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Artificial Neural Network : a tool for approximating complex functions

This paper is a mathematical introduction to Artificial Neural Network (ANN). We will show how it is used as a method for approximating functions. We will see how it is used to solve problems in machine learning such as face recogntion, handwritten recogntion or how it is used to solve partial differential equations.

Introduction

In machine learning, a supervised learning problem can be formulated as follows. Let (x i , y i ) 1 i N be a dataset where x i ∈ R d is an input, y i an output and N the number of training data. The goal consists in finding a map f such that f (x i ) ≈ y i , for all i.

In other terms, we are looking for a map that links the input x i to the output y i . The above problem is called regression when the input y i is real and classification when the input y i is discrete. For example, x i can be a list of symptoms of a patient and y i indicates if he suffers from a disease or not.

To solve the problem, some methods are proposed in the litterature ( [START_REF] Konate | Un aperçu sur quelques méthodes en apprentissage automatique supervisé[END_REF]). Among them, there is the Support Vector Machine (SVM) method. It is an optimization problem and the standard form can be formulated as follows : we look for a linear function f (x) = θ T x + θ 0 such as :

min θ 1 2 θ 2
y t (θ T x i + θ 0 ) 1 for all i = 1, ..., N.

The SVM method is very good method sucessfully applied in real world applications such as face recognotion, medical diagnose etc. However, it suffers from some drawbacks. First, it is untractable for very large dimension dataset. Another difficulty with the SVM method lies on fact that in some applications, it is not easy to find which feature or inuput x i to choose. For example, how to choose the more relevant asymptoms to caracterize a disease. To overcome this difficulty, Artificial Neural Network method is introduced.

Artificial Neural Network is a very powerful tool for approximating complex functions. It has been successfully applied to computer vision problems ([SHM + 16, SSS16, SHM + 16, CXG + 16]), system identification and control ([ZXL15]), finance [START_REF] French | The time traveller's capm[END_REF], to diagnose cancers ([GVRP10, BDH + 97, ALCP16, LAM + 16]) and many others areas ( [START_REF] Amin | Deep learning for accelerated reliability analysis of infrastructure networks[END_REF][START_REF] Amin | Accelerating stochastic assessment of postearthquake transportation network connectivity via machine-learning-based surrogates[END_REF] and to predict foundation settlements [DBT18, oAoANNiH00a, 

Mathematical description of artificial neural network

Biological neural systems

The area of Neural Networks has originally been primarily inspired by the goal of modeling biological neural systems and now become a matter of engineering and achieving good results in Machine Learning tasks.

The basic computational unit of the brain is a neuron. There are approximately 86 billion neurons connected each other with approximately 10 14 -10 15 synapses. The Figure 1 shows a cartoon drawing of a biological neuron (left) and a common mathematical model (right). Each neuron receives input signals from its dendrites and produces output signals along its (single) axon. The axon eventually branches out and connects via synapses to dendrites of other neurons. In the computational model of a neuron, the signals that travel along the axons (e.g. x 0 ) interact multiplicatively (e.g. w 0 x 0 ) with the dendrites of the other neuron based on the synaptic strength at that synapse (e.g. w 0 ). The idea is that the synaptic strengths (the weights w) are learnable and control the strength of influence (and its direction: excitory (positive weight) or inhibitory (negative weight)) of one neuron on another. In the basic model, the dendrites carry the signal to the cell body where they all get summed. If the final sum is above a certain threshold, the neuron can fire, sending a spike along its axon. In the computational model, we assume that the precise timings of the spikes do not matter, and that only the frequency of the firing communicates information. Based on this rate code interpretation, we model the firing rate of the neuron with an activation function f , which represents the frequency of the spikes along the axon. Historically, a common choice of activation function is the sigmoid function σ, since it takes a real-valued input (the signal strength after the sum) and squashes it to range between 0 and 1. We will see details of these activation functions later in this section. 

Mathematical description of Artificial Neural Network

A mathematical description of Artificial Neural Network is given in this section. We first remark that ANN are made up of neurons that have learnable weights and biases. Each neuron receives some inputs, performs a dot product and optionally follows it with a non-linearity. More pricesely, Artificial Neural Networks receive an input (a single vector) and transform it through a series of hidden layers. Each hidden layer is made up of a set of neurons, where each neuron is fully connected to all neurons in the previous layer, and where neurons in a single layer function completely independently and do not share any connections. The last fully-connected layer is called the "output layer" and in classification settings it represents the class scores (see an illustration in Figure 2). We consider here, as an example, an ANN with N L + 1 layers. We start by defining the following quantities

z l j = k w l jk a l-1 k + b l j , ∀l = 1, • • • , N L -1, N L (1) 
a l j = σ k w l jk a l-1 k + b l j = σ(z l j ), ∀l = 1, • • • , N L -1, N L (2) 
when a 0 j = x j (x j is the jth input), w l jk the weight from the kth neuron in the (l -1)th layers to the jth neuron in the lth layer. Similarly, we define b l j as the jth bias in the lth layer. We can rewritte the above quantities in vector form :

z l = w l a l-1 + b l , ∀l = 1, • • • , N L -1, N L (3) 
a l = σ(z l ), ∀l = 1, • • • , N L -1, N L . (4) 
Every activation function σ (or non-linearity) takes a single number and performs a certain fixed mathematical operation on it. There are several activation functions you may encounter in practice:

Sigmoid. The sigmoid non-linearity has the mathematical form σ(x) = 1/(1 + exp -x ).

Tanh. It squashes a real-valued number to the range [-1, 1]. Note that the tanh neuron is simply a scaled sigmoid neuron, in particular the following holds: tanh(x) = 2σ(2x) -1.

ReLU. The Rectified Linear Unit has become very popular in the last few years. It computes the function f (x) = max(0, x). In other words, the activation is simply thresholded at zero.

• It was found to greatly accelerate the convergence of stochastic gradient descent compared to the sigmoid/tanh functions. It is argued that this is due to its linear, non-saturating form.

• Compared to tanh/sigmoid neurons that involve expensive operations (exponentials, etc.), the ReLU can be implemented by simply thresholding a matrix of activations at zero.

• Unfortunately, ReLU units can be fragile during training and can "die" (i.e. neurons that never activate across the entire training dataset).

Leaky ReLU. Leaky ReLUs are one attempt to fix the "dying ReLU" problem. Instead of the function being zero when x < 0, a leaky ReLU will instead have a small negative slope (of 0.01, or so). That is, the function computes

f (x) = 1 (x<0) (ax) + 1 (x>=0) (x)
where a is a small constant.

Maxout. Other types of units have been proposed that do not have the functional form f (w T x + b) where a non-linearity is applied on the dot product between the weights and the data. One relatively popular choice is the Maxout neuron that generalizes the ReLU and its leaky version. The Maxout neuron computes the function max(w

T 1 x + b 1 , w T 2 x + b 2 ).
Notice that both ReLU and Leaky ReLU are a special case of this form (for example, for ReLU we have w 1 , b 1 = 0). The Maxout neuron therefore enjoys all the benefits of a ReLU unit (linear regime of operation, no saturation) and does not have its drawbacks (dying ReLU). However, unlike the ReLU neurons it doubles the number of parameters for every single neuron, leading to a high total number of parameters.

The second part of an objective is the data loss, which in a supervised learning problem measures the compatibility between a prediction (e.g. the class scores in classification) and the ground truth label. The data loss takes the form of an average over the data losses for every individual example. That is, L = 1 N i L i where N is the number of training data. Lets abbreviate f yi = σ(x i ; w, b) to be the activations of the output layer in a Neural Network. The nature of the data loss function depends on the application we want to apply the ANN method for. However, we can list some common used loss functions :

• The first common choice is the Softmax classifier that uses the cross-entropy loss:

L i = -log exp fy i j exp fy j
• Regression is the task of predicting real-valued quantities, such as the price of houses or the length of something in an image. For this task, it is common to compute the loss between the predicted quantity and the true answer and then measure the L 2 squared norm, or L 1 norm of the difference.

To summarize, the learning problem can be formulated as follows. Find the optimal weights w op and the optimal biases b op solutions of the following optimization problem :

min w,b 1 N i L i (x i ; w, b) = min w,b L(X; w, b).
(5)

One big challenge with the optimization problem (5) is that the cost functions are mostly non-convex and so the gradient-descent method might get stuck at local minimum points, leading to a sub-optimal solution. The non-convex nature of the Artificial Neural Network is the result of the hidden layer units that have non-linear activation functions, such as sigmoid.

3 Solving the optimization problem using Backpropogation algorithm

Gradient descend method

In this section, we show how to solve the optimization problem (5). We use an iterative algorithm. That means find a sequence

(w k , b k ) k 0 such that L(X; w 0 , b 0 ) L(X; w 1 , b 1 ) L(X; w 2 , b 2 ) • • •
To find such a sequence, one approach consists in making a local linear approximation by applying Taylor expansion and then find a point that satisfies the above inequality. To be precise, we search

(w k + t 1 , b k + t 2 ) such as L(X; w k + t 1 , b k + t 2 ) L(X; w k , b k ).
Using Taylor expansion, to get :

L(X; w k+1 , b k+1 ) ≈ L(X; w k , b k ) + t 1 ∂L ∂w (X; w k , b k ) + t 2 ∂L ∂b (X; w k , b k ) Let η ∈]0, 1] (called step size). So by taking t 1 = -η ∂L ∂w (X; w k , b k ) and t 2 = -η ∂L ∂b (X; w k , b k ), we get L(X; w k+1 , b k+1 ) ≈ L(X; w k , b k ) -η| ∂L ∂w (X; w k , b k )| 2 -η| ∂L ∂b (X; w k , b k )| 2 .
In other words

L(X; w k+1 , b k+1 ) L(X; w k , b k ).
Since we use an iterative method, we must stop at some step. One natural criterion is to stop when the gradient gets very smaller, ie

| ∂L ∂w (X; w k , b k )| 2 + | ∂L ∂b (X; w k , b k )| 2 s c
where s c is a stopping criteria. Data: Initialize w 0 , b 0 , criteron s c , k = 0 and compute

gradnorm = | ∂L ∂w (X; w 0 , b 0 )| 2 + | ∂L ∂b (X; w 0 , b 0 )| 2
Result: Approximation of the optimization problem while gardnorm > s c do

1. compute the gradient ( ∂L ∂w (X; w k , b k ), ∂L ∂b (X; w k , b k ))
2. Choose a value for η

3. w k+1 = w k -η ∂L ∂w (X; w k , b k ) 4. b k+1 = b k -η ∂L ∂b (X; w k , b k ) 5. Compute gradnorm = | ∂L ∂w (X; w k , b k )| 2 + | ∂L ∂b (X; w k , b k )| 2 6. k = k + 1 end Algorithm 1: Gradient Descent Algorithm
Initialization of the parameters Before we can begin to train the network we have to initialize its parameters. Since, usually, the loss function is not convex so there is no guarantee to converge to optimal solution.

A reasonable-sounding idea might be to set all the initial weights to zero, which we expect to be the "best guess" in expectation. This turns out to be a mistake, because if every neuron in the network computes the same output, then they will also all compute the same gradients during backpropagation and undergo the exact same parameter updates. In other words, there is no source of asymmetry between neurons if their weights are initialized to be the same. Therefore, we still want the weights to be very close to zero, but as we have argued above, not identically zero. As a solution, it is common to initialize the weights of the neurons to small numbers and refer to doing so as symmetry breaking. The idea is that the neurons are all random and unique in the beginning, so they will compute distinct updates and integrate themselves as diverse parts of the full network.

Choice of the step rate η When the objective function L is strongly nonlinear, the first order Taylor expansion is a good approximation only in very small portion. Because of that, the step size η must be carrefully chosen. To overcome this, some methods are proposed :

1. A natural choice for the step size η is to choose it as the solution of the following optimization problem

min η L(X; w k -η ∂L ∂w (X; w k , b k ), b k -η ∂L ∂b (X; w k , b k )).
The drawback with this method lies on fact that, in some applications, the evaluation of L(X; w k -

η ∂L ∂w (X; w k , b k ), b k -η ∂L ∂b (X; w k , b k ))
for a fixed η is very expensive in term of time computing. For more details about these methods, one can consult [Pat17, Gér17].

Backpropogation algorithm

We have previously seen that solving the optimization problem (5) with the Gradient Descend algorithm necessitates the computational of the gradient. To this end, we will use the Backpropagation algorithm to compute it ([HM94]).

Recall that

z l j = k w l jk a l-1 k + b l j , ∀l = 1, • • • , N L -1, N L a l j = σ k w l jk a l-1 k + b l j = σ(z l j ), ∀l = 1, • • • , N L -1, N L .
In vector form :

z l = w l a l-1 + b l , ∀l = 1, • • • , N L -1, N L a l = σ(z l ), ∀l = 1, • • • , N L -1, N L .
The idea for computing ∂L ∂w L jk and ∂L ∂b L j consists in using the chain rule derivation. We begin with the output layer :

∂L ∂w L jk = ∂L ∂z L j ∂z L j ∂w L jk = ∂L ∂z L j a L-1 k .
We define

δ L j := ∂L ∂z L j = ∂L ∂a L j ∂a L j ∂z L j = ∂L ∂a L j σ (z L j ). Then ∂L ∂w L jk = ∂L ∂z L j ∂z L j ∂w L jk = ∂L ∂a L j σ (z L j )a L-1 k . (6) 
Similarly, we have

∂C ∂b L j = ∂L ∂z L j z L j ∂b L j = δ L j . (7) 
We compute ∂L ∂w l jk and ∂L ∂b l

j for l = 1, 2, • • • , N L -1.
As before, we have

∂L ∂w l jk = ∂L ∂z l j ∂z l j ∂w l jk = ∂L ∂z l j a l-1 k .
We define

δ l j := ∂L ∂z l j = k ∂L ∂z l+1 k ∂z l+1 k ∂z l j = k δ l+1 j ∂z l+1 k ∂z l j .
To evaluate the first term on the last line, note that

z l+1 j = k w l+1 jk a l k + b l+1 j = k w l+1 jk σ(z l j ) + b l+1 j Differentiating, we obtain ∂z l+1 k ∂z l j = w l+1 jk σ (z l j ).
Thus,

δ l j = k δ l+1 j w l+1 jk σ (z l j ).
Finally, we get :

∂C ∂w l jk = δ l j a l-1 k .
An equation for the rate of change of the cost with respect to any bias of the network

∂C ∂b l j = ∂C ∂z l j z l j ∂b l j = δ l j . (8) 
Here is the full algorithm for computing the gradient of the loss function : Data: Input a set of training examples Result: Compute the gradient For each training example x : set the corresponding input activation a x,1 and perform the following step :;

for l = 1, 2, 3, • • • , N L do z l,x = w l a x,l-1 + b l , and a x,l = σ(z x,l ) (9) end Compute δ x,L = ∇ a C σ (z x,L ); for l = N L -1, N L -2, • • • , 1 do δ x,l w x,l+1 T δ x,l+1 σ (z x,l ). ( 10 
)
end for l = N L , • • • , 1 do update the weights according the rule :

w l ← w l - η n x δ x,l a x,l-1 T (11)
and the biases according to the rule :

b l ← b l - η n x δ x,l . (12) 
end Algorithm 2: Method for computing the gradient of the loss function Overfitting is a modeling error which occurs when a function is too closely fit to a limited set of data points. There are several ways of controlling the capacity of Neural Networks to prevent overfitting:

1. L 2 regularization is perhaps the most common form of regularization. It can be implemented by penalizing the squared magnitude of all parameters directly in the objective.

2. L 1 regularization is another relatively common form of regularization.

3. Max norm constraints. Another form of regularization is to enforce an absolute upper bound on the magnitude of the weight vector for every neuron and use projected gradient descent to enforce the constraint.

4. Dropout (Figure 3) is an extremely effective, simple and recently introduced. It is implemented by only keeping a neuron active with some probability p (a hyperparameter), or setting it to zero otherwise.

Convolutional Neural Networks (ConvNet)

Convolutional Neural Networks are very similar to ordinary Neural Networks from the previous section.

A simple ConvNet is a sequence of layers, and every layer of a ConvNet transforms one volume of activations to another through a differentiable function. We use three main types of layers to build ConvNet architectures: Convolutional Layer, Pooling Layer, and Fully-Connected Layer (exactly as seen in regular Neural Networks). We will stack these layers to form a full ConvNet architecture (see 6).

Figure 3: A graphic illustration of Dropout.

Components of Convolutional Neural Networks

The following are the typical components of a convolutional neural network:

• Input layer will hold the pixel intensity of the image. For example, an input image with width 64, height 64, and depth 3 for the Red, Green, and Blue color channels (RGB) would have input dimensions of 64 * 64 * 3 .

• Convolution layer will take images from the preceding layers and convolve with them the specified number of filters to create images called output feature maps. The number of output feature maps is equal to the specified number of filters. Till now, CNNs in TensorFlow have used mostly 2D filters; however, recently 3D convolution filters have been introduced.

• Activation function for CNNs are generally ReLUs, which we discussed previously. The output dimension is the same as the input after passing through the ReLU activation layers. The ReLU layer adds non-linearity in the network and at the same time provides non-saturating gradients for positive net inputs.

• Pooling layer will downsample the 2D activation maps along the height and width dimensions. The depth or the number of activation maps is not compromised and remains the same.

• Fully connected layers contain traditional neurons that receive different sets of weights from the preceding layers; there is no weight sharing between them as is typical for convolution operations. Each neuron in this layer will be connected either to all the neurons in the previous layer or to all the coordinate-wise outputs in the output maps through separate weights. For classificatio Some of the terms with which one should be familiar while defining the convolution layer are as follows:

• Filter size -Filter size defines the height and width of the filter kernel. A filter kernel of size 3 * 3 would have nine weights. Generally, these filters are initialized and slid over the input image for convolution without flipping these filters. Technically, when convolution is performed without flipping the filter kernel it's called cross-correlation and not convolution. However, it doesn't matter, as we can consider the filters learned as a flipped version of image-processing filters.

• Stride -The stride determines the number of pixels to move in each spatial direction while performing convolution. In normal convolution of signals, we generally don't skip any pixels and instead compute the convolution sum at each pixel location, and hence we have a stride of 1 along both 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 spatial directions for 2D signals. However, one may choose to skip every alternate pixel location while

I * 1 0 1 0 1 0 1 0 1 K = 1 4 3 4 1 1 2 4 3 3 1 2 3 4 1 1 3 3 1 1 3 3 1 1 0 I * K 1 0 1 0 1 0 1 0 1 ×1 ×0 ×1 ×0 ×1 ×0 ×1 ×0 ×1
• Padding -When we convolve an image of a specific size by a filter, the resulting image is generally smaller than the original image. For example, if we convolve a 5 * 5 2D image by a filter of size 3 * 3 , the resulting image is 3 * 3. Padding is an approach that appends zeroes to the boundary of an image to control the size of the output of convolution.

Convolutional Layer

The Conv layer is the core building block of a Convolutional Network that does most of the computational heavy lifting. When dealing with high-dimensional inputs such as images, as we saw above it is impractical to connect neurons to all neurons in the previous volume. Instead, we will connect each neuron to only a local region of the input volume (see Figure 4). The spatial extent of this connectivity is a hyperparameter called the receptive field of the neuron (equivalently this is the filter size). The extent of the connectivity along the depth axis is always equal to the depth of the input volume. It is important to emphasize again this asymmetry in how we treat the spatial dimensions (width and height) and the depth dimension: The connections are local in space (along width and height), but always full along the entire depth of the input volume.

Pooling Layer

A pooling operation on an image generally summarizes a locality of an image, the locality being given by the size of the filter kernel, also called the receptive field. The summarization generally happens in the form of max pooling or average pooling. In max pooling, the maximum pixel intensity of a locality is taken as the representative of that locality (see 5). In average pooling, the average of the pixel intensities around a locality is taken as the representative of that locality. Pooling reduces the spatial dimensions of an image. The kernel size that determines the locality is generally chosen as 2 * 2 whereas the stride is chosen as 2.

Examples

Exemple 1 : Solving a partial differential equation

We will see, in this example, how to use Artificial Neural Network to solve a partial differential equation.

To evaluate the effectiveness of our method, we will report three error metrics, which can be used as indicators for different purposes (when the exact solution is available).

L 2 = 1 M M i=1 |u h (x i , y i ; w 1 , w 2 ) -u(x i , y i )| 2
We consider the analytical solution u(x, y) = sin(πx) sin(πy), (x, y) ∈ Ω then we have f (x, y) = -∆u(x, y) = -2π 2 sin(πx) sin(πy)

and the boundary condition is zero boundary condition (that is g D (x, y) = 0). The evolution of the numerical solutions is represented in Figure 7.

Exemple 2 : Fashion items classification

We consider, here, a example of classification problem introduced in https://www.tensorflow.org/ tutorials/keras/basic_classification. The training data (https://github.com/zalandoresearch/ fashion-mnist) contains 70,000 grayscale images in 10 categories each of size 28 × 28 (see Figure 8), classified as : 

Conclusion

We have seen in this paper the description of Artificial Neural Network and how it is used in practice.

Particulary, we used it to solve partial differential equation.

In the future, we will make a deep theoretical study such error estimation and we will make a comparaison between the ANN approximation and standard methods such finite element method or finite volume method. 
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 1 Figure 1: A cartoon drawing of a biological neuron (left) and its mathematical model (right).
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 2 Figure 2: Example of neural network with 3 layers.
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 4 Figure 4: Graphic illustration of a convolutional operation.

  represented in Figure 9, Figure 10, Figure 11, Figure 12, Figure 13.
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 7 Figure 7: Evolution of the Artificial Neural Network approximation.
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 8 Figure 8: Example of some items.

Figure 9 :

 9 Figure 9: Some predictions with a neural network with only input and output layer. The efficiency is 0.8395.

Figure 10 :

 10 Figure 10: Some predictions with a neural network with only one hidden layer. The efficiency is 0.8733.

Figure 11 :

 11 Figure 11: Some predictions with a convolutional neural network with only input and output layer. The efficiency is 0.9067.

Figure 12 :

 12 Figure12: Some predictions with a convolutional neural network with only one hidden layer. The efficiency is 0.9032.

Figure 13 :

 13 Figure 13: Somme predictions with a convolutional neural network with two hidden layer. The efficiency is 0.8931.

  This manuscript is inspired by Stanford course (http://vision.stanford.edu/teaching/cs231n/). There is nothing new in this paper. Our goal consists only on showing how to use Artificial Neural Network in practice through examples.

where the domain Ω is the unit square [0, 1] 2 , f is the second member. This equation is used to model, for example, the displacement in solid mechanics [START_REF] Konaté | A multiscale method for a Convection-Diffusion equation[END_REF][START_REF] Konaté | Méthode multi-échelle pour la simulation d'écoulements miscibles en milieux poreux[END_REF].

The algorithm for solving this equation is as follows : we approximate u with u(x, y; w 1 , w 2 ) = A(x, y; w 1 ) + B(x, y) • N (x, y; w 2 )

where A(x, y; w 1 ) is a neural network that approximates the boundary condition and where B(x, y) satisfies B(x, y)| ∂Ω = 0 and N (x, y; w 2 ) is a neural network that approximates the solution inside the domain Ω.

The data set is generated randomly both on the boundaries and in the innerdomain. For every update, we randomly generated (x i , y i ) M i=1 , (x i , y i ) ∈ ∂Ω and compute g i = g D (x i , y i ). The date are then used for computing loss and derivatives. The boundary loss function is defined as follows

Simirarly, for every update, we randomly generated (x i , y i ) M i=1 , (x i , y i ) ∈ Ω and compute f i = f (x i , y i ). The data are then used for computing loss and derivatives. The inner loss function is defined as follows