version of the JSON Schema Speci-
fication [9] for complex types. There are two issues; first, the JSON Schema
Specification is more expressive than SWSG’s type system. For example, it al-
lows to define refined types, e.g. to add a minimum length to a string. Second,
it supports both literal and referenced definition of attribute types. Moreover,
references are quite expressive and can target many places in the OpenAPI main
document or even in another one. In comparison, SWSG only supports literal
primitive types or references to other entities.

While the second issue is more a technical problem, the first would require
to alter SWSG’s type system in order for it to support expressing every possible
OpenAPI type. Yet, for the sake of simplicity of both our meta-model and our
prototype we choose to not address them; they are not essential to test and
validate our approach. Therefore our prototype might return errors when working
with some OpenAPI models that contain these unsupported types or references
in schemas.

Code generation. The process defined by Figure 3 is generic: it does not rely
on a specific language or technology. Yet the language and technologies used to
implement atomic components must be identical or compatible with those of the
code generation target. Because we experiment in Startup Palace’s context, our
prototype targets the PHP programming language [25] with the Laravel web
framework [13], which is a common tool stack.

Many similar tools (see Section 2) take the approach to generate and output
a standalone web application that includes everything necessary to operate it.
We took another approach by generating code that should never be manually
edited; the generated code does not override any existing files in a Laravel ’s
architecture and can be easily hooked to an existing web application through
configuration.

20 David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Arnaud Lanoix

Because of the considered trade-off between provided support and flexibility
left to developers, this MDE approach was designed to allow shallow consistency
verification and most inconsistencies in the model are caught at compile-time.
This does not prevent developers to create flawed or insecure applications, as
they have full control on the atomic components implementations. Indeed this
flexibility comes at the cost of a bit of support. However, we believe this trade-
off is crucial when the developers have to quickly build web services that might
grow and stay in production for a while.

7 Experimentations and Discussion

Process. We derive a new process from the common OpenAPI process explained
in Section 5.1. Step 1: design a stable OpenAPI model. Step 2: design SWSG
components using the extensions we introduced in Section 5 to write them inside
the OpenAPI model. Every atomic component defined in the model must be
provided with an implementation. Step 3: use SWSG to check the model and
generate working web services if the verification is successful.

Case study #1. Step 1: we take the Petstore example [12] presented in Sec-
tion 5.1. The example service defined by Listing 2 is a part of a standard
OpenAPI model. Step 2: we need a component that will handle the response
generation when this service will receive requests. We create a composite com-
ponent called FindPet and reference it from the service, as shown in lines 26-27
in Listing 4. This composite component has two children that are atomic com-
ponents. The first takes an ID as input, uses it to query the database and adds
the Pet result to the context. The second takes a Pet, serializes it in JSON and
put it in an HTTP response. These three components are defined in Listing 5.
Implementations are written for every atomic components. Listing 6 shows the
implementation of the GetPetById component as an example16.

Step 3: we run SWSG on these inputs and get a PreconditionError. This
verification error indicates that a component’s precondition is not fulfilled in a
given instanciation context. In the current case, we learn that the GetPetById
component misses a string named id when instanciated by the FindPet compo-
nent in the GET /pet/{id} service. Indeed, we voluntarily introduced an error
in Listing 5: the GetPetById component is given an integer (by the service)
whereas it requires a string. In this particular example, it should require an
integer id variable in order to be consistent with the service parameter. Never-
theless, in more complex projects, this component might have been used inside
several other composite components and services. Thus, it might not be a good
solution to just change the component’s definition because it might break other
16 The PHP class in Listing 6 depends on the Component interface and on the Ctx and

Params classes. They are defined in code output by the code generator and are just
implementation details of the SWSG specification in this specific code generator.
Different code generators could require different constraints on implementations of
atomic components.

A Model-Driven Method for Building Web Services from OpenAPI Models 21

Listing 4. A service in the SWSG Pet-
store example

1 /pets/{id}:
2 get:
3 description: Returns a user based on a

single ID, if the user does not have
access to the pet

4 operationId: find pet by id
5 parameters:
6 - name: id
7 in: path
8 description: ID of pet to fetch
9 required: true

10 schema:
11 type: integer
12 format: int64
13 responses:
14 ’200’:
15 description: pet response
16 content:
17 application/json:
18 schema:
19 $ref: ’#/components/schemas/

Pet’
20 default:
21 description: unexpected error
22 content:
23 application/json:
24 schema:
25 $ref: ’#/components/schemas/

Error’
26 x−swsg−ci:
27 component: FindPet

Listing 5. Components in the SWSG
Petstore example

1 components:
2 x−swsg−cc:
3 - name: FindPet
4 components:
5 - component: GetPetById
6 - component: RenderPet
7 x−swsg−ac:
8 - name: RenderPet
9 pre:
10 - name: pet
11 type:
12 entity: Pet
13 - name: GetPetById
14 pre:
15 - name: id
16 type: String
17 add:
18 - name: pet
19 type:
20 entity: Pet

workflows. This is the kind of mistakes SWSG can prevent us to make: because
they are reported very early at compile-time, instead of runtime which is too
late. Developers can study the problem and decide if they have to build a better
implementation or if the process model was badly designed.

When running SWSG on a fixed model, the code generation can proceed.
The Laravel code generator generates four kinds of files: one file per atomic
components (identical to those written manually by the developers; see Listing 6),
one file per composite components, a router file and several static files (that do
not depend on the model; for example the Component interface definition).

Case study #2. After it was successfuly implemented, we want to extend the
Petstore example and add a new service to handle PUT /pets/{id} requests.
These requests set a pet with the given attributes and the given ID, by creating
it or by updating the attributes of an already exisiting pet that has the same
given ID. This is very similair to the POST /pets service; the difference is that
the latter does not receive any ID, thus it only creates pets, whereas the new
service can be used to edit them as well.

To implement this, we follow the same process as earlier. Step 1: we ex-
tend the OpenAPI model by adding a new service that matches our needs.
Step 2: we need to attach it to SWSG components. Because of the similarity
between this service and the POST /pets one, we choose to reuse and extend

22 David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Arnaud Lanoix

Listing 6. Implementation of the GetPetById atomic component

1 <?php
2 namespace App\Components;
3 use App\SWSG\Component;
4 use App\SWSG\Ctx;
5 use App\SWSG\Params;
6 use DB;
7
8 class GetPetById implements Component
9 {
10 public static function execute(Params $params, Ctx $ctx)
11 {
12 $pet = DB::table(’pet’)
13 ->where(’id’, $ctx->get(’id’))
14 ->first();
15 $ctx->add(’pet’, $pet);
16 return $ctx;
17 }
18 }

existing components. The CreatePet atomic component is thereby renamed to
CreateOrUpdatePet, given a boolean parameter createOnly and a new precon-
dition on an optional integer id variable. When instanciated for the POST service,
createOnly is given the value true, whereas it is false when the same com-
ponent is instanciated from the PUT service. Then, the implementation of this
atomic component is modified so that it adds or updates pets depending on the
value of the createOnly parameter and the one of the id context variable. List-
ing 7 shows how the new service instantiates a composite component (defined
in Listing 8) that in turn calls the CreateOrUpdatePet and passes it the right
value for its createOnly parameter. Step 3: we run SWSG.

Listing 7. Extract of the new service
1 /pets/{id}:
2 put:
3 ...
4 x−swsg−ci:
5 component: AddOrEditPet
6 bindings:
7 - param:
8 name: addOnly
9 type: Boolean

10 argument:
11 type: Boolean
12 value: false

Listing 8. The AddOrEditPet component
1 x−swsg−cc:
2 - name: AddOrEditPet
3 params:
4 - name: addOnly
5 type: Boolean
6 components:
7 - component: CreateOrUpdatePet
8 bindings:
9 - param:
10 name: createOnly
11 type: Boolean
12 argument:
13 name: addOnly
14 type: Boolean
15 - component: RenderPet

A Model-Driven Method for Building Web Services from OpenAPI Models 23

Discussion. Our approach has several advantages over a regular development
process, for example writing the whole application using a programming lan-
guage and a web framework such as Laravel. First, the model-driven approach
forces developers to think of their design or design evolutions at a macroscopic
scale before writing low-level implementations. Along with the automatic model
verification, this provides them an easy way to spot design mistakes early-on in
the process, therefore saving some of their time. In a regular process, developers
could only rely on the quality tools offered by the language or the framework.
Because there is no static verification step in PHP, for example, and because lots
of developers do not write any automated tests, they would often be tempted
to skip checking the consistency of their design, especially when making small
evolutions on it. Second, because the extended OpenAPI model is used to gen-
erate both implementation and documentation, both will stay aligned during
the life of the project. In a regular process, this property relies on the will of
the developers; they might stop maintaining the OpenAPI model and still make
evolutions to the implementation.

As illustrated by the second step of our case study, these advantages are espe-
cially valuable for incremental development. Indeed they enforce several forms of
consistency at different levels of the projects, for a low cost in term of flexibility
and productivity. In contexts such as ours where we need to build and evolve
web services for MVPs, incremental development is crucial. The model and code
of this case study are available in the repository of SWSG17.

8 Conclusion

We proposed a method integrated to OpenAPI 3.0 to build web services. It is
fast, simple, robust and flexible. It is based on a meta-model that allows devel-
opers to define implementations of web services, starting from the corresponding
high-level contract as expressed by a standard OpenAPI model. Consistency of
models can be verified using an operational semantics so that code generated
from these models is safe. We built a tool, SWSG, that leverages this process in
the technological context of a web company, Startup Palace. The whole approach
was illustrated on a two-steps case study to show its advantages. Even if one of
the motivations was to develop MVPs applications, the approach is not limited
to this scope and is suitable to most applications based on web services.

We have several main prospects. First, the type system used to describe
component parameters, preconditions and model’s entities (among others) is at
the core of the consistency verification, yet it is not flexible enough. Making it
more expressive, by allowing subtyping in component preconditions for example,
while keeping at least the same level of verification might be necessary to reach
a good reusability on bigger projects. Another perspective is to allow and ease
safe model composition, so that developers can reuse concepts between projects
when it makes sense. Model composition is theoretically handled by OpenAPI

17 https://gitlab.startup-palace.com/research/swsg/tree/master/examples/petstore

https://gitlab.startup-palace.com/research/swsg/tree/master/examples/petstore

24 David Sferruzza, Jérôme Rocheteau, Christian Attiogbé, and Arnaud Lanoix

but not currently supported by SWSG. Then, the developper experience could be
improved if there were tools able to automatically check the compliance of atomic
components to their contract in the model. Finally, the whole approach needs
to be evaluated on more realistic and larger case studies. This evaluation must
rely on metrics that have a good correlation with the benefits of our approach,
such as easing new developers to onboard on projects and reuse of exisiting code.
This may take several months of practice and reviews.

References

[1] Apiary. Dredd. 2017. url: https://github.com/apiaryio/dredd.
[2] Mario Luca Bernardi, Marta Cimitile, and Fabrizio Maria Maggi. “Auto-

mated Development of Constraint-Driven Web Applications”. In: Proceed-
ings of the 31st Annual ACM Symposium on Applied Computing. ACM,
2016, pp. 1196–1203.

[3] Mario Luca Bernardi et al. “M3D: A Tool for the Model Driven Devel-
opment of Web Applications”. In: Proceedings of the Twelfth International
Workshop on Web Information and Data Management. WIDM 2012. Maui,
HI, USA, Nov. 2, 2012, pp. 73–80.

[4] Hanyang Cao, Jean-Rémy Falleri, and Xavier Blanc. “Automated Gener-
ation of REST API Specification from Plain HTML Documentation”. In:
International Conference on Service-Oriented Computing. Springer, 2017,
pp. 453–461.

[5] Marco Cremaschi and Flavio De Paoli. “Toward Automatic Semantic API
Descriptions to Support Services Composition”. In: European Conference
on Service-Oriented and Cloud Computing. Springer. 2017, pp. 159–167.

[6] Frank DeRemer and Hans Kron. “Programming-in-the Large versus
Programming-in-the-Small”. In: ACM Sigplan Notices. Vol. 10. ACM, 1975,
pp. 114–121.

[7] Xiang Fu, Tevfik Bultan, and Jianwen Su. “Analysis of Interacting BPEL
Web Services”. In: In Proc. 13th Int. World Wide Web Conf. Citeseer, 2004.

[8] Roy Gronmo et al. “Model-Driven Web Services Development”. In: E-
Technology, e-Commerce and e-Service. EEE’04. IEEE, 2004, pp. 42–45.

[9] Internet Engineering Task Force. JSON Schema: A Media Type for De-
scribing JSON Documents. Oct. 13, 2016. url: https ://tools . ietf . org/
html/draft-wright-json-schema-00.

[10] Paulo Lopes and Francesco Guardiani. Slush-Vertx. 2017. url: https://
github.com/pmlopes/slush-vertx.

[11] Open API Initiative. OpenAPI Specification. Dec. 7, 2017. url: https://
github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md.

[12] Open API Initiative. The Petstore Example. Version 3.0.1. Dec. 7, 2017.
url: https : / / github . com/OAI/OpenAPI - Specification/blob/3 . 0 . 1 /
examples/v3.0/petstore-expanded.yaml.

[13] Taylor Otwel. Laravel. 2016. url: https://laravel.com/.

https://github.com/apiaryio/dredd
https://tools.ietf.org/html/draft-wright-json-schema-00
https://tools.ietf.org/html/draft-wright-json-schema-00
https://github.com/pmlopes/slush-vertx
https://github.com/pmlopes/slush-vertx
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md
https://github.com/OAI/OpenAPI-Specification/blob/3.0.1/examples/v3.0/petstore-expanded.yaml
https://github.com/OAI/OpenAPI-Specification/blob/3.0.1/examples/v3.0/petstore-expanded.yaml
https://laravel.com/

A Model-Driven Method for Building Web Services from OpenAPI Models 25

[14] Jack Pugaczewski et al. “Software Engineering Methodology for Develop-
ment of APIs for Network Management Using the MEF LSO Framework”.
In: IEEE Communications Standards 1.1 (2017), pp. 92–96.

[15] RAML Workgroup. RAML. 2016. url: https://raml.org/.
[16] Jérôme Rocheteau and David Sferruzza. “Reifier: Model-Driven Engineer-

ing of Component-Based and Service-Oriented JEE Applications”. In:
ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems. Saint-Malo, France, Oct. 5, 2016.

[17] Markus Scheidgen, Sven Efftinge, and Frederik Marticke. “Metamodeling
vs Metaprogramming: A Case Study on Developing Client Libraries for
REST APIs”. In: European Conference on Modelling Foundations and Ap-
plications. Springer, 2016, pp. 205–216.

[18] Simon Schwichtenberg, Christian Gerth, and Gregor Engels. “From Open
API to Semantic Specifications and Code Adapters”. In: Web Services
(ICWS), 2017 IEEE International Conference On. IEEE, 2017, pp. 484–
491.

[19] David Sferruzza. Safe Web Services Generator. 2017. url: https://gitlab.
startup-palace.com/research/swsg.

[20] David Sferruzza. Specification of SWSG Extensions for OpenAPI. 2018.
url: https : //gitlab . startup - palace . com/research/swsg/ tree/master/
openapi-extensions-specification/1.0.0.md.

[21] David Sferruzza et al. “A Model-Driven Method for Fast Building Consis-
tent Web Services in Practice”. In: 6th International Conference on Model-
Driven Engineering and Software Development. Funchal, Madeira, Portu-
gal, Jan. 23, 2018. url: https://hal.archives-ouvertes.fr/hal-01654287.

[22] SmartBear Software. Swagger Code Generator. Version 3.0.0-rc1. May 29,
2018. url: https://github.com/swagger-api/swagger-codegen/.

[23] SmartBear Software. Swagger Editor. 2018. url: https : //github . com/
swagger-api/swagger-editor.

[24] SmartBear Software. Swagger UI. 2018. url: https://github.com/swagger-
api/swagger-UI.

[25] The PHP Group. PHP. 2016. url: https://php.net/.
[26] Romanos Tsouroplis et al. “Community-Based API Builder to Manage

APIs and Their Connections with Cloud-Based Services.” In: CAiSE Fo-
rum. 2015, pp. 17–23.

[27] Wil M.P. van der Aalst, Maja Pesic, and Helen Schonenberg. “Declara-
tive Workflows: Balancing between Flexibility and Support”. In: Computer
Science-Research and Development 23.2 (2009), pp. 99–113.

[28] Martijn van der Lee. PHPSwaggerGen. 2017. url: https://github.com/
vanderlee/PHPSwaggerGen.

[29] Philip Wadler. “The Essence of Functional Programming”. In: Proceedings
of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. ACM, 1992, pp. 1–14.

[30] Egon Willighagen and Jonathan Mélius. “Automatic OpenAPI to
Bio.Tools Conversion”. In: bioRxiv (2017). doi: 10.1101/170274.

https://raml.org/
https://gitlab.startup-palace.com/research/swsg
https://gitlab.startup-palace.com/research/swsg
https://gitlab.startup-palace.com/research/swsg/tree/master/openapi-extensions-specification/1.0.0.md
https://gitlab.startup-palace.com/research/swsg/tree/master/openapi-extensions-specification/1.0.0.md
https://hal.archives-ouvertes.fr/hal-01654287
https://github.com/swagger-api/swagger-codegen/
https://github.com/swagger-api/swagger-editor
https://github.com/swagger-api/swagger-editor
https://github.com/swagger-api/swagger-UI
https://github.com/swagger-api/swagger-UI
https://php.net/
https://github.com/vanderlee/PHPSwaggerGen
https://github.com/vanderlee/PHPSwaggerGen
https://doi.org/10.1101/170274

	A Model-Driven Method for Fast Building Consistent Web Services from OpenAPI-Compatible Models
	Introduction
	Related Work
	A Meta-Model to Express Web Services
	Preliminary Notations
	A Meta-Model of Web Services
	Concrete Syntax for Models of Web Services
	Evaluating a Model of Web Services

	Consistency of Web Services
	Development Process Integrated to OpenAPI
	A Common Usage of OpenAPI
	Extending OpenAPI 3.0

	A Tool to Generate Consistent Web Services
	Experimentations and Discussion
	Conclusion

