
HAL Id: hal-02075976
https://hal.science/hal-02075976v1

Submitted on 21 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dealing with Non-Functional Requirements in
Model-Driven Development: A Survey

David Ameller, Xavier Franch, Cristina Gomez, Silverio Martínez-Fernández,
Joao Araujo, Stefan Biffl, Jordi Cabot, Vittorio Cortellessa, Daniel Mendez,

Ana Moreira, et al.

To cite this version:
David Ameller, Xavier Franch, Cristina Gomez, Silverio Martínez-Fernández, Joao Araujo, et al..
Dealing with Non-Functional Requirements in Model-Driven Development: A Survey. IEEE Transac-
tions on Software Engineering, 2021, 47 (4), pp.818 - 835. �10.1109/TSE.2019.2904476�. �hal-02075976�

https://hal.science/hal-02075976v1
https://hal.archives-ouvertes.fr

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 1

Dealing with Non-Functional Requirements in
Model-Driven Development: A Survey

David Ameller, Xavier Franch, Cristina Gómez, Silverio Martı́nez-Fernández,
João Araújo, Stefan Biffl, Jordi Cabot, Vittorio Cortellessa, Daniel Méndez Fernández,

Ana Moreira, Henry Muccini, Antonio Vallecillo, Manuel Wimmer, Vasco Amaral, Wolfgang Böhm,
Hugo Bruneliere, Loli Burgueño, Miguel Goulão, Sabine Teufl, Luca Berardinelli

Abstract—Context : Managing Non-Functional Requirements (NFRs) in software projects is challenging, and projects that adopt
Model-Driven Development (MDD) are no exception. Although several methods and techniques have been proposed to face this
challenge, there is still little evidence on how NFRs are handled in MDD by practitioners. Knowing more about the state of the practice
may help researchers to steer their research and practitioners to improve their daily work. Objective: In this paper, we present our
findings from an interview-based survey conducted with practitioners working in 18 different companies from 6 European countries.
From a practitioner’s point of view, the paper shows what barriers and benefits the management of NFRs as part of the MDD process
can bring to companies, how NFRs are supported by MDD approaches, and which strategies are followed when (some) types of NFRs
are not supported by MDD approaches. Results: Our study shows that practitioners perceive MDD adoption as a complex process with
little to no tool support for NFRs, reporting productivity and maintainability as the types of NFRs expected to be supported when MDD
is adopted. But in general, companies adapt MDD to deal with NFRs. When NFRs are not supported, the generated code is sometimes
changed manually, thus compromising the maintainability of the software developed. However, the interviewed practitioners claim that
the benefits of using MDD outweight the extra effort required by these manual adaptations. Conclusion: Overall, the results indicate
that it is important for practitioners to handle NFRs in MDD, but further research is necessary in order to lower the barrier for supporting
a broad spectrum of NFRs with MDD. Still, much conceptual and tool implementation work seems to be necessary to lower the barrier
of integrating the broad spectrum of NFRs in practice.

Index Terms—Model-Driven Development, Non-Functional Requirements, Quality Requirements, Requirements Engineering, Survey.

F

1 INTRODUCTION

MODEL-DRIVEN DEVELOPMENT (MDD) refers to the
systematic use of models as first-class entities

throughout the software engineering lifecycle [1], [2]. Its ob-
jective is to increase productivity, portability and reuse, and
to reduce time to market by enabling complex systems de-
velopment using models. Models are defined with concepts
that are much less bound to the underlying implementation
technology, thus abstracting from unnecessary details. This
favours the transformation of such models into “real things”
[2].

The confidence in the practical relevance of MDD
is strengthened by ongoing technology projects (e.g., the
Eclipse Modelling Project1), industrial practices [3], [4], and
reported success stories [5]. Obstacles and challenges to be
surpassed have also been studied [6].

When analysing the literature related to the industrial
adoption of MDD, one aspect becomes evident. While Non-
Functional Requirements (NFRs) are becoming more and
more important in industry (e.g., in relation to quality assur-
ance, or when checking compliance to security regulations)
and MDD is being used in critical domains such as automo-
tive, defence, and aerospace, there is still a lack of evidence
on how NFRs are managed and fullfilled by MDD processes.

• D. Ameller is with the Univ. Politècnica de Catalunya, Barcelona, Spain.
E-mail: dameller@essi.upc.edu

Manuscript received Month DD, YYYY; revised Month DD, YYYY.
1. https://www.eclipse.org/modeling

In other areas, such as Service-Based Systems, there is scarce
NFRs support [7]. This knowledge gap was already reported
in 2010 [8] and the situation has not improved significantly
since then.

Under the premise that practitioners need to consider
NFRs regardless of the concrete software development ap-
proach they follow, we conducted an industrial survey
based on interviews to better understand: 1) the importance
given to NFRs in comparison to functional requirements and
the NFRs expected to be satisfied when MDD is adopted,
2) the NFRs really satisfied when MDD is adopted, the
development stages in which they are addressed and the
techniques used, and if the companies need to tailor their
MDD approaches to guarantee those NFRs, and 3) the
strategies used by the companies when NFRs are unsup-
ported by MDD approaches. The interview-based survey
follows Ciolkowski et al. guidelines [9]. We interviewed
practitioners from 18 companies that use MDD in their
software projects (5 medium-sized and 13 large companies)
in 6 European countries, recruited by researchers of each
participating country. The analysis of the answers reveals
that: 1) NFRs are less important than or equally important
as functional requirements, 2) productivity, maintainability
and reusability are the NFRs most expected to be improved
before adopting MDD, 3) the expectations are met for pro-
ductivity and maintainability when MDD is adopted, 4)
modelling, transformation functions and MDD adaptations
are used for specifying and satisfying NFRs and 5) manual

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 2

changes, which may compromise maintenance, or even dis-
carding NFRs, are the strategies followed when NFRs are
unsupported by MDD approaches.

The pieces of evidence collected in our survey represent
a new asset in the software engineering body of knowledge.
The findings we drew from the way practitioners deal with
NFRs when they use an MDD approach, the alignment of
the survey findings with existing results from literature, and
the discussion of possible actions that could help improving
the state of the practice in the field could help practitioners
and researchers improving their daily work. For instance,
practitioners may discover that there exist research results
that allow for including NFRs into the MDD processes
in a systematic way. Moreover, researchers may become
aware of what types of NFRs practitioners perceive as worst
supported in their projects and focus their efforts in their
types.

The paper is structured as follows. Section 2 provides
the background. Section 3 reports related work. Section 4
describes the methodology used. The results are reported in
Section 5 and discussed in Section 6. Section 7 discusses the
threats to validity before providing concluding remarks and
an outline of a research agenda in Section 8.

2 BACKGROUND

2.1 Model-Driven Development

MDD can be defined as “a development paradigm that uses
models as the primary artefact of the development process” [10].
Other concepts related to MDD are: 1) Model-Driven En-
gineering (MDE), which is a systematization of MDD to
all software engineering activities (e.g., forward engineer-
ing, reverse engineering, software evolution, and systems
interoperability); 2) Model-Driven Architecture (MDA) [11],
which is the Object Management Group (OMG) approach to
MDD. They all imply the use of models as first-class entities
and the general consideration is that they provide a way
to design and develop software systems. Unless otherwise
specified, in this paper we will focus on MDD.

There are two key concepts in MDD:

• Model. Two types of models are mostly considered
in practice: terminal models (also sometimes called
object models) (M1) and metamodels (M2) [12], [13].
However, in general, any number of modeling levels
may exist [14]. A terminal model (or a set of termi-
nal models) is a representation of a system/domain
capturing some of its characteristics by means of
abstraction. A terminal model is expressed using a
precise modelling language and conforms syntacti-
cally to a metamodel that defines the kind of model
elements (and their relationships) that may appear
in the model. This way, metamodels play a similar
role than grammars in the domain of programming
languages.

• Model transformation. Model transformations take one
or more terminal models as input and generate one
or more terminal models (model-to-model transfor-
mations) or textual artefacts (model-to-text transfor-
mations) as output. The input and output models
may conform to the same metamodel or to different

ones. Example of such transformations are those de-
fined to produce performance models (e.g., Queueing
Networks for performance analysis) from software
models, or as part of code-generation processes.

The adoption of MDD has the potential to bring along
many benefits such as improvements in the productivity
and maintainability of the system [15] or as mentioned by
many practitioners, the ability to represent the software
system at an abstract level (i.e., technology- or platform-
independent). The adoption of MDD involves the use of
some modelling language, such as the UML, to represent
the system, and the use of one or more model transforma-
tions to generate artefacts (e.g., source code, documentation).
However, some companies have a more in-depth adoption,
which also involves the use of customized metamodels,
such as extensions for the UML metamodel [16], or the use
of Domain-Specific Languages (DSLs) [17] tailored to solve
specific kinds of problems.

2.2 Non-Functional Requirements
Although there is still no consensus on the definition of
Non-Functional Requirements (NFRs) [18], there is a general
agreement that NFRs refer to quality attributes or con-
straints on the operation, use or development process of a
software system. Therefore, NFRs are ”requirements which
are not specifically concerned with the functionality of a sys-
tem” [19], frequently stated informally during requirements
analysis, [which] are often contradictory, difficult to enforce
during software development and to validate [20]. Exam-
ples include environmental and implementation constraints
which are not specifically concerned with the functionality
of a system, performance, platform dependencies, maintain-
ability, extensibility, reliability [20], user friendliness and
hedonic qualities [21], hence comprising quality attributes
and other system constraints. NFRs often tend to interact
or to conflict with functional requirements and other NFRs.
Trade-off analysis must then be conducted to resolve the
conflicts.

There are many taxonomies or otherwise classifications
for NFRs. For example, Roman [22] presents a taxonomy
that includes interface, performance, operation, lifecycle,
economic, and political constraints. Somerville [23] classifies
NFRs as product, organizational, and external requirements.
The ISO/IEC 25010 standard [24] is arguably the most
widespread classification used. It has to be noted that seven
out of the eight main software product quality categories
defined by ISO/IEC 25010 are dealing with NFRs, e.g.,
performance efficiency, compatibility, security to mention
just a few. Furthermore, these seven categories provide over
30 subcategories for NFRs.

Software companies are increasing their awareness of
the importance of NFRs in the construction and evolution
of large and complex software-intensive systems. NFRs are
decisive for the success or failure of such systems. The lack
of integration of NFRs with functional requirements can
result in long time-to-market and cost overruns in software
projects [20], [25], [26], [27]. Indeed, some researchers have
already reported that the notion of NFR is not always clear
for practitioners (e.g., Ameller et al. [28]). Sometimes, the
problem is of terminological nature (e.g., the meaning of

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 3

“dependability” or “performance” could be quite diverse)
but it can also be of conceptual nature (e.g., some respon-
dents in this study have qualified “productivity” as an NFR
while others have not). Any industrial study involving the
concept of NFR needs to be aware of these problems and
decide how to mitigate them. In our study, to avoid any
exclusion, we consider as (type of) NFRs anything referred
to as such by the participants (including aspects related to
the development process, e.g., productivity).

2.3 Non-Functional Requirements in MDD
Several research approaches have been proposed to deal
with NFRs in MDD. The common approach, in the state of
the art, is to add NFRs to models by using UML profiles and,
in fewer cases, NFRs are added directly to the UML models
(e.g., as a comment) or by providing a whole metamodel
designed for this objective [29]. The earliest contributions
appeared at the beginning of the 2000s in the domain of
performance validation (e.g., the Workshop on Software and
Performance [30]). They were soon followed by MDD ap-
proaches in reliability and safety domains (e.g., Cortellessa
et al. [31] and Grunske et al. [32]). A research effort was
conducted thereafter to define frameworks for the system-
atic application of MDD approaches [33], independently
of the notations and the processes adopted. More recently,
MDD approaches were introduced to extend the targeted
NFRs (e.g., to guarantee security during software evolution
[34]), to cope with specific paradigms (such as Service-
Oriented Architectures [35]) and/or specific application do-
mains (such as Adaptive Systems [36]) and to control the
fulfilment of NFRs in model transformations [37].

3 RELATED WORK

Several empirical studies exist on the state of the practice in
MDD (e.g., Hutchinson et al. [38]) or NFRs (e.g., Ameller et al.
[28]) but not exploring the state of the practice on MDD and
NFRs together. In very few cases, the studies about MDD
mention requirements but their focus is mostly on functional
requirements. Similarly, a few studies about NFRs mention
the use of models, but none as part of an MDD approach.
Therefore, our study will cover an unexplored area, that is,
how companies deal with NFRs when using MDD.

Table 1 summarizes the studies found in literature re-
lated to NFRs or to MDD. Due to their very different nature,
we distinguish between surveys, using either interviews or
online questionnaires for data extraction, and case studies.
In some cases, the studies used a combination of different
types of empirical studies (e.g., Hutchinson et al. [38]) or
different types of data extraction (e.g., Mohagheghi et al. [4]).

The interest of the studies can be quite different. While
some are very generic, e.g., for MDD [39] and for NFRs
[40], others target some particular aspect. For instance, they
may focus on acceptance in industry [4], productivity [41],
[42], tool-related issues impacting MDD adoption [43], [44],
viewpoints from a particular role like software architect [28],
[45], [46], etc. It is worth to remark that some surveys have
been conducted in a particular geographical area, e.g., Italy
[47] or Brazil [48].

In this section we do not provide the details of the
studies. Instead, we discuss the significant connections of

Fig. 1. Participating Countries and Researchers

these works with the results of our study in Section 6 once
the results of our own study have been presented.

4 METHODOLOGY

We followed Ciolkowski et al.’s guidelines [9] for conducting
empirical studies based on surveys. These guidelines iden-
tify six steps: definition, design, implementation, execution,
analysis, and packaging (see Figure 2).

We produced a protocol document detailing these six
steps2. All the involved researchers, the authors of this paper
and the researchers in the acknowledgements, validated
this protocol based on their experiences in similar empirical
studies. Furthermore, we published a peer-reviewed paper
in RE@Next [55] with the contents of this protocol.

We defined three RQs divided into ten sub-RQs (see
Table 2). However, we removed RQ1.1 (about the context of
use of MDD in companies) because it is not directly related
to NFRs. Still, since we collected data for this sub-RQ, we
can refer to this data when contextualizing some other find-
ing in the discussion. Therefore, RQ1 in the paper includes
RQ1.2 and RQ1.3 from the protocol. We also removed RQ2.2
(about NFR characteristics) and RQ2.3 (about tools) because
we did not collect enough data to provide insightful results.
Therefore, RQ2 in the paper only includes RQ2.1 and RQ2.4
from the protocol. RQ3 keeps the three sub-RQs from the
protocol (RQ3.1-3.3). The resulting three RQs are shown in
Table 5 and discussed in detail in Section 4.2.

In the following subsections, we provide a summary of
the most relevant aspects of the methodology. For further
details, we refer to the protocol document (see Footnote 2).

4.1 Goal of this Study
Following the GQM (Goal-Question-Metric) technique [56],
we defined the goal of our study as follows:

• Purpose. Explore, analyse, and characterize
• Object. MDD approaches
• Focus. Deal with NFRs
• Viewpoint. Technology experts in the company
• Context. Companies using MDD in real projects

The expected outcome of this survey is a better un-
derstanding on how companies handle NFRs when they

2. Protocol: https://figshare.com/s/cceb874c87b5bd5213ce

https://figshare.com/s/cceb874c87b5bd5213ce

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 4

TABLE 1
Characteristics of the Related Empirical Studies

Ref. Type of study Data extraction** Area Topic Sample*** Year of publication
[43] Survey and case study Int. MDD Tool-related issues 19 pract. / 2 org. 2017
[44] Survey Int. MDD Software evolution 3 org. 2016
[49] Survey Quest. MDD Embedded systems 113 pract. 2016
[50] Survey Quest. NFR Service-based systems 56 pract. 2016
[45] Survey Int. NFR Contract-based projects 21 pract. 2015
[46] Survey Int. and quest.* NFR Specification and validation 6 org. 2014
[38] Survey and case study Quest. and int. MDD Factors for success and failure 449 pract. / 4 org. 2014
[4] Survey Int. and quest. MDD State of the practice 4 org. 2013
[47] Survey Quest. MDD Benefits and drawbacks 155 pract. 2013
[48] Survey Quest. MDD Embedded systems 209 pract. 2013
[51] Case study Int. MDD Benefits 3 org. 2013
[28] Survey Int. NFR State of the practice 12 org. 2012
[39] Survey Int. and quest. MDD State of the practice 22 pract. / 250 pract. 2011
[40] Survey Int. NFR Embedded systems 10 pract. 2009
[41] Case study Not specified MDD eBusiness software 1 org. 2007
[42] Case study Int. and quest.* MDD MDD industrial infusion 1 org. 2006
[52] Case study Not specified MDD Large IT consultancy context 1 org. 2006
[53] Case study Not specified MDD Large industrial context 1 org. 2005
[54] Survey Int. NFR NFR-related problems 2 org. 2003
* These works aggregate the results from different data extraction mechanisms
** Int.: Interviews; Quest.: Questionnaires
*** Pract.: Practitioners; Org.: Organizations

TABLE 2
Original RQs as Defined in the Protocol

Id Research Question
RQ1 In which context is MDD adopted by companies?
RQ1.1 What factors motivate or discourage the adoption of

MDD?
RQ1.2 Which types of NFRs are linked to these factors?
RQ1.3 To what extent are NFRs relevant for those projects that

adopt MDD?
RQ2 To what extent do MDD approaches adopted by com-

panies support NFRs?
RQ2.1 Which types of NFRs are supported by the adopted

MDD approaches?
RQ2.2 Which characteristics do these NFRs exhibit?
RQ2.3 Which notations and tools are used for the supported

types of NFRs?
RQ2.4 At which stages of the adopted MDD approach are these

NFRs handled?
RQ3 How do companies deal with NFRs when the adopted

MDD approach does not support them?
RQ3.1 How are MDD approaches customized to take into

account the previously unsupported types of NFRs?
RQ3.2 How do companies deal with an NFR which is not

supported by MDD?
RQ3.3 To what extent are the drawbacks of dealing with un-

supported types of NFRs compensated by the benefits
of adopting MDD?

use MDD for software production. Furthermore, from the
results obtained, we have identified and discussed several
findings and gave our opinion about them (i.e., how the
scientific community and practitioners can help improve the
current state of the practice).

TABLE 3
Modified RQs

Id Research Question
RQ1 What benefits can the management of NFRs bring to

companies as part of their MDD processes?
RQ1.1 Which types of NFRs are linked to the factors that

motivate the adoption of MDD? (former RQ1.2)
RQ1.2 To what extent are NFRs relevant for those projects that

adopt MDD? (former RQ1.3)
RQ2 How do MDD approaches adopted by companies

support NFRs?
RQ2.1 Which types of NFRs are supported by the adopted

MDD approaches?
RQ2.2 At which stages of the adopted MDD approach are these

NFRs handled? (former RQ2.4)
RQ3 How do companies deal with NFRs when the adopted

MDD approach does not support them?
RQ3.1 How are MDD approaches customized to take into

account the previously unsupported types of NFRs?
RQ3.2 How do companies deal with an NFR which is not

supported by MDD?
RQ3.3 To what extent are the drawbacks of dealing with un-

supported types of NFRs compensated by the benefits
of adopting MDD?

4.2 Research Questions

Based on the goal of the study, we report on the answers to
the following three research questions.

RQ1 (what benefits can the management of NFRs bring to
companies as part of their MDD processes?) aims at under-
standing the importance of NFRs in companies that adopt
MDD. Firstly, we want to know the level of importance
given to NFRs in comparison to functional requirements.
Secondly, we aim to discover the NFRs expected to achieve

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 5

Conduct
interviews

TranslationTranscription
Complete missing

information
Verification for
completeness

Read the
answers

Verification of
text selections

Review answers
with codes

Basic statistical
analysis

Definition of
codes

Participants
selection (3)

Find candidates
(5 per country)

Selection
criteria

Questionnaire
design

Internal pilot
(2 researchers)

External pilot
(1 company)

Questionnaire
review

Project idea
definition

Internal protocol
review

Peer review of
the protocol

Done by the leading team
Done by the local researchers
Done by external researchers

Protocol

Questionnaire

Sample

Execution

Analysis

Fig. 2. Description of the Protocol Defined Process

when MDD is adopted and which of them influence the
adoption of an MDD approach. This RQ is answered in the
basis of several questions in the questionnaire, for instance
”How relevant are NFRs in the projects that well-fit with
MDD?” and ”Which were the relevant NFRs of the [selected]
project?”.

RQ2 (how do MDD approaches adopted by companies sup-
port NFRs?) focuses on understanding the current level of
support of NFRs in the adopted MDD approaches. Firstly,
we want to know if companies need to tailor their MDD
approaches to support specific types of NFRs, or if there
are some types of NFRs that are directly supported, i.e.,
without modifying their MDD approaches. Secondly, we
want to determine in which part of the MDD process the
supported NFRs are addressed and what techniques are
used to this end. In knowing how NFRs are supported by
MDD, we base our observations in questions like ”Which
NFRs are supported [by MDD as it is now in the company]”
and ”Please, provide an example of one particular NFR
supported by the MDD”.

RQ3 (how do companies deal with NFRs when the adopted
MDD approach does not support their management?) aims at un-
derstanding the strategies used by the companies when they
have to cope with those types of NFRs that are unsupported
by the MDD approaches adopted in their contexts. There are
two envisioned strategies [8]: to adapt the MDD process so
that it can account for the unsupported types of NFRs, or to
manually adjust the resulting artefacts of the MDD process
to satisfy the unsupported NFRs. However, we expect that
companies may very well use other strategies.

4.3 Research Team

The study was initiated by the research group at the Univer-
sitat Politècnica de Catalunya (UPC) who issued invitations
to the rest of the groups of the other institutions. We wanted
to involve a large number of teams for two reasons: 1) to
form a robust research team composed of expert researchers
from the two main areas of research (MDD and NFRs) plus
the added value of their experience with empirical studies;
2) to facilitate reaching a diverse sample of industrial par-
ticipants. UPC selected the invited teams from their contact
network. In a few cases, previous collaborations existed, but
for most teams this was the first joint endeavour. Initially,

eight teams joined the study, but two of them withdrew in
the course of the study, yielding to the final six participant
teams (see Figure 1).

Along the paper, when necessary, we distinguish among
the leading team (the first four authors of the article, who are
from the UPC team) and local researchers (the researchers
from each of the six participating countries). For example,
local researchers executed the interviews while the leading
team performed the data analysis.

4.4 Population and Survey Sample
The main entities of this study are the technology experts
from the participating companies. We did not restrict the
participating companies concerning their size or application
domain, but we required them to have experience using
MDD in their software projects. Therefore, our target par-
ticipant, is a highly skilled MDD practitioner.

For the sample selection, each team of local researchers
provided a list of 5 tentative companies, from which the
leading team selected 3 companies based on their adequacy
for the study (i.e., direct participation in MDD projects
that included models, metamodels, and transformations).
The invitation letter used to contact potential participants
is available online3. In total, 18 companies participate (see
Table 4) which seems a reasonable number especially com-
pared to the other related studies (see Table 1). The com-
panies have different levels of MDD adoption. For each
company, we interviewed one employee. Most of the inter-
viewees had a software engineering background (14), while
dominant academic degrees were MSc (10) and PhD (6).

4.5 Questionnaire Design
We designed a questionnaire4 based on Dillman et al. ’s
[57] recommendations to gather the data required to answer
the RQs. It consists of 10 questions and 43 sub-questions
along with the instructions for how to conduct the interview.
Among them, 32 are open questions, while the remaining
ones have a set of predefined answers. The idea was to
design a questionnaire with a well-defined structure, but
leaving most of the questions open to let the interviewers
and interviewees go in-depth when some interesting topic
arose during the interview (i.e., a semi-structured inter-
view). Among the 10 main questions, three were used to
understand the context of the companies (questions 1–3)
and one (question 6) to validate the previous responses
given and to put the participants in context for the following
questions.

The initial set of questions was proposed by the lead-
ing team, then reviewed by the local researchers, and last
validated in two pilot interviews.

Since the local researchers were responsible for the
survey execution, the leading team included precise and
detailed guidelines as part of the questionnaire with instruc-
tions for the interviewers on how to ask each question. For
example, for the first question, the first instruction was to
let the participants freely explain what MDD was for them
and then try to match the provided definition with one of

3. Invitation letter: https://figshare.com/s/cceb874c87b5bd5213ce
4. Questionnarie: https://figshare.com/s/cceb874c87b5bd5213ce

https://figshare.com/s/cceb874c87b5bd5213ce
https://figshare.com/s/cceb874c87b5bd5213ce

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 6

TABLE 4
Survey Sample

Id Domain Size1 Years2 Projects3 Level4

FR1 Digital systems Large 17 >10 L4
FR2 Electronics Large 3 1 L3-L4
FR3 IT services Large 15 15 L3-L4
PT1 Aerospace and defence Large 2 1 -
PT2 Mobile and web Large 2 2 L3-L4
PT3 Electronics Medium 6 >5 L5
AT1 Software tools Medium 2 1 L4
AT2 Software tools Large >20 >10 L4
AT3 Software tools Medium 10 30 L2-L3
ES1 IT services Large 6 10 L4
ES2 IT services Large 7 4 L4
ES3 IT services Medium 9 10 L4
DE1 IT services Large 3 15 L3
DE2 Defence Large 17 4 L3
DE3 Data processing Large 7 5 L4
IT1 Aeronautics Large 10 >20 L1-L2
IT2 Defence Large 2 2 L1-L2
IT3 Mobile and web Medium 14 10 L5
1 Medium: Less than 100 employees; Large: 100 or more
2 Years of the interviewee using MDD
3 Projects in which the interviewee used MDD
4 L1 Ad hoc modelling: Modelling practices are rarely used.

L2 Basic MDD: Models with business and technical concepts. Code is
obtained, manually or automatically, from models.
L3 Initial MDD: Business models are manually converted to technical
models which are converted to code automatically.
L4 Integrated MDD: Use of DSLs. Domain, business and technical
concepts separated. Reusable infrastructure technical model. Models
used for testing and correcting design issues.
L5 Ultimate MDD: Models are executable. Reusable system family en-
gineering mind-set with common set of MDD assets (transformations,
domain models, metamodels, ...).

the listed options. Our intention with the guidelines was to
reduce the interviewers’ bias and to guarantee the capability
to aggregate the data gathered for the analysis.

4.6 Survey Execution

Local researchers used face-to-face interviews in most cases
except for 6 phone interviews. Three interviews were
recorded and transcribed verbatim, the rest was sum-
marised (nine very detailed close to verbatim, six focussing
on the essentials) based on recordings. When necessary,
the local researchers translated the obtained answers to
English. Furthermore, the leading team validated the in-
terviews for completeness and adequacy (e.g., if some an-
swers were incomplete or needed additional details, the
local researchers provided the missing information) and the
interviews were also reviewed by the interviewees. The
transcriptions/summaries of the interviews are available
online5.

The duration of the interviews had an average of 75
minutes with a minimum of 44 and a maximum of 98
minutes. The conducted interviews took place from June to
November 2015.

5. Dataset: https://figshare.com/s/cceb874c87b5bd5213ce

4.7 Data Analysis
Since the majority of questions were open, we decided to
apply qualitative content analysis [58] to analyse the data.
More concretely, we applied an inductive content analysis
process since our research was exploratory and the results
had to be derived from the interviews. We used the coding
technique to transform the qualitative data (interviews) into
quantitative data (codes) following grounded theory coding
principles [59]. The leading team performed four steps
to identify the codes. First, they read independently the
complete transcriptions and corroborate the consistency and
coherence of the answers using those provided in question 6
for an individual finalized project. Each researcher selected
the relevant text for each answer. Second, the researchers
shared with each other the relevant text selected in order to
agree on the information to be extracted. For the cases in
which they could not reach such agreement, the researchers
analyzed jointly the information again until reaching a
consensus. Third, the researchers jointly defined a category
or code for each relevant text extracted. They discussed
the level of abstraction of the codes. And, finally, after
the definition of all the codes, the researchers conducted a
general revision where some codes were split, others were
generalized and others were merged. The codified data is
available online (see Footnote 5). After this categorization
process, the leading team used frequency analysis to detect
the recurrent cases reported in Section 5.

5 RESULTS

In this section, we present the findings obtained from the
analysis of the responses given by the interviewees. For
each identified code (see Section 4.7), we include relevant
quotations extracted from the interviewees’ responses, and
indicate the identifier of the company enclosed in parenthe-
sis. These identifiers are two letter country codes according
to ISO 3166-1 alpha-2 followed by the number of the partic-
ipant (e.g., “(PT1)” represents the first participant from Por-
tugal). The name of the NFRs that the practitioners provided
in the responses of the questionnaire were according to the
predefined classification of NFRs in their companies, if any.
When possible, we mapped those NFRs to the ones defined
in ISO/IEC 25010 standard [24]. For each RQ we provide
the most relevant findings (see Table 5 for a summary).

5.1 What Benefits can the Management of NFRs bring
to Companies as part of their MDD Processes? (RQ1)
We first inquired about the importance of NFRs for com-
panies adopting MDD (if NFRs were not significant, the
rest of the survey would not be necessary). Then, we asked
them about their perception of how well MDD approaches
support specific NFRs. The perceptions are compared later,
in Section 6.2, with the NFRs really supported when MDD
approaches are finally adopted.
Finding 1. While near half of the respondents consider that NFRs

are as important as functional requirements, the same amount
still consider functional requirements more important than
NFRs.

Seven out of eighteen respondents stated that NFRs
are less relevant than functional requirements for projects

https://figshare.com/s/cceb874c87b5bd5213ce

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 7

TABLE 5
Summary of Findings

RQ1 What benefits can the management of NFRs bring to
companies as part of their MDD processes?

Finding 1 While near half of the respondents (7 out of 18) consider
that NFRs are as important as functional requirements,
the same amount still consider functional requirements
more important than NFRs

Finding 2 When adopting MDD, the interviewees expect to
achieve improvements in NFRs such as productivity,
maintainability, and reusability. Other NFRs, such as
obtaining high levels of performance or strong security
needs, are perceived as harder to achieve when devel-
oping with MDD (see Figure 3)

RQ2 How do MDD approaches adopted by companies
support NFRs?

Finding 3 More than half of the companies (11 out of 18) declared
that their MDD approach requires adaptations to sup-
port the NFRs of the software produced

Finding 4 After MDD approaches are adopted by the companies,
performance, maintainability, quality of code and pro-
ductivity are the supported NFR types mentioned most
often (see Figure 4)

Finding 5 The respondents reported three different stages to ad-
dress NFRs: at modelling time, at code generation time
and/or at testing time

Finding 6 The interviewees use modelling and transformation
functions as techniques for supporting NFRs when us-
ing MDD (see Figure 5)

RQ3 How do companies deal with NFRs when the adopted
MDD approach does not support their management?

Finding 7 Half of the respondents (9/18) declared that changing
the code manually to satisfy NFRs is common practice,
half did not (see Table 3)

Finding 8 When code is manually modified, the changes are ad hoc
and maintenance is seriously compromised

Finding 9 The benefits of using MDD overcome the extra effort
required to make manual adaptations to support NFRs.
Even the use of MDD excluding NFRs still pays

that adopt MDD. Some reasons provided for this statement
were: the customer’s priorities (e.g., “clients focus first on
the functional requirements because the functionality is what
initially matters” (ES3)), the type of project (e.g., “in all
our modernization projects, the migrated application has to be
systematically ISO-functional at least” (FR3)) and modelling
limitations (“NFRs are not considered in modelling approaches”
(DE1)). However, the same amount of respondents consid-
ered both types of requirements equally important (e.g., “at
the end of the day, you have to fulfil all customer’s requirements
no matter if they are functional or not” (ES1), “quality is an
intrinsic part of a successful industrial function” (AT2)). Only
one out of eighteen respondent stated that NFRs are more
important than functional requirements “because when some
NFRs are not met, usually the functional requirements will need
to be modified” (DE3). Three respondents did not provide
clear-cut answers.
Finding 2. When adopting MDD, the interviewees expect to

achieve improvements in NFRs such as productivity, main-
tainability, and reusability. Other NFRs, such as obtaining
high levels of performance or strong security needs, are per-
ceived as harder to achieve when developing with MDD.

This finding provides insights on the expectations of
respondents with respect to NFRs when applying MDD in

Dependability
Interoperability

Modularity
Resource Consumption

Scalability
Portability

Safety
Reliability

Cost
Quality (of code)

Usability
Reusability

Security
Maintainability

Performance
Productivity

0 2 4 6 8 10 12 14 16 18
Frequency

Expected to achieve
Difficult to fulfill

Fig. 3. NFRs expected to achieve and NFRs perceived as difficult to fulfill
when applying MDD

their projects. Figure 3 shows that the majority of the inter-
viewees believe that gains in productivity, maintainability,
and reusability will be achieved when using MDD (e.g.,
“Productivity definitely fits. You should be able to create an awe-
some application with a minimal number of steps” (PT2), “there
are NFRs easier to meet with MDD, such as maintainability or
reusability” (ES2)) meaning that productivity, maintainabil-
ity and reusability are NFRs expected to be satisfied and
improved when MDD is adopted. In turn, performance and
security are perceived as the most difficult ones to guarantee
(e.g., “time (performance) as manual optimization may be much
better than the MDD result” (AT2), “others are harder to manage
(such as security) because they are rather complex to model with
the existing modelling languages and tools” (ES1)). However,
it is worth to remark that this response is not unanimous
since some respondents did consider security and especially
performance as expected NFRs achieved when adopting
MDD. The reason behind this apparent contradiction is
that they perceive that a basic level of performance and
security using MDD may be satisfied (e.g., “we can easily
optimize code using model transformations” (PT1), or “security,
for example, authentication, is always addressed automatically, an
access system is guaranteed” (PT3)). On the contrary, higher
levels of performance or strong security needs are more
difficult to ensure in MDD approaches (e.g., “Performance as
manual optimization may be much better than the MDD result”
(AT2)).

The expected gains in productivity, maintainability, and
reusability are mentioned by 14 out of 18 interviewees as
one of the main factors that drove the adoption of MDD
in their companies. Instead, we have not observed any link
between the difficulties envisaged by the practitioners and
the factors that discourage the MDD adoption.

We have noticed that from the practitioner’s perception,
NFRs improvements when MDD is adopted not only re-
fer to NFRs related to the developed product but NFRs
related to the development process. An example of this is
that the most mentioned NFR is productivity, which is an
NFR clearly tied to the MDD process itself rather than the
developed product (see Section 6.1 for more details on this
observation).

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 8

5.2 How do MDD Approaches Adopted by Companies
Support NFRs? (RQ2)

While the former RQ was meant to address the perception
of MDD as a method, this and the next RQs go deeper
into the way in which companies currently use MDD in
their projects to support NFRs. First, we asked whether the
adopted MDD approach supports NFRs without adapta-
tions. Next, we asked about the types of NFRs effectively
supported and the stages in which NFRs are addressed.
Then, we inquired about the different techniques used to
embed NFRs in the MDD process.
Finding 3. More than half of the companies declared that their

MDD approach requires adaptations to support the NFRs of
the software produced.

Only five out of eighteen respondents use an MDD
approach without adaptations to handle their NFRs (e.g.,
“usability and security are addressed using the platform as it is”
(PT3), “In one project related to game development, we could
actually create a fully functioning game with relatively little
effort. Games are, in general, probably, the pinnacle of usability.
It definitely helped there” (PT2)). Two out of eighteen inter-
viewees did not respond to this question, because they do
not correlate NFRs to MDD in general. Instead, eleven out
of eigtheen companies reported adaptations in their MDD
approaches to support or improve the NFRs of the software
produced. The most common adaptations are:

• New metamodels or extensions of existing metamodels
reported by seven interviewees. For example, “new
models/metamodels introduced (new kinds of models): new
domain-model components, which need changes in the
application model” (AT2).

• Specific technology adaptations reported by four in-
terviewees. For example, “generators also have to be
modified accordingly” (FR3).

• Definition or modification of transformations reported by
four interviewees. For example, “New transformations:
new code generation output needed, for example, user
interfaces” (AT2).

To illustrate individual adaptations, two companies re-
ported adaptations made for a particular NFR (e.g., “For
portability we provide new transformations for each platform.
The transformations are reusable for different projects” (AT1),
“We implemented the Safety requirements by defining a set of
model validations. We defined the appropriate constraints at the
metamodel level, to ensure that the models we developed satisfied
our Safety requirements. We also defined some validation rules
for the code, to check that it satisfied the requirements and safety
criteria imposed by the customer” (ES1)).

Only five out of the eleven companies reporting adap-
tations mention that they are reusable (e.g., “they can be
generalized [...] whatever you model you can reuse the generic
purpose” (FR1)).
Finding 4. After MDD approaches are adopted by the companies,

performance, maintainability, quality of code and productivity
are the supported NFR types mentioned most often.

We asked for the types of NFRs supported by the MDD
approaches adopted by companies. Figure 4 shows the
results.

Interoperability
Portability

Reusability
Scalability

Compatibilty
Cost

Memory consumption
Modularity
Reliability

Safety
Security
Usability

Productivity
Quality of code
Maintainability

Performance

0 2 4 6 8 10 12 14 16 18
Frequency

Fig. 4. NFRs Supported by the MDD Approaches Adopted by Compa-
nies

If we compare these results with Finding 2, we can
observe that there are some NFR types which are better sup-
ported than expected. Remarkably, performance is consid-
ered by far the best supported NFR type while it was ranked
fourth in terms of expectations. Conversely, reusability was
expected to be supported by MDD approaches (ranked third
in expectations) but in fact it was mentioned only by one
respondent when it comes to perceived support.

It is worth mentioning that the level of achievement of
a particular type of NFR depends on the company project
or objectives, for example, a company may consider that
an MDD approach can handle security because the level of
security required is basic. In fact, some respondents argued
that although MDD directly treats some NFRs, if they want
to improve them, they have to make some adaptations like,
for instance, to improve code generators. This is the case
of performance. Although high levels of performance are
difficult to achieve using MDD, acceptable levels may be
obtained adapting MDD approaches (e.g., “We have improved
the code generator to reuse better the code and improve perfor-
mance” (FR1)).

Finding 5. The respondents reported three different stages to
address NFRs: at modelling time, at code generation time
and/or at testing time.

The best way to deal with NFRs would be “to inject
NFR data into the handled models” (FR2) and from them
automatically generate the resulting code. Unfortunately,
for some companies “the current way to do it is by human
interaction6 or evaluation” (FR2).

Fourteen out of eighteen respondents reported that they
were able to include some types of NFRs in the models at the
initial stages of development (e.g., “Models are used to specify
usability; for example, a base system layout is used and modified
by us” (PT3)). They agreed that considering NFRs from the
beginning of the MDD process facilitates their fulfilment
(e.g., “a bad modelling [of NFRs] at the beginning can have a
substantial impact on all the rest of the software development and
also on the finally produced software” (FR2)).

Other types of NFRs are more difficult to specify through
models and are tackled during development, as it is re-
ported by eleven out of eighteen respondents. In some cases,

6. The respondent meant ”interactively”, i.e. human working with a
tool.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 9

Model finding
Model repair

Non−functional test
Code−generation

Transformations
Metamodeling

Modeling

0 2 4 6 8 10 12 14 16 18
Frequency

(a) Techniques

Code generators
Text

User interaction
Not specified

Transformation parameter
Implicitly

Models

0 2 4 6 8 10 12 14 16 18
Frequency

(b) Specification Mechanisms

Fig. 5. Techniques and Specification Mechanisms to Support NFRs in MDD

the MDD process itself is tailored to support specific NFRs
(e.g., “if some NFRs are strongly expressed by customers, it may
have an impact on the deployed MDD process” (FR3)).

Finally, one out of eighteen respondents mentioned that
particular types of NFRs are not really specified but vali-
dated or monitored at the final stages of development (e.g.,
“we have some non-functional tests to see if performance degrades
when we do something” (FR1)).
Finding 6. The interviewees use modelling and transformation

functions as techniques for supporting NFRs when using
MDD.

Figure 5a shows that (meta-)modelling, transformations
and code generation are the main techniques for supporting
NFRs. Besides, when NFRs are specified, that is, provided
as an input to the MDD process, they are usually specified
in models (see Figure 5b). According to the responses, the
companies use, mainly, the following techniques to support
NFRs:

• Modelling or metamodelling. NFRs are modelled
through explicit constructs. For example, usability
(using “[user] interface models - a base system layout is
used and adapted by us” (PT3)), memory consumption
(through “model annotations” (AT3)) and performance
“specified through profiles” (IT2). In three cases, the
respondents mentioned that they represent NFRs
only in UML models “extended with stereotypes and
tagged values” (AT3).

• Transformation functions. In this case, NFRs become
transformations or transformation parameters. “We
use [...] transformations (model to code, but not model
to model yet), domain-specific languages and language
families” (PT1), “by transformation (as a transformation
parameter), and through the MDD process. I think it is a
bit of both” (PT2).

5.3 How do Companies Deal with NFRs when the
Adopted MDD Approach does not Support their Manage-
ment? (RQ3)
In the third and last RQ, we wanted to know the practices of
companies when the MDD process does not completely han-
dle the NFRs that apply to the system under development.
We also wanted to explore their opinions on the impact of
such ad hoc management on the full process.
Finding 7. Half of the respondents declared that changing the code

manually to satisfy NFRs is common practice, half did not.

Table 6 shows the practices of companies for dealing
with NFRs out of the MDD process. Two out of eighteen

respondents did not respond to this question, because they
“cannot correlate the NFRs to MDD in general” (AT1) or
because no code was generated from the models.

Nine out of eighteen interviewees expressed that “man-
ual modification is needed either on the code or the original models
[to support specific NFRs]” (FR2). In more detail, eight out
of the nine respondents reported changes in the generated
code, even at the cost of losing some of the reusability
and maintenance brought by MDD. The remaining respon-
dent, PT1, declared that the code is only extended but not
modified, in order not to compromise the MDD process.
On the contrary, the other seven interviewees stated that
“[we] do not change what was generated. We never tweak gen-
erated code” (PT2) and that “we prefer to incorporate at the
model/transformation level whatever we need” (ES1).

Eight out of the nine respondents reporting manual
changes in the generated code provided more details for
specific types of NFRs. Two concrete examples were:

• Security. “Generated code cannot always be proven as
100% safe or secure and some customer may still trust
more full human developments for critical parts of the
code” (FR2))

• Performance. “Time [performance] as manual optimiza-
tion may be much better than the MDD result” (AT3).

Finding 8. When code is manually modified, the changes are ad
hoc and maintenance is seriously compromised.

When manually modifying the code, the most common
approach is to perform “manual changes in specific parts of the
generated code” (AT2). Seven out of the nine respondents that
modify the resulting code follow this approach. Only one of
the seven previous respondents mentioned that the manual
modifications were persistent across MDD iterations (e.g.,
“we use the concept of protected areas that are manually devel-
oped portions of the code that are preserved in case of code re-
generation” (IT3)). The other remaining companies (two out
of the nine respondents) modify code “just to complete what
was generated” (PT1) and “to rewrite the bad code, but this is
violating some reusability and maintenance NFRs brought by code
generation” (FR2).

Finding 9. The benefits of using MDD overcome the extra effort
required to make manual adaptations to support NFRs. Even
the use of MDD excluding NFRs still pays.

When we inquired if MDD adaptations would pay off
(e.g., adding or customizing some model transformation),
we appreciated positive responses from the eighteen re-
spondents (e.g., “even if you have to do some adaptations [to
support NFRs], I think the extra effort is worth it” (FR2)). It is

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 10

TABLE 6
Practices for Dealing with NFRs out of the MDD Process

Description Representative quotes Freq.
The generated code can be
changed.

“Partial modification of the code produced. Manual changes in specific parts of the generated code (framework)”
(AT2) “Hard real-time requirements could not be implemented with the models” (DE3) “In a few cases, it has
to be modified for sake of performance” (IT1)

4

The generated code can
be changed, although it is
preferable to change the
code generator.

“For example, when the resulting application does not provide the required performance. Thus, you may have
to refactor the end-user application, that is, change the generated code. This case has happened to us. What we
have in our company is a procedure for reporting this kind of issues, so that the generator can be modified as
soon as possible. Our generators are subject, like any other software we develop, to maintenance. With this,
the answer is that we can do it in exceptional circumstances, but in a controlled and documented manner”
(ES3)

4

No changes in the gener-
ated code, but extensions
used to add new code.

“We do not modify the generated code, but we do extend it. The intention of the model is totally fulfilled, so
we generate all we want to generate at this moment. The extensions we then provide are things not captured
by the model” (PT1)

1

No changes in the gener-
ated code.

“The part that is generated is never modified by hand” (FR1) “No, the generated code is not modified” (PT3) 7

Not applicable. “Question not relevant as the approach applied is different to the scenarios provided” (DE1) 2

also seen as a trade-off: the inherent benefits of MDD com-
pensate this extra effort (i.e., increase in maintainability and
improved reusability). Some specific scenarios may support
this opinion, e.g., “especially when you are going to generate code
for different platforms or systems, or for different versions of the
product” (ES1). One of the eighteen respondents mentioned
that the adoption of MDD itself is the costly part, “once [...]
adopted, then people are well-aware that they can easily benefit of
[MDD approaches] also in the field of NFRs” (IT1).

When we asked whether manual modifications pay off
(e.g., changes in the produced code), all responses (eight out
of the nine reporting manual modifications) were positive
except for one. The positive answers were mostly of prag-
matic nature (e.g., “the modification effort is worth it as you can
capitalize on the improvements” (FR2)). The interviewee rea-
soning against said: “when you have a lot of artefacts generated
from your MDD approach (...) you can stop worrying about some
technical details” (PT2), meaning that for this interviewee the
primary benefit of MDD is to avoid dealing with technical
aspects and performing manual modifications “defeats the
purpose” (PT2).

Finally, when we asked whether the use of MDD ex-
cluding some NFRs still pays off, only five responses out
of eighteen were obtained, four of them were still positive
when “you just exclude a couple of NFRs, and all others are
supported” (FR3).

6 DISCUSSION

In the following, we discuss our results structured according
to the research questions.

6.1 What Benefits can the Management of NFRs bring
to Companies as part of their MDD Processes? (RQ1)
Answer RQ1. The adoption of MDD does not impact on the

perception of importance of NFR during the development pro-
cess. In MDD, NFRs are considered less or equally important
than functional requirements. Improvements in productivity,
maintainability, and reusability are expected to be achieved.

A consistent finding of the survey is: NFRs are not
perceived as more important than functional requirements
in MDD processes (Finding 1). Other studies, not specifically

linked to MDD, even suggest that NFRs, especially those
difficult to elicit (such as security-related ones) are consid-
ered less important than functionality and, often, they are
retrofitted or pursued in parallel with (but separately from)
functional requirements [60]. Berntsson Svensson et al. [40]
offer two reasons for this imbalance:

• NFRs have lower priority than functional requirements.
The reason argued by the respondents is that NFRs,
such those related to usability, are not considered
in the early stages of development. This fact is sup-
ported by our study results. As reported in Finding 5,
the NFRs that are difficult to specify through models
are often handled by modifying the generated code
or even validated during the final stages.

• NFRs are more difficult to discover. The main problem
with NFRs is that many of them remain undiscov-
ered or in non-measurable terms. This opinion is
also given by software architects [28] who declare
NFRs as difficult to elicit upfront. Recent approaches
suggest using data-driven methods to facilitate this
elicitation [61] if the system already produces data.
New proposals capable of automatically generating
NFRs, as the one presented in [62], may change the
perception of the importance of NFRs.

Organizations participating in a study by Borg et al. [54]
stated that their main focus is on functional requirements,
primarily because existing methods focus on them. This
argumentation applies well to the MDD case. As reported
in our study, current MDD approaches hardly consider
NFRs. Therefore, adopters of these approaches may tend
to focus on functionality because they are not capable of
handling NFRs. Thus, we may speculate that the production
of improved MDD methods, which include NFRs in the
models and transformations, could positively influence the
importance given to NFRs.

We have only found one study reporting the majority
of the respondents to consider NFRs and functionalities
at the same level of importance [50]. Interestingly, they
found a statistically significant relationship between the
importance given to NFRs and their implicit or explicit
nature in the project. More precisely, the study revealed a

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 11

high probability that projects, which consider functionality
and NFRs at the same level of importance, also treat NFRs
explicitly. This correlation is in tune with the findings in
our study. As reported in Finding 1, when analysing the
15 responses (3 did not answer) given by the companies,
we found that 8 companies consider NFRs equally or more
important than functionality. We observed that 7 out of those
8 companies adapt their MDD approach in order to take
NFRs into account, thus, making them explicit. However,
4 out of 7 companies that state NFRs to be less important
than functionalities use MDD without any adaptation. These
responses, if further corroborated, may indicate that giving
high importance to NFRs induces the adaptation of the
MDD approach or that the capability to adapt the MDD
approach increases the awareness of the importance of the
NFRs.

When looking into other factors that may have affected
the perception of NFRs’ importance, we observed that 3
out of 4 companies belonging to the embedded systems
domain claim that all types of requirements are equally
important. One reason for this may be the criticality of some
quality aspects in this kind of systems, such as the ones
for aeronautical and defence systems, with respect to final
acceptance and compliance with standards (e.g., safety stan-
dards). In fact, in some of these systems is common to follow
a quality certification process (e.g., CMMI7) which implies
dealing with some types of NFRs. A consequence of this
observation may be the convenience of defining domain-
dependent MDD approaches, in which critical domains,
such as forensic systems, may include NFRs at the heart
of their methods, while other domains could still primary
focus on functionalities.

Although NFRs are not considered more important than
functional requirements for the respondents of our study,
some NFRs are expected to be supported when MDD is
adopted and are considered key factors for the adoption of
MDD. We refer to productivity, maintainability and reusabil-
ity, which were the most mentioned in Finding 2. Remark-
ably, practitioners’ expectations are more focused on NFRs
related to the development process than on NFRs related to
the software product. This fact is aligned to what we found
in the literature (e.g., “MDD can shorten the development of
complex solutions” [41], “applying MDE increases productivity
and shorten development time” [51]). Liebel et al. [49] found
out that 68% of the participants who took part in their
study stated that their companies adopted Model-Based
Engineering (MBE) approaches because they needed shorter
development time and to improve reusability. This is in tune
with our observations leading to Finding 2. As reported in
Section 5.1, 77% (14 out of 18) of the interviewees said that
productivity, maintainability and reusability improvements
are one of the main reasons for adopting MBE.

If we examine the three NFR types reported in Finding
2, namely productivity, maintainability and reusability, we
may notice that all of them are of internal nature (perceived
by technical staff when they are applying the MDD process).
In consequence, since final users will not require these inter-
nal NFRs, they are harder to elicit and may remain implicit.
Moreover, these NFRs can be handled with the techniques

7. https://cmmiinstitute.com

and tools provided by MDD (“We have improved the code
generator to reuse the code better and to improve performance”
(FR1); “Maintenance is also made easier via code generation, as
multiple errors can be detected, and the code generators updated
accordingly to fix them” (FR2)).

In turn, NFRs, such as performance and security, are
perceived as harder to cope with when MDD is adopted
(Finding 2). These NFRs are explicit requirements and of
external nature (required and perceived by the final users),
e.g., final users may notice different levels of performance
of a software product. Although MDD techniques and tools
provide support for these NFR types (for example, PT3’s
MDD approaches support security operationalizations and
PT1 MDD transformations support some levels of code
optimization), complex levels of performance and security
are perceived as difficult to achieve and require, in most
cases, manual modifications (“I would say that code quality is
quite well supported via code generation, some security and per-
formance aspects too, to some extent” (FR2); “Time (performance)
as manual optimization may be much better than the MDD
result” (AT3)). When we analyse, in our study, the companies
reporting performance or security as NFRs perceived as
difficult to guarantee in MDD, we observe, in general, large
companies, with a high level of MDD adoption (L3-L4, L4
and L5) and using MDD with adaptations. This means that
performing adaptations and having a high level of MDD
adoption do not ensure that companies have confidence
in performing a good treatment of complex NFRs (as it
is the case of AT2, DE3, ES1, ES3, FR1, FR2 and PT2).
Although one could call for improved MDD approaches
handling better these particular NFR types, we think that
this current limitation may, in fact, represent a boundary of
MDD as a productive development method. In other words,
we think that complex requirements such as NFRs, which
have fundamentally a cross-cutting nature, are difficult to
quantify, and are highly interrelated with each other, may be
difficult to handle systematically and may require a specific
treatment. To this respect, it would be optimal that the code
written manually to meet these complex NFRs is clearly
separated from the code generated by the chosen MDD
approach, e.g., as reported by one of our interviewees (IT3)
with the concept of “protected area” or by implementing
the Open-Closed Principle [63] in the solution, allowing
modifications to be persistent across MDD iterations.

As a closing important remark, it is worth to mention
that the scarce support for NFRs in MDD processes may
be a consequence of the way in which companies manage
NFRs. If companies do not properly elicit or document
NFRs beforehand, they can hardly bring them into the MDD
process. For instance, 10 out of the 18 respondents reported
that they do not use any type of classification schema for
NFRs, instead “NFRs are specified case-by-case via the projects
requirements specifications” (FR3). The lack of adoption of
classification schemas is one indicator about the ad hoc
treatment of NFRs by companies. Therefore, it might be
necessary to increase the awareness and capacities of com-
panies on the importance of NFRs before any other related
further action. Current works in data-driven elicitation of
NFRs [62] or systematic ways to document NFRs in agile
software development backlogs [64] may definitively help
in this direction.

https://cmmiinstitute.com

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 12

6.2 How do MDD Approaches Adopted by Companies
Support NFRs? (RQ2)

Answer RQ2. MDD approaches that support NFRs are capable
of only dealing with specific types of NFRs. Performance,
maintenance, quality of code and productivity are the most
mentioned types. NFRs are either handled implicitly (e.g.,
as part of model transformations) or retrofitted explicitly at
the end of the transformation chain (e.g., by modifying the
generated code).

Adopting a particular MDD approach may work well
for specific types of NFRs but in general the situation is
not optimal. Comparing the results reported in Figure 3
(dark coloured bar) and Figure 4, our study shows that
the support of current MDD approaches to NFR types is
worse than the expectations that practitioners had. This
observation can be considered as an indicator that NFRs are
still not managed satisfactorily by current MDD approaches.
In fact, when handling certain NFR types or many types at
once, things get complicated and the MDD process needs to
be adapted (Finding 3).

There are two perspectives in literature to address NFRs:
1) the use of MDD yields satisfaction of some types of
NFRs even without adapting the MDD process; and, 2)
companies are using MDD adaptations to address NFRs
specifically. For the second case, Ameller et al. [8] mentioned
different stages of the MDD process to address the NFRs: at
modelling time and at code generation time. However, in
this study, participants also said to address NFRs at testing
time (Finding 5).

The first perspective refers to emergent or inherent prop-
erties obtained by using MDD without adaptations, such as
gains in maintainability, productivity and quality of code.
As discussed in Finding 4, those NFRs are better supported
by MDD approaches. For example, Büttner et al. [65] showed
a reduced number of bugs thanks to the quality control
performed at model level and the adequate transformations
performed from the specifications. Moreover, they pointed
out a productivity improvement due to the separation of
higher-level concerns from implementation details. This is
in line with what we found in our study. Other authors
have also reported significant gains in productivity and
maintenance when adopting MDD (e.g., [38], [49], [53]).

The second perspective refers to adapting MDD to han-
dle particular NFRs. These adaptations may include new
models, metamodels, UML profiles, code generators and
new transformations [8], as also discussed in Finding 6.
There are examples of those adaptations (e.g., using model
transformations) to incorporate NFRs such as performance
[51]. However, these adaptations require some investment,
which seems to pay off only if reusability is possible. As-
sessing the kind of reusability (global, within an application
domain, within a set of projects, across technological plat-
forms) against its cost is an open question.

Some researchers question the gain on performance
when MDD approaches are used. The reasons behind this
position are diverse. Specifically, many stakeholders do not
have a good understanding of what level of performance
is required to support their business processes [66], while
MDD approaches require an accurate understanding of
performance to explicitly capture such constraints in the

created models. Moreover, performance requirements are
more often dismissed due to the difficulties in estimation
[40] and in cases they are considered, the performance of
the generated code meant to be poor [49].

There are several proposals to include performance in
MDD, particularly to predict the performance of the gener-
ated software (e.g., [33], [67]). If the MDD research commu-
nity finds a way to convince practitioners of the relevance
of their proposals, this could significantly raise the value of
MDD as a valid tool to ensure the satisfaction of this NFR.
However, this is an already reported problem [68].

The current state of MDD technologies as well as the
difficulties in handling NFRs in a seamless manner still pose
many challenges to other types of NFRs. It is commonly
accepted that there is no universal approach for the NFR-
specific elicitation, documentation, and analysis. NFRs are
usually described vaguely [28], [54] and are often not quan-
tified [40]. More generally, many functional requirements
are even misclassified as NFRs, i.e., there seems to be a gen-
eral misconception in practice (and sometimes in research
as well) about many NFRs as they appear in the wild [69].
The outcome results are difficult to analyse and test [28],
[40], [54]. Additionally, as NFRs are often retrofitted in the
development process [20], they are often implicitly managed
with little or no consequence analysis [40]. Overall, this
suggests that several of these NFRs are not yet so well
understood, which naturally renders the development of
adequate MDD tools for supporting them difficult. While
we can find niches for each of these NFRs where there are
MDD solutions, they are very broad in nature, which helps
explaining why their automation is still challenging.

Adapting the MDD process, creating new models, meta-
models, and new transformation techniques is still a task
that requires investment. New metamodels and other arte-
facts need to be defined to manage some NFRs in MDD
approaches. In order to make this investment pay off,
reusability is a key factor. However, further studies are
required to know more about reusability, e.g., about the
factors that make reusability possible. More specifically, we
need to better understand if the reusable adaptations are
specific to a project, specific to a product line or to a concrete
domain, or on the contrary, they are generic enough to be
reused in a wide spectrum of projects. In line with our
opinion in Section 6.1, not only reusability is a key factor for
having a return on investment, but also understanding what
NFR types can be effectively managed better in the MDD
process with these improvements. The results gathered in
this study about supported NFR types are useful at this
respect: we can argue that it is better to invest effort in
those types as performance and maintainability (see Figure
4) that have been reported as the best supported by current
MDD approaches. Of course, the counter-argument could
be to make an effort in improving the current situation of
types as portability or interoperability which are not well-
supported according to our study. We could think in fact
that this second type of NFR types could be attractive to
researchers willing to open new research challenges in the
field.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 13

6.3 How do Companies Deal with NFRs when the
Adopted MDD Approach does not Support their Manage-
ment? (RQ3)

Answer RQ3. Modifying the generated code seems to be the only
viable solution when NFRs are not directly supported in the
MDD process. However, a significant percentage of MDD
engineers prefer to avoid such modifications even at the cost of
not being fully compliant with the requirements specification.
Even in these cases, the general opinion is that MDD still pays
off.

As discussed in Finding 3, eleven of the interviewed
companies reported adaptations (e.g., new metamodels or
extension of existing ones, or new transformations) in their
MDD processes to support some required NFRs. On the
contrary, half of our interviewees reported manual code
changes to deal with other NFRs (Finding 7).

It is generally agreed that in MDD, any type of change
should be made only at the modelling level and then re-
generate the code, rather than modifying the generated
code, in order to avoid losing the changes made. Hutchinson
et al. [38] reported that almost 70% of their respondents
mainly made modifications to their models, whilst around
15% did not. In contrast to that finding, our study points
out that for the specific case of unsupported types of NFRs,
half of the companies deal with them by directly changing
or rewriting the resulting code or by adding new code. The
reason behind this contradiction may be that some types of
NFRs do not have full support neither at modelling level
nor during the code generation process. Thus, practitioners
are required to find ad hoc solutions implementing NFRs di-
rectly in the code increasing the software development cost
and even at the cost of losing reusability and maintenance
capabilities. However, current modelling languages are able
to describe most functional requirements and are able to
generate the code without further modifications. This fact
may suggest the need for companies to recruit qualified
workers able to create or customize MDD techniques or
languages for modelling and managing NFRs, which may
become one main challenge to achieve such goal.

In case of code modification or extension, our study
reveals that changes in the resulting code are rarely kept
consistent with the source model. Therefore, changes are
lost in case of code re-generation. This result is in tune with
other works [44], [70], both pointing to code modification as
a source of inconsistency and lack of persistence.

In this sense, as a first step to prevent losing manual
modifications, there are tool-supported solutions such as
Acceleo8 or Xtend9 supporting a way of specifying the “pro-
tected areas” in the generated code as also mentioned by one
of our interviewees (IT3). User code blocks delimit portions
of text that are only generated once and preserved for
subsequent re-generations. Although such extensions can be
an important feature to MDD tools, we argue that they are
still insufficient to guarantee consistency between code and
models: traceability is also needed for supporting round-trip
engineering [44]. Clearly, this important issue requires more
research and practical (tool supported) solutions.

8. https://www.eclipse.org/acceleo
9. https://www.eclipse.org/xtend

We have found a quite uniform consensus among our
interviewees that adapting MDD pays off despite the extra
effort required (Finding 9). We only found one exception to
this positive attitude: when the number of non-supported
types of NFRs largely exceeds the supported ones (PT1).
Those that consider that MDD pays off is especially because
it represents a long-term investment: once the effort has
been invested, several NFRs (such as maintainability- and
portability-related ones) are easier to manage. Another pos-
sible explanation, as suggested by Ameller et al. [28], is that
even if MDD does not support some types of NFRs, other
(non-MDD) methods may also have difficulties dealing with
NFRs.

7 THREATS TO VALIDITY

Threats to validity are inherent to every empirical study.
We discuss the threats as suggested by seminal publications
in empirical software engineering (e.g., [9], [57], [71]) and,
where reasonable and possible, the mitigation actions we
employed. We classify the threats into internal, construct,
external and conclusion validity [71].

7.1 Internal Validity

Communication. 1) The interviewees may have understood
some questions differently, resulting in lower quality or
even invalid answers. Mitigation. We designed the question-
naire following the indications that are given by Dillman
et al. [57] and we piloted it in two iterations to ensure its
understandability. 2) We wrote the questionnaire in English,
which is not the native language of all the participants.
Mitigation. We allowed participants to decide upon their
preferred language during the interviews. Hence, it was
necessary to translate the transcription of the interviews
to English in those cases where the interviewees preferred
to use their native language. Related to this process, some
information may have been lost (e.g., in those three cases
where only one researcher served as interviewer), or not
translated properly (e.g., the technical terms). Mitigation.
While we do not see major differences in the quality of the
transcripts themselves, as all were based on recordings and
most interviews (15 out of 18) were conducted by multiple
researchers, we still tried to reduce the threats by local
researchers verifying the contents of each finally translated
summarising transcripts in an additional validation step.

Background. 1) Respondents may not have had the proper
knowledge profile as to provide useful answers. Mitigation.
We selected only practitioners with sufficient experience
using MDD for the development of software products in
their current company. 2) Even though participants are
using MDD, their understanding of MDD (and of NFRs)
might still differ from the common understanding of the
concepts and principles incorporated by MDD. Mitigation.
We incorporated specific questions and scenarios to uncover
their understanding about MDD.

Interviewees bias. 1) Participants may have been reluctant
to provide sincere responses when explaining the negative
aspects about their work and their company. Mitigation. We
highlighted the anonymity of the respondents and their
companies in the published material, and we clarified that

https://www.eclipse.org/acceleo
https://www.eclipse.org/xtend

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 14

the purpose of the interview was not to evaluate or assess
their current situation or even their project environment and
company. 2) Our respondents may have been slightly biased
towards accepting new technological trends such as MDD.
In contrast, other roles such as managers tend to be more
conservative when adopting new technologies. This may
be reflected in some of the answers obtained. However, in
many cases, the participants were both technology experts
and managers (e.g., project leader). Therefore, we consider
that this particular bias should be substantially reduced.

Interviewers bias. Due to the context of this study, the in-
terviewers themselves are also a source of bias, because sev-
eral different interviewers executed the interviews. Hence,
there is a risk that the interviewers might have conducted
the interviews in different ways (e.g., by putting more
emphasis on specific parts of the questionnaire than on
others). Mitigation. We documented the material used for
this survey, including a specific guide for conducting the
interview (see Section 4.5) that provided instructions for all
the interviewers of the study. Moreover, the interviewers
contacted on regular basis with each other.

7.2 Construct Validity
Protocol. Concerning the overall underlying methodology,
we can never assure that the protocol designed in advance
is complete and that it provides sufficient details for the
success of a study. Mitigation. We followed Ciolkowski et
al.’s guidelines [9] and consolidated the final protocol (see
Footnote 2) as part of a validation phase where all involved
researchers checked the first version of the protocol pro-
posed by the leading team. Furthermore, the protocol has
further undergone external peer-review as we published
and presented it at the IEEE International Requirements
Engineering Conference in 2015 [55].

Questionnaire. 1) The resulting questionnaire might not
sufficiently cover our research questions. Missing relevant
data during the interviews could in general lead to the
impossibility to provide an answer to some of the research
questions. Mitigation. We mapped each question in the
questionnaire to one or more variables (to be used for the
analysis), and these variables in turn with the research ques-
tions (one variable may provide insightful information for
more than one research question). Furthermore, we carefully
designed a conceptual model (available in the protocol)
that clarifies the relationships between the variables (e.g.,
context, input and output factors of the MDD process),
which additionally strengthens our confidence in the ac-
curacy and sufficient completeness of our questionnaire.
2) We performed an exhaustive consistency verification of
the obtained data and, in fact, we had to deal with some
inconsistent data during the analysis (e.g., one interviewee
stated that no adaptations were done to the MDD pro-
cess, but afterwards he mentioned some modifications to
improve the efficiency). Mitigation. We actively approached
the participants to validate the data during the analysis to
resolve such issues.

7.3 External Validity
As it is always the case in interview-based surveys, the
size of the sample and the sampling technique used do

not provide the statistical basis to generalize the results
to the target population. Generalizability is further threat-
ened by the incompleteness of some interviews that did
not provide answers to all the questions included in the
protocol, making difficult even generalization by analogy.
However, even the descriptive analysis of the results we
obtained interesting insight that was not available before.
Furthermore, we mitigated this threat as much as we could
by carefully characterizing the context of the participating
companies.

7.4 Conclusion Validity
Considering the threats described before, one question that
arises concerns the degree to which the conclusions we draw
from our data are reasonable. Given the qualitative nature
of our study in light of the corresponding mitigation actions
we employed to arising threats, we are confident that the
conclusions drawn are accurate and reasonable to the extent
qualitative studies allow, that we achieved our overall goal
to provide an in-depth analysis of the state of the practice to
support problem-driven research in our field, and that the
challenges identified by our results, aligned with the context
factors, can be used to steer future research for specific
settings.

However, to build a more robust theory, we should
triangulate this research with further studies relying on
other data sources and eventually using other empirical
methods. These studies could be designed on top of the
protocol and the questionnaire of the survey reported in this
paper. Furthermore, we see the value of replicating empiri-
cal studies. Therefore, we made all related material available
(see footnotes 2, 3, 4 and 5) under the CC-BY license10. The
open nature of our project shall support researchers and
practitioners to replicate this study and, in the long run,
to evolve the results and generalize them based on a more
global understanding of the context.

8 CONCLUSIONS

In this paper, we have presented the results of a family of
interviews in eighteen European companies from six differ-
ent countries that use MDD in some or all of their software
projects to better understand how NFRs are handled when
developing under the banner of MDD. During the analysis
of our data, we identified nine major findings (see Section
5) and used those to answer to our research questions in
relation to existing evidence (see Section 6). One hope we
associate with our work is to not only directly contribute
to the existing body of knowledge of handling NFRs in
context of MDD – which currently is still weak – but also to
encourage other researchers to join in exploring this highly
important topic area.

Looking at the results of this study, we can classify the
management of NFRs in MDD processes into three cate-
gories: a) natively, where the MDD method is able to cope
with (some selected types of) NFRs; b) through extensions,
where the company adds or changes the languages or trans-
formations to handle NFRs; c) ad hoc, where companies
can modify the source code as they need. In most cases we

10. https://creativecommons.org/licenses/by/4.0

https://creativecommons.org/licenses/by/4.0

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 15

have seen only partial support, and only for very specific
types of NFRs. Even if there are different positions among
the interviewees, modifying the generated code to support
NFRs seems to be the most widely used solution so far.
This approach may be suitable in some scenarios, such as
building software prototypes. However, software products
need to be compliant with all types of requirements and
MDD seems to be not ready for such diversity of needs.
In particular, the study has shown that software engineers
expect MDD bringing benefits for some particular types of
NFRs related to the development process, while companies
adopt MDD approaches mainly to better support NFRs
related to the system behaviour.

Retrofitting NFRs in MDD after the fact is in tune with
the state of the practice in rather traditional engineering
approaches, but it further has major impacts on incon-
sistencies when regenerations cause modifications to get
lost. Therefore, new approaches and techniques need to
be proposed by the research community to improve the
NFR support in MDD and solve the problems enumerated
above. Otherwise, NFRs remain a delicate by-product ca-
sually attached at the very end of the engineering cycle.
In addition, mismatches between industry practices and
MDD teaching should be solved. As reported in [72], (1)
a significant number of successful MDD companies build
their own modelling languages and generators, suggesting
a re-orientation of education away from UML notation to
fundamental modelling principles, (2) MDD is generally
taught top-down, whereas industry success is more likely
when MDD is applied bottom-up and (3) successful appli-
cation of MDD requires skills both in abstract modelling
and compilers/optimization; however, these skills tend to
be separated in standard computer science curricula.

Based on our observations, we propose the following
research agenda:

• Empirical studies. In this study we covered six differ-
ent countries from Europe, but we need to replicate
it in other parts of the world (e.g., North America or
Asia) to get a broader view on the current state of
the practice. In particular, NFRs are not being stud-
ied enough in the context of MDD. More empirical
studies are needed to further strengthen our initial
observations. Despite the replications, we postulate
the need for further inquiry methods based on our
first indicators revealed in our manuscript. Addi-
tional (and more diverse) data would help us as well
to observe whether different geographical regions
follow divergent practices regarding the handling of
NFRs in MDD processes.

• New approaches to handle NFRs in MDD. Looking
at the current practice, it appears that the MDD
community has failed to identify a common suitable
approach to handle NFRs in MDD. Researchers have
proposed several solutions in the literature, but none
of them seems to have been able to reach the maturity
level required to be used in industry. Immature tools
are still one of the main barriers for MDD adoption.

Finally, we share a quote from one of our interviews as
it best describes a pragmatic view on the current state of
MDD: “The customer does not care if MDD or other technologies

are used. He wants you to have a product that works as he wants,
in time, within budget and with high quality. We are noticing that
although MDD was cool a few years ago and the use of models
sold, now customers no longer perceive it as a good solution.
Many of them have had experiences that have shown them that
this technology is not as good as we told them it was, and that
it has the same problems as the rest of the technologies we have
been trying to sell them for many years to solve their problems,
without success” (ES3). Improving the way of handling NFRs
in MDD can be one of the several actions designed to revert
this opinion.

ACKNOWLEDGMENTS

The authors thank Richard Berntsson Svensson, Maya
Daneva, Grischa Liebel, and Bernhard Schätz for their con-
tributions to this work as well as all participating industry
partners for dedicating their time and for contributing with
their experiences to our study.

This work was supported in part by a grant from NOVA
LINCS Research Laboratory (Ref. UID/CEC/04516/2013), by
the Spanish projects TIN2016-79269-R and TIN2014-52034-
R, by the Austrian Federal Ministry for Digital, Business and
Enterprise and the National Foundation for Research, Technology
and Development, and by an ECSEL (Electronic Component
Systems for European Leadership Joint Undertaking) project
named MegaM@Rt2 (grant agreement No 737494).

In memory of Bernhard Schätz, an inspiring scientist and
a wonderful friend.

REFERENCES

[1] C. Atkinson and T. Kuhne, “Model-Driven Development: a meta-
modeling foundation,” IEEE Software, vol. 20, no. 5, pp. 36–41,
2003.

[2] S. J. Mellor, A. N. Clark, and T. Futagami, “Guest Editors’ Intro-
duction: Model-Driven Development,” IEEE Software, vol. 20, pp.
14–18, 2003.

[3] J. Whittle, J. Hutchinson, and M. Rouncefield, “The State of Prac-
tice in Model-Driven Engineering,” IEEE Software, vol. 31, no. 3,
pp. 79–85, 2014.

[4] P. Mohagheghi, W. Gilani, A. Stefanescu, and M. A. Fernández,
“An empirical study of the state of the practice and acceptance
of Model-Driven Engineering in four industrial cases,” Empirical
Software Engineering, vol. 18, no. 1, pp. 89–116, 2013.

[5] D. D. Ruscio, R. F. Paige, and A. Pierantonio, “Guest editorial to
the special issue on Success Stories in Model Driven Engineering,”
Science of Computer Programming, vol. 89, pp. 69–70, 2014.

[6] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Hel-
dal, “Industrial Adoption of Model-Driven Engineering: Are the
To ols Really the Problem?” in Proc. of the 16th International Confer-
ence on Model-Driven Engineering Languages and Systems. Springer
Berlin Heidelberg, 2013, pp. 1–17.

[7] D. Ameller, X. Burgués, O. Collell, D. Costal, X. Franch, and M. P.
Papazoglou, “Development of Service-Oriented Architectures us-
ing Model-Driven Development: A mapping study,” Information
and Software Technology, vol. 62, pp. 42–66, 2015.

[8] D. Ameller, X. Franch, and J. Cabot, “Dealing with Non-Functional
Requirements in Model-Driven Development,” in Proc. of the 18th

IEEE International Requirements Engineering Conference, 2010, pp.
189–198.

[9] M. Ciolkowski, O. Laitenberger, S. Vegas, and S. Biffl, Practical
Experiences in the Design and Conduct of Surveys in Empirical Software
Engineering. Springer Berlin Heidelberg, 2003, pp. 104–128.

[10] M. Brambilla, J. Cabot, and M. Wimmer, “Model-Driven Software
Engineering in Practice, Second Edition,” Synthesis Lectures on
Software Engineering, vol. 3, no. 1, pp. 1–207, 2017.

[11] Object Management Group (OMG), “MDA Guide rev. 2.0,” Tech.
Rep., 2014. [Online]. Available: http://www.omg.org/cgi-bin/
doc?ormsc/14-06-01

http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 16

[12] J. Bezivin and O. Gerbe, “Towards a precise definition of the
OMG/MDA framework,” in Proc. of the 16th Annual International
Conference on Automated Software Engineering, 2001, pp. 273–280.

[13] F. Jouault and J. Bézivin, “KM3: A DSL for Metamodel Specifica-
tion,” in Proc. of the 8th International Conference on Formal Methods for
Open Object-Based Distributed Systems. Springer Berlin Heidelberg,
2006, pp. 171–185.

[14] C. Atkinson, T. Kühne, and J. de Lara, “Editorial to the
theme issue on multi-level modeling,” Software and System
Modeling, vol. 17, no. 1, pp. 163–165, 2018. [Online]. Available:
https://doi.org/10.1007/s10270-016-0565-6

[15] A. Nugroho and M. R. V. Chaudron, Evaluating the Impact of UML
Modeling on Software Quality: An Industrial Case Study. Springer
Berlin Heidelberg, 2009, pp. 181–195.

[16] Object Management Group (OMG), “Unified Modeling Language
(UML), V2.4 – Superstructure specification,” Tech. Rep.,
2014. [Online]. Available: http://www.omg.org/spec/UML/2.4/
Superstructure/PDF

[17] M. Mernik, J. Heering, and A. M. Sloane, “When and How to
Develop Domain-specific Languages,” ACM Comput. Surv., vol. 37,
no. 4, pp. 316–344, 2005.

[18] M. Glinz, “On non-functional requirements,” in Requirements En-
gineering Conference, 2007. RE’07. 15th IEEE International. IEEE,
2007, pp. 21–26.

[19] G. Kotonya and I. Sommerville, Requirements engineering: processes
and techniques. Wiley Publishing, 1998.

[20] L. Chung and J. C. S. do Prado Leite, On Non-Functional Require-
ments in Software Engineering. Springer Berlin Heidelberg, 2009,
pp. 363–379.

[21] M. Hassenzahl, “The effect of perceived hedonic quality on
product appealingness,” International Journal of Human-Computer
Interaction, vol. 13, no. 4, pp. 481–499, 2001.

[22] G. C. Roman, “A taxonomy of current issues in requirements
engineering,” Computer, vol. 18, no. 4, pp. 14–23, 1985.

[23] I. Sommerville, Software Engineering, 10th Edition. Pearson, 2015.
[24] ISO/IEC 25010: Systems and software engineering – Systems and

software Quality Requirements and Evaluation (SQuaRE) – System
and software quality models, ISO Std., 2011. [Online]. Available:
https://www.iso.org/standard/35733.html

[25] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering. Springer US, 2000.

[26] J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki, “Non-
Functional Requirements in industry - three case studies adopting
an experience-based NFR method,” in Proc. of the 13th IEEE Inter-
national Conference on Requirements Engineering, 2005, pp. 373–382.

[27] M. Daneva, L. Buglione, and A. Herrmann, “Software Architects’
Experiences of Quality Requirements: What We Know and What
We Do Not Know?” in Proc. of the 19th International Working Con-
ference on Requirements Engineering: Foundation for Software Quality.
Springer Berlin Heidelberg, 2013, pp. 1–17.

[28] D. Ameller, C. Ayala, J. Cabot, and X. Franch, “How do software
architects consider Non-Functional Requirements: An exploratory
study,” in Proc. of the 20th IEEE International Requirements Engineer-
ing Conference, 2012, pp. 41–50.

[29] D. Ameller, X. Burgues, D. Costal, C. Farre, and X. Franch, “Non-
functional requirements in model-driven development of service-
oriented architectures,” Science of Computer Programming, vol. 168,
pp. 18–37, 2018.

[30] Proc. of the 2nd International Workshop on Software and Performance.
ACM, 2000.

[31] V. Cortellessa, H. Singh, and B. Cukic, “Early Reliability As-
sessment of UML Based Software Models,” in Proc. of the 3rd

International Workshop on Software and Performance. ACM, 2002,
pp. 302–309.

[32] L. Grunske, B. Kaiser, and Y. Papadopoulos, “Model-Driven Safety
Evaluation with State-Event-Based Component Failure Annota-
tions,” in Proc. of the 8th International Symposium on Component-
Based Software Engineering. Springer Berlin Heidelberg, 2005, pp.
33–48.

[33] V. Cortellessa, A. Di Marco, and P. Inverardi, “Integrating Perfor-
mance and Reliability Analysis in a Non-Functional MDA Frame-
work,” in Proc. of the 10th International Conference on Fundamental
Approaches to Software Engineering. Springer Berlin Heidelberg,
2007, pp. 57–71.

[34] S. Wenzel, D. Poggenpohl, J. Jürjens, and M. Ochoa, “Specifying
model changes with UMLchange to support security verification

of potential evolution,” Computer Standards & Interfaces, vol. 36,
no. 4, pp. 776–791, 2014.

[35] N. Mani, D. C. Petriu, and M. Woodside, “Studying the Impact of
Design Patterns on the Performance Analysis of Service Oriented
Architecture,” in Proc. of the 37th EUROMICRO Conference on
Software Engineering and Advanced Applications, 2011, pp. 12–19.

[36] M. Becker, M. Luckey, and S. Becker, “Model-driven Performance
Engineering of Self-adaptive Systems: A Survey,” in Proc. of the
8th International ACM SIGSOFT Conference on Quality of Software
Architectures. ACM, 2012, pp. 117–122.

[37] J. Criado, S. Martı́nez-Fernández, D. Ameller, L. Iribarne,
N. Padilla, and A. Jedlitschka, “Quality-Aware Architectural
Model Transformations in Adaptive Mashups User Interfaces,”
Fundamenta Informaticae Journal, 2018, accepted for publication.

[38] J. Hutchinson, J. Whittle, and M. Rouncefield, “Model-Driven
Rngineering practices in industry: Social, organizational and man-
agerial factors that lead to success or failure,” Science of Computer
Programming, vol. 89, pp. 144–161, 2014.

[39] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen,
“Empirical Assessment of MDE in Industry,” in Proc. of the 33rd

International Conference on Software Engineering. ACM, 2011, pp.
471–480.

[40] R. Berntsson Svensson, T. Gorschek, and B. Regnell, “Quality
Requirements in Practice: An Interview Study in Requirements
Engineering for Embedded Systems,” in Proc. of the 15th Interna-
tional Working Conference on Requirements Engineering: Foundation
for Software Quality. Springer Berlin Heidelberg, 2009, pp. 218–
232.

[41] R. Acerbis, A. Bongio, M. Brambilla, M. Tisi, S. Ceri, and E. Tosetti,
“Developing eBusiness Solutions with a Model Driven Approach:
The Case of Acer EMEA,” in Proc. of the 7th International Conference
on Web Engineering. Springer Berlin Heidelberg, 2007, pp. 539–
544.

[42] M. Afonso, R. Vogel, and J. Teixeira, “From code centric to model
centric software engineering: practical case study of MDD infusion
in a systems integration company,” in Proc. of the 4th Workshop
on Model-Based Development of Computer-Based Systems and 3rd In-
ternational Workshop on Model-Based Methodologies for Pervasive and
Embedded Software, 2006, pp. 125–134.

[43] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Hel-
dal, “A taxonomy of tool-related issues affecting the adoption of
Model-Driven Engineering,” Software & Systems Modeling, vol. 16,
no. 2, pp. 313–331, 2017.

[44] A. Cicchetti, F. Ciccozzi, and J. Carlson, “Software Evolution
Management: Industrial Practices,” in Proc. of the 10th Workshop
on Models and Evolution. CEUR-WS, 2016, pp. 8–13.

[45] M. Daneva, A. Herrmann, and L. Buglione, “Understanding Qual-
ity Requirements Engineering in Contract-Based Projects from
the Perspective of Software Architects: An Exploratory Study,”
in Relating System Quality and Software Architecture, I. Mistrik,
R. Bahsoon, P. Eeles, R. Roshandel, and M. Stal, Eds. Morgan
Kaufmann, 2014, pp. 325–357.

[46] A. Caracciolo, M. F. Lungu, and O. Nierstrasz, “How Do Software
Architects Specify and Validate Quality Requirements?” in Proc. of
the 8th European Conference on Software Architecture. Springer, 2014,
pp. 374–389.

[47] M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio,
“Relevance, benefits, and problems of software modelling and
model-driven techniques – A survey in the Italian industry,”
Journal of Systems and Software, vol. 86, no. 8, pp. 2110–2126, 2013.

[48] L. T. W. Agner, I. W. Soares, P. C. Stadzisz, and J. M. Simão,
“A Brazilian survey on UML and model-driven practices for
embedded software development,” Journal of Systems and Software,
vol. 86, no. 4, pp. 997–1005, 2013.

[49] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Model-
Based Engineering in the embedded systems domain: an indus-
trial survey on the state-of-practice,” Software & Systems Modeling,
2016.

[50] D. Ameller, M. Galster, P. Avgeriou, and X. Franch, “A survey
on quality attributes in Service-Based Systems,” Software Quality
Journal, vol. 24, no. 2, pp. 271–299, 2016.

[51] P. Mohagheghi, W. Gilani, A. Stefanescu, M. A. Fernandez,
B. Nordmoen, and M. Fritzsche, “Where does Model-Driven En-
gineering help? Experiences from three industrial cases,” Software
& Systems Modeling, vol. 12, no. 3, pp. 619–639, 2013.

[52] V. Kulkarni and S. Reddy, “Introducing MDA in a large IT con-

https://doi.org/10.1007/s10270-016-0565-6
http://www.omg.org/spec/UML/2.4/Superstructure/PDF
http://www.omg.org/spec/UML/2.4/Superstructure/PDF
https://www.iso.org/standard/35733.html

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2904476, IEEE
Transactions on Software Engineering

JOURNAL OF TSE, VOL. NN, NO. N, MONTH YYYY 17

sultancy organization,” in Proc. of the 13th Asia Pacific Software
Engineering Conference, 2006, pp. 419–426.

[53] P. Baker, S. Loh, and F. Weil, “Model-Driven Engineering in a
Large Industrial Context – Motorola Case Study,” in Proc. of the
8th Conference on Model-Driven Engineering Languages and Systems.
Springer Berlin Heidelberg, 2005, pp. 476–491.

[54] A. Borg, A. Yong, P. Carlshamre, and K. Sandahl, “The Bad
Conscience of Requirements Engineering: An Investigation in
Real-World Treatment of Non-Functional Requirements,” in
Proc. of the 3rd Conference on Software Engineering Research
and Practice in Sweden, 2003, pp. 1–8. [Online]. Available:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-16932

[55] D. Ameller, X. Franch, C. Gómez, J. Araujo, R. B. Svensson, S. Biffl,
J. Cabot, V. Cortellessa, M. Daneva, D. M. Fernández, A. Moreira,
H. Muccini, A. Vallecillo, M. Wimmer, V. Amaral, H. Brunelière,
L. Burgueño, M. G. ao, B. Schätz, and S. Teufl, “Handling Non-
Functional Requirements in Model-Driven Development: An on-
going industrial survey,” in Proc. of the IEEE 23rd International
Requirements Engineering Conference, 2015, pp. 208–213.

[56] R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, Goal
Question Metric (GQM) Approach. John Wiley & Sons, Inc., 2002.

[57] D. A. Dillman, J. D. Smyth, and L. M. Christian, Internet, Phone,
Mail, and Mixed-Mode Surveys: The Tailored Design Method, 4th ed.
Wiley Publishing, 2014.

[58] P. Mayring, Qualitative content analysis: theoretical foundation,
basic procedures and software solution. Social Science Open
Access Repository (SSOAR), 2014. [Online]. Available: http:
//nbn-resolving.de/urn:nbn:de:0168-ssoar-395173

[59] J. Corbin and A. Strauss, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory, 3rd ed. SAGE
Publications, Inc., 2008.

[60] L. Chung and B. A. Nixon, “Dealing with Non-Functional Re-
quirements: Three Experimental Studies of a Process-Oriented
Approach,” in 1995 17th International Conference on Software Engi-
neering, 1995, pp. 25–25.

[61] L. Guzmán, M. Oriol, P. Rodrı́guez, X. Franch, A. Jedlitschka, and
M. Oivo, “How Can Quality Awareness Support Rapid Software
Development? – A Research Preview,” in Proc. of the 23rd Interna-
tional Working Conference on Requirements Engineering: Foundation
for Software Quality, 2017, pp. 167–173.

[62] X. Franch, C. Gómez, A. Jedlitschka, L. López, S. Martı́nez-
Fernández, M. Oriol, and J. Partanen, “Data-Driven Elicitation,
Assessment and Documentation of Quality Requirements in Agile
Software Development,” in Proc. of the 30th International Conference
on Advanced Information Systems Engineering, 2018, pp. 587–602.

[63] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall PTR, 2003.

[64] W. Behutiye, P. Karhapää, D. Costal, M. Oivo, and X. Franch,
“Non-functional Requirements Documentation in Agile Software
Development: Challenges and Solution Proposal,” in Procs. of
the 18th International Conference on Product-Focused Software Process
Improvement - PROFES, 2017, pp. 515–522.

[65] F. Büttner, U. Bartels, L. Hamann, O. Hofrichter, M. Kuhlmann,
M. Gogolla, L. Rabe, F. Steimke, Y. Rabenstein, and A. Stosiek,
“Model-driven standardization of public authority data inter-
change,” Science of Computer Programming, vol. 89, pp. 162–175,
2014.

[66] M. Ali Babar, L. Bass, and I. Gorton, “Factors Influencing Indus-
trial Practices of Software Architecture Evaluation: An Empirical
Investigation,” in Proc. of the 3rd International Conference on Quality
of Software Architectures, 2007, pp. 90–107.

[67] S. Becker, H. Koziolek, and R. Reussner, “The Palladio Compo-
nent Model for Model-driven Performance Prediction,” Journal of
Systems and Software, vol. 82, no. 1, pp. 3–22, 2009.

[68] M. Nambiar, A. Kattepur, G. Bhaskaran, R. Singhal, and S. Dut-
tagupta, “Model Driven Software Performance Engineering: Cur-
rent Challenges and Way Ahead,” SIGMETRICS Performance Eval-
uation Review, vol. 43, no. 4, pp. 53–62, 2016.

[69] J. Eckhardt, A. Vogelsang, and D. Méndez Fernández, “On the
Distinction of Functional and Quality Requirements in Practice,”
in Proc. of the 17th International Conference on Product-Focused Soft-
ware Process Improvement. Springer, 2016, pp. 31–47.

[70] B. Selic, “What will it take? A view on adoption of model-based
methods in practice,” Software & Systems Modeling, vol. 11, no. 4,
pp. 513–526, 2012.

[71] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and

A. Wesslén, Experimentation in Software Engineering. Springer,
2012.

[72] J. Whittle and J. Hutchinson, “Mismatches between industry
practice and teaching of model-driven software development,”
in Proceedings of the 2011th International Conference on Models in
Software Engineering, ser. MODELS’11. Springer-Verlag, 2012, pp.
40–47.

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-16932
http://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173
http://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173

