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COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH RIPPED

DENSITY

RAPHAËL DANCHIN AND PIOTR BOGUS LAW MUCHA

Abstract. Here we prove the all-time propagation of the H1 regularity for the velocity field
solution of the two-dimensional compressible Navier-Stokes equations, provided the volume
(bulk) viscosity coefficient ν is large enough. The initial velocity can be arbitrarily large
and the initial density is just required to be bounded. In particular, one can consider a
characteristic function of a set as an initial density.

Uniqueness of the solutions to the equations is shown, in the case of a perfect gas.
As a by-product of our results, we give a rigorous justification of the convergence to the

inhomogeneous incompressible Navier-Stokes equations when ν tends to infinity.
Similar results are proved in the three-dimensional case, under some scaling invariant

smallness condition on the velocity field.

1. Introduction

We are concerned with the regularity and uniqueness issues of viscous compressible flows in
the unit torus Td with d = 2, 3. The corresponding equations of motion read

(1.1)

{
ρt + div (ρv) = 0 in R+ × Td,
(ρv)t + div (ρv ⊗ v)− µ∆v − (λ+ µ)∇div v +∇P = 0 in R+ × Td.

The pressure P is a given function of the density. The real numbers λ and µ designate the
bulk and shear viscosity coefficients, respectively, and are assumed to satisfy

(1.2) µ > 0 and ν := λ+ 2µ > 0.

The system is supplemented with the initial data

(1.3) v|t=0 = v0, ρ|t=0 = ρ0.

For smooth enough solutions of (1.1), the total mass and momentum are conserved through
the evolution that is, for all t ≥ 0,

(1.4)

∫
Td
ρ(t, x) dx =

∫
Td
ρ0(x) and

∫
Td

(ρv)(t, x) dx =

∫
Td

(ρ0v0)(x) dx.

Furthermore, if we denote by e the potential energy of the fluid defined by the relation ρe′′ =
P ′, and introduce the total energy

E(t) :=

∫
Td

(1

2
ρ(t, x)|v(t, x)|2 + e(ρ(t, x))

)
dx,

then the following energy balance holds true:

(1.5) E(t) +

∫ t

0

(
µ‖∇Pv(τ)‖22 + ν‖div v(τ)‖22

)
dτ = E0 := E(0) for all t ∈ [0, T ],

where P denotes the L2 -projector onto the set of solenoidal vector-fields and ‖ · ‖p, the norm

in Lp(Td).
1
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Since the pioneering works by P.-L. Lions in [18] and E. Feireisl in [14], it is well understood
that, in the case of an isentropic pressure law P (ρ) = ργ with γ > d/2, any finite energy initial
data (that is such that E0 <∞) generates a global-in-time weak solution to (1.1) satisfying

(1.6) E(t) +

∫ t

0

(
µ‖∇Pv(τ)‖22 + ν‖div v(τ)‖22

)
dτ ≤ E0 for all t ≥ 0.

At the same time, even in the two-dimensional case, the regularity and uniqueness issues for
those general weak solutions are widely open, in sharp contrast with the theory for incom-
pressible homogeneous flows (see [17]).

On the other side of the coin, the global existence and uniqueness issues are by now quite
clear in the strong solution framework provided the data are small perturbations of a linearly
stable positive constant density state [4, 19, 20] . For large smooth data with density bounded
away from zero, well-posedness holds true only for small time [5, 21, 23]. Positivity of density
may be somewhat relaxed but some compatibility condition involving the initial velocity must
be satisfied (see [2]).

Our aim here is to provide the reader with a complete global-in-time existence theory with
propagation of the H1 Sobolev regularity for the velocity, assuming only that the initial density
is bounded. We shall indeed achieve our goal provided that ν is large enough (and, of course,
that the velocity is small enough in the case d = 3). A remarkable feature of our result is
that, even though the density need not be positive, one can exhibit some gain of regularity
for the velocity so that both divu and curlu are in Lr,loc(R+;L∞) for some r > 1. Although
this does not imply that the full gradient of u is in L1,loc(R+;L∞), we will get uniqueness in
the case where P (ρ) = ρ despite the fact that the system under consideration is quasilinear
and partially hyperbolic.

As a by-product of our result of propagation of regularity, we shall get almost for free the
all-time convergence when ν tends to +∞ to the following inhomogeneous incompressible
Navier-Stokes equation:

(1.7)


ρt + div (ρv) = 0 in R+ × Td,
(ρv)t + div (ρv ⊗ v)− µ∆v +∇Π = 0 in R+ × Td,
div v = 0 in R+ × Td.

To the best of our knowledge, this is the first example of a global-in-time result of convergence
from (1.1) to (1.7) in the truly inhomogeneous framework (see also our recent work in [10]).

For expository purposes, we shall assume from now on that

(1.8)

∫
Td
ρ0(x) dx = 1 and

∫
Td

(ρ0v0)(x) dx = 0,

which is actually not restrictive, as one can rescale the density function and use the Galilean
invariance of the system to have those two conditions fulfilled.

Let us state our main global existence result in the case where the fluid domain is the
two-dimensional torus.

Theorem 1.1. Consider any nonnegative bounded function ρ0 and vector field v0 in H1(T2)
satisfying (1.8), and assume that the pressure law is P (ρ) = aργ for some a > 0 and γ ≥ 1.
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There exists ν0 depending only on γ, µ, E0, ‖∇v0‖2 and ‖ρ0‖∞ such that if ν ≥ ν0 then
System (1.1) admits a global-in-time solution (ρ, v) fulfilling the energy balance (1.5),

ρ ∈ L∞(R+ × T2) ∩ C(R+;Lp(T2)) for all p <∞, and
√
ρ v ∈ C(R+;L2(T2)).

In addition, we have, denoting v̇ := vt + v · ∇v,

(1.9) v ∈ L∞(R+;H1(T2)), ∇2Pv ∈ L2(R+ × T2),
√
ρ v̇ ∈ L2(R+ × T2),

√
ρt v̇ ∈ L∞,loc(R+;L2(T2)),

√
t∇v̇ ∈ L2(R+ × T2),

and both div v and curl v are in L1+ε,loc(R+;L∞(T2)) for some ε > 0.

Remark 1.1. The above existence result as well as its corollary, Theorem 1.3 (see just below),
are valid in T3 either locally in time for large data, or globally under a suitable scaling invariant
smallness condition. The reader is referred to Appendix C for more details.

In dimensions 2 and 3, in the case of a linear pressure law, our existence result is supple-
mented with uniqueness.

Theorem 1.2. Under the above assumptions with γ = 1, then the solution constructed in
Theorem 1.1 (resp. Theorem C.1 in the appendix) if d = 2 (resp. d = 3) is unique.

By taking advantage of the fact that the estimates that have been proved in Theorem 1.1
have some uniformity with respect to ν, we get the following result of convergence of the
compressible Navier-Stokes equations to the incompressible and inhomogeneous Navier-Stokes
equations.

Theorem 1.3. Fix some initial data (ρ0, v0) in L∞(T2) × H1(T2) satisfying in addition
div v0 = 0 and ρ0 ≥ 0, and denote by (ρν , vν) the corresponding global solution of (1.1)
provided by Theorem 1.1 for ν ≥ ν0.

Then, for ν going to ∞, the whole family (ρν , vν) converges to the unique global solution of
system (1.7) supplemented with initial data (ρ0, v0) given by Theorem 2.1 of [9], and we have

(1.10) div vν = O(ν−1/2) in L2(R+ × T2) ∩ L∞(R+;L2(T2)).

Remark 1.2. For simplicity, we focus on the physically relevant case where the pressure
function P is given by P (ρ) = aργ for some γ ≥ 1 and a > 0. However, most of our results
remain true whenever:

(1.11) P is a C1 nonnegative function on R+ such that ρ 7→ ρ−1P (ρ) is nondecreasing.

Let us review the main ideas leading to our results. Assuming that we are given a solution
(ρ, v) to (1.1), the first step is to establish global-in-time a priori estimates for the H1 norm of
v in terms of the data, of the parameters of the system and of an upper bound for the density
ρ. That step is partly based on the work by B. Desjardins in [11] where the so-called viscous
effective flux G defined by

(1.12) G := ν div v − P with ν := λ+ 2µ

plays a key role. Recall that, as observed before in e.g. the works by D. Hoff [15] and P.-L. Lions
[18], G has better regularity than div v or P taken separately. This property is the cornerstone
of the construction of weak solutions to (1.1). Furthermore, rewriting the momentum equation
in terms of G rather than P will spare us making integrability assumptions on ∇ρ, in contrast
with our recent work in [10]. This will be the key to considering initial density with no
regularity whatsoever. In fact, thanks to it, we shall define a modified energy functional
that controls the H1 regularity of the velocity and also contains some information on the
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density. Compared to Desjardins’ work, the main breakthrough is that, by tracking carefully
the dependency of the estimates with respect to ν and by optimizing the use of the following
logarithmic interpolation inequality

(1.13)

(∫
T2

ρ|v|4 dx
) 1

2

≤ C‖√ρv‖2‖∇v‖2 log
1
2

(
e+ ‖ρ̃‖2 +

‖ρ‖2‖∇v‖22
‖√ρv‖22

)
with ρ̃ := ρ− 1,

we achieve global-in-time bounds depending only on the data and on ρ∗ := ‖ρ‖∞, while the
result in [11] was local. Note that, here, (1.13) is an appropriate substitute of the well-known
Ladyzhenskaya inequality

‖v‖24 ≤ C‖v‖2‖∇v‖2
since bounds are available on ‖√ρv‖2 (through (1.5)), but not on ‖v‖2.

Step 1 required an a priori upper bound for the density. The second step will enable us to
discard that assumption. Again, it is partly based on the work by B. Desjardins in [11] where
the quantity F := log ρ + ν−1∆−1(ρv) that may be seen as an approximate damped mode
associated to (1.1) is introduced. The new achievement here is that, by combining with the
first step and an obvious bootstrap argument, one ends up with a control on ρ∗ in terms of
the data only, provided that ν is large enough.

In order to have a chance to prove uniqueness of the solutions, we need to exhibit more
regularity for ∇v. Ideally, since the system under consideration is partially quasilinear hy-
perbolic of order one, it would be good to have ∇v in L1,loc(R+;L∞). The goal of step 3 is
to prove that div v and curl v are in L1,loc(R+;L∞), which is “almost” what we want. To
achieve it, we shall adapt our recent work [9] dedicated to the inhomogeneous Navier-Stokes
equations (1.7) to the compressible situation. The main idea is to use time weighted estimates
to glean some regularity on vt, then to transfer time regularity to space regularity by using
elliptic estimates. The situation here is more complicated, though, owing to the pressure term
that cannot been discarded by means of the divergence free property. Nonetheless, by using
the convective derivative v̇ rather than vt, we shall get bounds on

√
ρt v̇ in L∞,loc(R+;L2)

and
√
t∇v̇ in L2,loc(R+;L2). Then, putting together with elliptic estimates and functional

embedding, one gets that div v and curl v are in L1+ε,loc(R+;L∞) for some ε > 0.

Steps 1 to 3 were just formal a priori estimates for smooth solutions. To complete the proof
of existence, we mollify the initial density so as to make it strictly positive and regular. Then,
one can resort to classical results to construct a local-in-time smooth solution corresponding
to those data. The difficulty is to establish that, indeed, the control of norms that has been
obtained so far allows to extend the solution for all time. Once it has been done, the uniform
bounds turn out to be enough to pass to the limit and to complete the proof of existence.
Since, compared to weak solutions, more regularity is available on the velocity, passing to the
limit is much more direct than in [14] or [18].

Remember that steps 1 to 3 give that div v and curl v are in L1+ε,loc(R+;L∞) for some
ε > 0. Hence, we miss by a little the property that ∇v is in L1,loc(R+;L∞) and v need not
have a Lipschitz flow. Therefore, in contrast with what has been done for (1.7) or for (1.1) in
[7], it is not clear whether recasting the compressible Navier-Stokes equations in Lagrangian
coordinates may help to prove uniqueness. Nonetheless, in the particular case of a linear
pressure law, we succeed in proving stability estimates directly for (1.1) in L∞(0, T ; Ḣ−1) for
the density and L2(0, T ;L2) for the velocity. The proof has some similarities with that of
D. Hoff in [16] but does not require Lagrangian coordinates. Indeed we overcome the fact
that ∇v /∈ L1,loc(R+;L∞) by combining the information that ∇ ∈ L1+ε,loc(R+;BMO) with a
suitable logarithmic interpolation inequality from [22].
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The rest of the paper unfolds as follows. The next section is dedicated to the proof of
regularity estimates for (1.1) assuming that the solution under consideration is smooth and
that ν is large enough (this corresponds to steps 1 to 3 above). For better readability, we
focus there on d = 2, and the most technical parts of that section are postponed in appendix.
In Section 3, we prove the existence part of our main theorem (and also justify the convergence
of (1.1) to (1.7) for ν going to ∞), while Section 4 is dedicated to uniqueness. Some technical
results like, in particular, Inequality (1.13) and time weighted estimates, and the case d = 3
are postponed in appendix.

2. Regularity estimates

The present section is devoted to proving regularity estimates for the velocity field of a
solution (ρ, v) to (1.1) in R+ × Td. We focus on d = 2, the three dimensional case being
postponed in appendix.

As a start, we normalize the potential energy e in such a way that e(1) = e′(1) = 0, setting

(2.1) e(ρ) := ρ

∫ ρ

1

P (%)

%2
d%− P (1)(ρ− 1).

Hence, ‖e‖1 is essentially equivalent to ‖ρ− 1‖22 and, in the case P (ρ) = ργ , we have

e(ρ) = ρ log ρ+ 1− ρ if γ = 1, and e(ρ) =
ργ

γ − 1
− γρ

γ − 1
+ 1 if γ > 1.

We shall often use the notations e and P instead of e(ρ) and P (ρ).

2.1. Sobolev estimates for the velocity. Here we derive a global-in-time H1 energy esti-
mate that requires only a control on sup ρ . The overall strategy is inspired by [11].

Throughout the proof, we denote P̃ := P − P̄ and G̃ := G− Ḡ where P̄ and Ḡ stand for
the average of P and G. Note that we have

(2.2) G̃ = ν div v − P̃ .

Proposition 2.1. Consider a smooth solution (ρ, v) to (1.1) on [0, T ]× T2 satisfying (1.8).
Assume that the pressure law fulfills (1.11) and that, for some positive constant ρ∗,

(2.3) 0 ≤ ρ(t, x) ≤ ρ∗ for all (t, x) ∈ [0, T ]× T2.

Let v̇ := vt + v · ∇v be the material derivative of v, and h := ρP ′ − P. There exist:

– a functional E such that

E ≥ 1

2

∫
T2

(
ρ|v|2 + µ|∇Pv|2 +

1

ν

(
G̃2 + P̃ 2) + 2e

)
dx,

– an absolute positive constant C ,

– a positive constant ν0 depending1 only on the pressure function P, on µ and on ρ∗,

such that if ν ≥ ν0 then for all t ∈ [0, T ], we have

(2.4) 1 +
1

µE0

(
E(t) +

∫ t

0
D(τ) dτ

)

≤
(

1 +
E0
µE0

exp

{
C
(

1 +
(ρ∗)2

µ4
E2

0 log(e+ ρ∗)
)})exp

{
C

(ρ∗)2

µ4
E2

0

}
,

1Here we find ν0 = max
(
µ, C

√
ρ∗ log(e+ρ∗)

µ
P (ρ∗), P (ρ∗)

2
, 4
√
ρ∗(1 + h(ρ∗))

)
·



6 R. DANCHIN AND P.B. MUCHA

with E0 defined in (1.5) and

D :=

∫
T2

(
1

4
ρ|v̇|2 +

µ2

4ρ∗
|∇2Pv|2 +

1

8ρ∗
|∇G|2 +

1

4ν
P̃ 2 +

(ν+h

2

)
(div v)2 +

µ

2
|∇v|2

)
dx.

Proof. The beginning of the proof is independent of the dimension : we take the L2 inner
product of the momentum equation of (1.1) with v̇, and get

(2.5)

∫
Td
ρ|v̇|2 dx+

1

2

d

dt

∫
Td

(
µ|∇v|2 + (λ+µ)(div v)2

)
dx

+

∫
Td
∇P · vt dx =

∫
Td

(ρv̇) · (v · ∇v) dx.

To handle the pressure term in the left-hand side, we start from

Pt + div (Pv) + hdiv v = 0.

Therefore, integrating by parts yields∫
Td
∇P · vt dx = − d

dt

∫
Td
P div v dx−

∫
Td
h (div v)2 dx+

∫
Td
P v · ∇div v dx.

Since

−(ν div v)2 = P 2 −G2 − 2νPdiv v and ν∇div v = ∇(P +G),

we get after integrating by parts once to avoid the appearance of some ∇P term,

(2.6)

∫
Td
∇P · vt dx = − d

dt

∫
Td
P div v dx+

1

ν2

∫
Td

(P 2 −G2)h dx+
1

ν

∫
Td
Pv · ∇Gdx

− 1

ν

∫
Td

(P 2

2
+ 2Ph

)
div v dx.

Observing that

Ḡ = −P̄ and P̄ ′ = −
∫
Td
hdiv v dx,

we find that∫
Td

(P 2 −G2)h dx = ν

∫
Td

(P̃ − G̃) div v h dx+ 2νP̄

∫
Td
hdiv v dx

= ν2
∫
Td

(div v)2h dx− 2ν

∫
Td
G̃div v h dx− ν d

dt
(P̄ )2.(2.7)

Let the function k be the unique solution of

k − ρk′ = −P
2

2
− 2Ph and k(1) = P 2(1).

Then, we have

(2.8) −
∫
Td

(P 2

2
+ 2Ph

)
div v dx =

∫
Td

(
∂tk + div (kv)

)
dx =

d

dt

∫
Td
k dx.

Hence, plugging (2.6) and (2.7) in (2.8), we obtain∫
Td
∇P · vt dx =

d

dt

∫
Td

(
k − (P̄ )2

ν
− Pdiv v

)
dx− 2

ν

∫
Td
G̃ div v h dx

+

∫
Td

(div v)2h dx+
1

ν

∫
Td
Pv · ∇Gdx.
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Now, denoting

Ẽ :=

∫
Td

(
µ

2
|∇v|2 +

λ+ µ

2
(div v)2 +

1

ν

(
k − (P̄ )2

)
− P̃ div v

)
dx

and reverting to (2.5), we conclude that

(2.9)
d

dt
Ẽ +

∫
Td
ρ|v̇|2 dx+

∫
Td

(div v)2h dx

=

∫
Td

(ρv̇) · (v · ∇v) dx+
2

ν

∫
Td
G̃div v h dx− 1

ν

∫
Td
Pv · ∇Gdx.

Observe that

Ẽ =

∫
Td

(
µ

2

(
|∇v|2 − (div v)2

)
+

1

2ν

(
(νdiv v)2 − 2νdiv v P̃ + 2(k − (P̄ )2)

))
dx

and that

(2.10) k(ρ) = P 2(ρ)− ρ

2

∫ ρ

1

P 2(%)

%2
d%.

Hence we have

Ẽ =
1

2

∫
Td

(
µ|∇Pv|2 +

1

ν

(
G̃2 + P̃ 2 + ρ

∫ 1

ρ

P 2(τ)

τ2
dτ

))
dx.

Let P ∗ := ‖P (ρ)‖∞. Since we have for all ρ ≥ 0,

ρ

∫ ρ

1

P 2(τ)

τ2
dτ ≤ ρP (ρ)

∫ ρ

1

P (τ)

τ2
dτ = P (ρ)

(
e(ρ) + P (1)(ρ− 1)

)
≤ P ∗

(
e(ρ) + P (1)ρ

)
− P (ρ)P (1),

we get

(2.11)

∫
Td
ρ(x)

(∫ ρ(x)

1

P 2(τ)

τ2
dτ

)
dx ≤ P ∗(‖e‖1 + P (1))− P̄P (1),

and thus

(2.12) Ẽ ≥ 1

2

∫
Td

(
µ|∇Pv|2 +

1

ν

(
G̃2 + P̃ 2

))
dx− 1

2ν

(
P ∗‖e‖1 + P (1)

(
P ∗ − P̄

))
·

In order to get a control on the right-hand side of (2.9), let us rewrite the momentum equation
in terms of the viscous effective flux G = νdiv v − P as follows:

(2.13) µ
(
∆v −∇div v

)
+∇G = ρv̇.

From it, we discover that

(2.14) µ2‖∆Pv‖22 + ‖∇G‖22 = ‖ρv̇‖22 ≤ ρ∗‖
√
ρv̇‖22.

Since we obviously have

2

ν

∫
Td
G̃div v h dx ≤ 1

2

∫
Td

(div v)2h dx+
2

ν2

∫
Td
G̃2h dx,
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equality (2.9) implies that

(2.15)
d

dt
Ẽ +

1

4
‖√ρ v̇‖22 +

µ2

2ρ∗
‖∆Pv‖22 +

1

2ρ∗
‖∇G‖22 +

1

2

∫
Td

(div v)2h dx

≤ ‖√ρv · ∇v‖22 +
2

ν2

∫
Td
G̃2 h dx− 1

ν

∫
Td
Pv · ∇Gdx.

To bound the first term in the right-hand side, we decompose ∇v into

(2.16) ∇v = ∇Pv − 1

ν
∇2(−∆)−1G̃− 1

ν
∇2(−∆)−1P̃ .

Hence

‖√ρ v · ∇v‖22 ≤ 3

(
‖√ρ v · ∇Pv‖22 +

1

ν2
‖√ρ v · ∇2(−∆)−1G̃‖22 +

1

ν2
‖√ρ v · ∇2(−∆)−1P̃‖22

)
·

From this point, we assume that d = 2. Then, Hölder and Gagliardo-Nirenberg inequalities
yield ∫

T2

ρ|v · ∇Pv|2 dx ≤ C
√
ρ∗
(∫

T2

ρ|v|4 dx
) 1

2

‖∇Pv‖2‖∇2Pv‖2.

Since the density is not bounded from below, in order to bound the right-hand side, one has
to take advantage of Inequality (1.13). We get

3

∫
T2

ρ|v ·∇Pv|2dx ≤C
√
ρ∗ ‖√ρv‖2‖∇v‖2‖∇Pv‖2‖∇2Pv‖2 log

1
2

(
e+‖ρ̃‖2+

‖ρ‖2‖∇v‖22
‖√ρv‖2

)
≤ µ2

4ρ∗
‖∆Pv‖22 +

C(ρ∗)2

µ2
‖√ρv‖22‖∇v‖22‖∇Pv‖22 log

(
e+‖ρ̃‖2+

‖ρ‖2‖∇v‖22
‖√ρv‖22

)
·(2.17)

Arguing similarly and using the fact that ∇2(−∆)−1 maps L4(T2) to itself, we get

(2.18)
3

ν2

∫
T2

ρ
∣∣∣ v · [∇2(−∆)−1G̃

]∣∣∣2 dx ≤ 1

8ρ∗
‖∇G‖22

+
C(ρ∗)2

ν4
‖√ρv‖22‖∇v‖22‖G̃‖22 log

(
e+‖ρ̃‖2+

‖ρ‖2‖∇v‖22
‖√ρv‖22

)
,

and also,

(2.19)
3

ν2

∫
T2

ρ|v · ∇2∆−1P̃ |2 dx

≤ 1

4ν
‖P̃‖22 +

Cρ∗

ν3
‖√ρ v‖22‖∇v‖22 log

(
e+‖ρ̃‖2+

‖ρ‖2‖∇v‖22
‖√ρv‖22

)
‖P̃‖2∞.

Finally, we have, thanks to Inequality (A.3),

−1

ν

∫
T2

Pv · ∇Gdx ≤ 1

ν
P ∗‖v‖2‖∇G‖2

≤ C

ν
P ∗ log

1
2 (e+ ‖ρ̃‖2) ‖∇v‖2‖∇G‖2.

Hence

(2.20) −1

ν

∫
T2

Pv · ∇Gdx ≤ 1

8ρ∗
‖∇G‖22 + C

ρ∗

ν2
(P ∗)2‖∇v‖22 log

(
e+ ‖ρ̃‖2

)
·

Therefore, plugging (2.17), (2.18), (2.19) and (2.20) in (2.15), we conclude that
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(2.21)
d

dt
Ẽ +

1

4
‖√ρ v̇‖22 +

µ2

4ρ∗
‖∆Pv‖22 +

1

4ρ∗
‖∇G‖22 +

1

2

∫
T2

(div v)2h dx

≤ Cρ∗

ν2
log
(
e+ ‖ρ̃‖2

)
(P ∗)2‖∇v‖22 +

1

4ν
‖P̃‖22 +

2

ν2

∫
T2

G̃2 h dx

+ C‖√ρv‖22‖∇v‖22
(
ρ∗‖P̃‖2∞
ν3

+
(ρ∗)2

µ2
‖∇Pv‖22 +

(ρ∗)2

ν4
‖G̃‖22

)
log

(
e+ ‖ρ̃‖2 +

‖ρ‖2‖∇v‖22
‖√ρv‖22

)
·

At this stage, in order to handle all the terms of the right-hand side, one may add up to Ẽ
some suitable multiple of the basic energy E and of a complementary relation involving e

from which one can glean some time-decay for ‖P̃‖2. Indeed, let us start with

∂te+ div (ev) + Pdiv v = 0.

Integrating on T2 and remembering that ν div v = P̃ + G̃ yields

(2.22)
d

dt

∫
T2

e dx+
1

ν

∫
T2

|P̃ |2 dx = −1

ν

∫
T2

P̃ G̃ dx.

Let us set

E : = Ẽ + E + ‖e‖1 +
1

2ν

(
P ∗ − P (1)

)
P (1)

=
1

2

∫
T2

(
ρ|v|2+µ|∇Pv|2+

1

ν

(
G̃2+P̃ 2+

(
ρ

∫ 1

ρ

P 2(τ)

τ2
dτ

)
+(P ∗−P (1))P (1)

)
+ 4e

)
dx.

In order to control the integral in the right-hand side of (2.22), one may use that

1

ν

∫
T2

|P̃ | |G̃| dx ≤ 1

2ν

∫
T2

P̃ 2 dx+
1

2ν

∫
T2

G̃2 dx.

Then, Poincaré inequality implies that

1

ν

∫
T2

(2

ν
h+ 1

)
G̃2 dx ≤ 4ρ∗

ν

(
2

ν
‖h‖∞ + 1

)
‖∇G‖22

4ρ∗
·

Using also the fact that ‖ρ̃‖22 = ‖ρ‖22 − 1 ≤ (ρ∗)2 − 1, we get

d

dt
E +

1

4
‖√ρ v̇‖22 +

µ2

4ρ∗
‖∇2Pv‖22 +

1

4ρ∗

(
1− 4ρ∗

ν

(
2

ν
‖h‖∞ + 1

))
‖∇G‖22 +

1

4ν
‖P̃‖22

+

∫
T2

(
ν +

h

2

)
(div v)2dx+ µ‖∇Pv‖22 − C

ρ∗ log(e+ ρ∗)

ν2
(P ∗)2‖∇v‖22

≤ C‖√ρv‖22‖∇v‖22
(
ρ∗‖P̃‖2∞
ν3

+
(ρ∗)2

µ2
‖∇Pv‖22 +

(ρ∗)2

ν4
‖G̃‖22

)
log

(
e+ ρ∗ +

ρ∗‖∇v‖22
‖√ρv‖22

)
·

Obviously, thanks to (2.11), we have

(2.23) E ≥ 1

2

(
‖√ρv‖22 + µ‖∇Pv‖22 +

1

ν

(
‖G̃‖22 + ‖P̃‖22

))
+

(
2− P ∗

2ν

)
‖e‖1

)
·

Now, since

(2.24) µ‖∇v‖22 + (λ+ µ)‖div v‖22 = µ‖∇Pv‖22 + ν‖div v‖22,
we have if ν ≥ µ,

ν‖div v‖22 + µ‖∇Pv‖22 ≥ µ‖∇v‖22.
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Therefore, because for all A ≥ 0,

log(e+ ρ∗ + ρ∗A) ≤ log(e+ ρ∗) + log(1 +A) ≤ log(e+ ρ∗) +A,

if one assumes that

(2.25) 1 ≥ 2C
ρ∗ log(e+ ρ∗)(P ∗)2

µν2
and

8ρ∗

ν

(
2

ν
‖h‖∞ + 1

)
≤ 1,

then the above inequalities imply that

(2.26)
d

dt
E +D ≤ Cρ∗‖√ρv‖22‖∇v‖22

‖P̃‖2∞
ν3

(
log(e+ ρ∗) +

‖∇v‖22
‖√ρv‖22

)
+ C(ρ∗)2‖√ρv‖22‖∇v‖22

(
1

µ2
‖∇Pv‖22 +

1

ν4
‖G̃‖22

)(
log(e+ ρ∗) + log

(
1 +

‖∇v‖22
‖√ρv‖22

))
with

D :=
1

4
‖√ρ v̇‖22 +

µ2

4ρ∗
‖∇2Pv‖22 +

1

8ρ∗
‖∇G‖22 +

1

4ν
‖P̃‖22 +

1

2

∫
T2

(div v)2(ν + h) dx+
µ

2
‖∇v‖22.

So, finally, if one assumes that

(2.27) ν ≥ µ, ν2 ≥ 2Cµ−1ρ∗ log(e+ρ∗)(P ∗)2, ν ≥ 8ρ∗(2ν−1‖h‖∞ + 1) and ν ≥ P ∗/2,
the last condition ensuring that the coefficient of the last term in (2.23) is greater than 1, then
we have

(2.28) E ≥ 1

2

(
‖√ρv‖22 + µ‖∇Pv‖22 +

1

ν
‖G̃‖22 +

1

ν
‖P̃‖22

)
+ ‖e‖1,

and thus
‖√ρv‖22 ≤ 2E , ‖∇Pv‖22 ≤ 2E/µ and ‖G̃‖22 ≤ 2νE .

Thanks to that, inequality (2.26) combined with the energy balance (1.5) and the fact that

the map r 7→ r log1/2(a+ b/r) is nondecreasing on R+ if a ≥ 1 and b ≥ 0, implies that

d

dt
E +D ≤ C (ρ∗)2

µ3
E0‖∇v‖22 E log

(
1 +

E
µE0

)
+C

(
(ρ∗)2

µ3
E0 log(e+ ρ∗) +

ρ∗‖P̃‖2∞
µν3

+ log(e+ ρ∗)
ρ∗‖P̃‖2∞
ν3

)
‖∇v‖22 E .

Note that Condition (2.27) entails that

ρ∗‖P̃‖2∞
µν3

+ log(e+ ρ∗)
ρ∗‖P̃‖2∞
ν3

≤ 1.

Therefore applying Lemma A.1 with

A := 1, B :=
1

µE0
, f := C

(ρ∗)2

µ3
E0‖∇v‖22 and g := C

(
1 +

(ρ∗)2

µ3
E0 log(e+ ρ∗)

)
‖∇v‖22,

we get

1 +
1

µE0

(
E(t) +

∫ t

0
D(τ) dτ

)

≤
(

1 +
E0
µE0

exp

{
C
(

1 +
(ρ∗)2

µ3
E0 log(e+ ρ∗)

)∫ t

0
‖∇v‖22 dτ

})exp
{
C

(ρ∗)2

µ3
E0

∫ t
0 ‖∇v‖

2
2 dτ
}
,

which, in light of the basic energy conservation (1.5), yields (2.4). �
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Remark 2.1. We do not really need ν to be large, as one has some freedom on the definition
of E , and lots of possibilities for bounding the right-hand side of (2.21). For small ν, one
can get a global, but time dependent control on E . We chose not to treat that case here since
the condition that ν is large will be needed in the next step, in order to remove the a priori
assumption that ρ is bounded.

2.2. An upper bound for the density. Here, we prove that, for large enough ν, if the initial
data fulfill the assumptions of the previous section, then we have a global-in-time control on
the supremum of ρ. For simplicity, we assume that P (ρ) = ργ for some γ ≥ 1.

Proposition 2.2. Consider a smooth solution (ρ, v) of (1.1) on [0, T ]× T2. There exists ν0
depending only on γ, µ, ‖ρ0‖∞ and E0 but independent of T such that if ν ≥ ν0, then

(2.29) sup
t∈[0,T ]

‖ρ(t)‖∞ ≤ 2e
γ−1
γ
E0‖ρ0‖∞.

Proof. Throughout the proof, we denote slightly abusively the right-hand side of (2.29) by ρ∗.
We start from the observation that if ρ > 0 then

∂t log ρ+ v · ∇ log ρ = −div v = −1

ν

(
P̃ + G̃).

Remember that the definition of G̃ ensures that

∆G̃ = ∂t(div (ρv)) + div (div (ρv ⊗ v)).

Therefore, following [11] and introducing

F := log ρ+ ν−1∆−1div (ρv),

we discover that (with the summation convention over repeated indices),

(2.30) ∂tF + v · ∇F +
1

ν
P̃ = −1

ν
[vj , (−∆)−1∂i∂j ]ρv

i.

Since we have

P (ρ) ≥ γ log ρ+ 1 for all ρ > 0,

setting F+ := max(0, F ) yields

(2.31) ∂tF
+ + v · ∇F+ +

γ

ν
F+ ≤ 1

ν
|[vj , (−∆)−1∂i∂j ]ρv

i|+ γ

ν2
|(−∆)−1div (ρv)|+ 1

ν
(P̄ − C).

As P (ρ) = ργ , we have P̄ − 1 = (γ − 1)‖e‖1, so that the last term may be bounded by
(γ − 1)E0. Then, performing a time integration in (2.31) yields

(2.32) ‖F+(t)‖∞ ≤ e−
γ
ν
t‖F+(0)‖∞ +

1

ν

∫ t

0
e−

γ
ν
(t−τ)‖[vj , (−∆)−1∂i∂j ]ρv

i(τ)‖∞ dτ

+
γ

ν2

∫ t

0
e−

γ
ν
(t−τ)‖(−∆)−1div (ρv)(τ)‖∞ dτ +

γ − 1

γ

(
1− e−

γ
ν
t
)
E0.

Using that the average of ρv is zero, Sobolev embedding and the properties of continuity of
Riesz operator imply that

(2.33) ‖(−∆)−1div (ρv)‖∞ . ‖(−∆)−1∇div (ρv)‖4 . ‖ρv‖4.
Then we use again (1.13) and get

‖(−∆)−1div (ρv)‖∞ . (ρ∗)
3
4 ‖√ρv‖

1
2
2 ‖∇v‖

1
2
2 log

1
4

(
e+ ρ∗ +

ρ∗‖∇v‖22
‖√ρv‖22

)
,
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whence, thanks to the energy balance (1.5) and the definition of E (assuming that ν ≥ µ),

(2.34) ‖(−∆)−1div (ρv)‖∞ ≤ C(ρ∗)
3
4E

1
4
0 ‖∇v‖

1
2
2 log

1
4

(
e+ ρ∗ +

ρ∗E
µE0

)
·

Since [vj , (−∆)−1∂i∂j ]ρv
i = [ṽj ,∆−1∂i∂j ]ρv

i with ṽ = v − v̄, the second term in the r.h.s. of
(2.32) may be bounded by means of Sobolev embedding and of the following Coifman, Lions,
Meyer and Semmes inequality (from [3]) as follows:

(2.35) ‖[vj , (−∆)−1∂i∂j ]ρv
i‖∞ . ‖[ṽj , (−∆)−1∂i∂j ]ρv

i‖W 1,3 . ‖∇v‖12‖ρv‖4.

To handle ∇v, we use that

‖∇v‖12 . ‖∇Pv‖12 + ν−1
(
‖G̃‖12 + ‖P̃‖12

)
. ‖∇2Pv‖2 + ν−1

(
‖∇G‖2 + ‖P̃‖∞

)
·

Hence, using once more (1.13),

‖[vj , (−∆)−1∂i∂j ]ρv
i‖∞ . (ρ∗)

3
4
(
‖∇2Pv‖2 + ν−1‖∇G‖2 + ν−1‖P̃‖∞

)
×‖√ρv‖

1
2
2 ‖∇v‖

1
2
2 log

1
4

(
e+ ρ∗ +

ρ∗‖∇v‖22
‖√ρv‖22

)
,

whence, using the energy conservation (1.5) and the definition of E and D,

(2.36) ‖[vj , (−∆)−1∂i∂j ]ρv
i‖∞ .

(
(ρ∗)

5
4µ−1D

1
2 + (ρ∗)

3
4 ν−1‖P̃‖∞

)
× E

1
4
0 ‖∇v‖

1
2
2 log

1
4

(
e+ ρ∗ +

ρ∗E
µE0

)
·

Plugging (2.34) and (2.36) in (2.32) and performing obvious simplifications, we end up with

(2.37) ‖F+(t)‖∞ ≤ ‖F+(0)‖∞ +
γ − 1

γ
E0

+C(ρ∗)
3
4
E

1
4
0

ν

∫ t

0
e−

γ
ν
(t−τ)

((√
ρ∗µ−1D

1
2 + ν−1(‖P̃‖∞+ γ)

)
‖∇v‖

1
2
2 log

1
4

(
e+ ρ∗+

ρ∗E
µE0

))
dτ.

Now, let us consider the largest sub-interval [0, T0] of [0, T ] on which (2.29) is fulfilled.
Then, Inequality (2.4) tells us that there exist ν0 depending only on ‖ρ0‖∞, µ and γ, and
C0 > 0 (depending also on E0, E0 ) so that we have for all t ∈ [0, T ], if ν ≥ ν0,

(2.38) E(t) +

∫ t

0
D(τ) dτ ≤ C0.

Inequality (2.37) thus becomes (taking a larger C0 as the case may be):

(2.39) ‖F+(t)‖∞ ≤ ‖F+(0)‖∞ +
γ − 1

γ
E0 +

C0

ν

∫ t

0
e−

γ
ν
(t−τ)

(
D

1
2 (τ)

µ
+
γ

ν

)
‖∇v(τ)‖

1
2
2 dτ.

From Hölder inequality, we have for all t ∈ [0, T ],∫ t

0
e−

γ
ν
(t−τ)D

1
2 ‖∇v‖

1
2
2 dτ ≤ C

(
ν

γ

) 1
4
(∫ T

0
D(τ) dτ

) 1
2
(∫ T

0
‖∇v(τ)‖2L2 dτ

) 1
4

and

∫ t

0
e−

γ
ν
(t−τ)‖∇v(τ)‖

1
2
2 dτ ≤ C

(
ν

γ

) 3
4
(∫ T

0
‖∇v(τ)‖2L2 dτ

) 1
4

.
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As the integrals in the right-hand side may be bounded in terms of the data according to the
basic energy balance (1.5) and to (2.38), we eventually get (changing once again C0 if needed)
if ν ≥ ν0 :

‖F+(t)‖∞ ≤ ‖F+(0)‖∞ + C0ν
− 3

4 +
γ − 1

γ
E0.

Of course, owing to the definition of F+ and to (2.4) and (2.34), we have

log ρ ≤ F+ + ν−1‖∆−1div (ρv)‖∞ ≤ F+ + ν−1C0.

Hence one can eventually conclude that

(2.40) log ρ∗ ≤ log ρ∗0 + C0ν
− 3

4 +
γ − 1

γ
E0.

Now, if ν is so large as to satisfy also

C0ν
− 3

4 < log 2,

then (2.40) combined with a bootstrap argument implies that we have (2.29) on [0, T ]. �

2.3. Weighted estimates. That section is devoted to the proof of the following result, that
is based on the estimates that have been established so far. For better readability, we postpone
the most technical parts of the proof to the appendix.

Proposition 2.3. Define ν0 as in Proposition 2.2. Then, smooth solutions to (1.1) on [0, T ]×
T2 fulfill, if ν ≥ ν0 :

(2.41) sup
t∈[0,T ]

∫
T2

ρ|v̇|2t dx+

∫ T

0

∫
T2

(µ|∇P v̇|2 + ν|div v̇|2)t dx dt ≤ C0T e
C0T
ν ,

where C0 depends on ρ∗, µ, E0 and on the pressure function, but is independent of ν and T .

Proof. Here it will be convenient to use the two notations ḟ and D
Dtf to designate the con-

vective derivative of f, and we shall denote A : B =
∑

i,j AijBij if A and B are two d × d
matrices. Finally, if v is a vector field on Td then (Dv)ij := ∂jv

i and (∇v)ij := ∂iv
j for

1 ≤ i, j ≤ d.
The general principle is to rewrite the momentum equation as:

(2.42) ρv̇ − µ∆v − (ν − µ)∇div v +∇P = 0,

then to take the material derivative and test it by t v̇. We get

(2.43)

∫
Td

(
D

Dt
(ρv̇)− µ D

Dt
∆v − (ν − µ)

D

Dt
∇div v +

D

Dt
∇P

)
· (t v̇) dx = 0.

The rest of the proof consists in describing each term of (2.43). To this end, we shall repeatedly
use the fact that for all ν ≥ ν0 (where ν0 is given by Proposition 2.2), we have

(2.44) ‖∇v‖L4(0,T×T2) ≤ C0·

Indeed, recall the decomposition

(2.45) v = Pv − 1

ν
∇(−∆)−1(G̃+ P̃ ).

Proposition 2.1 and Sobolev embeddings imply that

(2.46) ‖∇Pv‖L4(0,T×T2) . ‖∇Pv‖
1/2
L∞(0,T ;L2)

‖∇2Pv‖1/2L∞(0,T ;L2)
≤ C0.
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Furthermore, we have

(2.47) ‖G̃‖L4(0,T×T2) . ‖G̃‖
1/2
L∞(0,T ;L2)

‖∇G‖1/2L2(0,T ;L2)
≤ ν1/4C0,

and

(2.48) ‖P̃‖L4(0,T×T2) ≤ ‖P̃‖
1/2
L2(0,T ;L2)

‖P̃‖1/2L∞(0,T ;L∞) ≤ ν
1/4C0.

Step 1. Obvious computations give (in any dimension):

(2.49)

∫
Td

D

Dt
(ρv̇) · v̇ t dx =

1

2

∫
Td

(
D

Dt
(ρ|v̇|2t) + ρ̇|v̇|2t− ρ|v̇|2

)
dx.

Integrating by parts, we see that

(2.50)

∫
Td

D

Dt
(ρ|v̇|2t) dx =

d

dt

∫
Td
ρ|v̇|2t dx−

∫
Td

div v(ρ|v̇|2t) dx.

Thanks to the mass conservation equation, we have

(2.51)

∫
Td
ρ̇|v̇|2t dx = −

∫
Td
ρdiv v|v̇|2t dx,

whence ∫
Td

D

Dt
(ρ|v̇|2t) dx =

1

2

d

dt

∫
Td
ρ|v̇|2dx− 1

2

∫
Td
ρ|v̇|2 dx−

∫
Td
ρdiv v|v̇|2t dx.

If d = 2 then one can bound the last term using that∫
T2

ρ div v|v̇|2t dx = ν−1
∫
T2

(P̃ + G̃)ρ|v̇|2t dx

≤ ν−1‖P̃‖∞‖
√
ρt v̇‖22 + ρ∗ν−1‖G̃‖2‖

√
t v̇‖24

≤ C0ν
−1‖
√
ρt v̇‖22 + C0ν

−1/2‖
√
t v̇‖24.

Since
∫
T2 ρv̇ dx = 0, one can take advantage of the Poincaré inequality (A.2) with p = 2 and

get:

(2.52) ‖
√
t v̇‖24 ≤ C‖

√
t v̇‖2‖

√
t∇v̇‖2 ≤ C(1 + ‖ρ̃‖2)‖

√
t∇v̇‖22 ≤ Cρ∗‖

√
t∇v̇‖22.

Hence, ∫
T2

ρ div v|v̇|2t dx ≤ C0

(
ν−1‖

√
ρt v̇‖22 + ν−1/2‖

√
t∇v̇‖22

)
,

and thus

(2.53)

∫
T2

D

Dt
(ρ|v̇|2t) dx ≥ 1

2

d

dt

∫
T2

ρ|v̇|2dx− 1

2

∫
T2

ρ|v̇|2 dx

− C0

(
ν−1

∫
T2

ρt |v̇|2 dx+ ν−1/2
∫
T2

t|∇v̇|2 dx
)
·
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Step 2. The second term of (2.43) rewrites

(2.54) − D

Dt
∆v = −div

D

Dt
∇v −∇v · ∇2v with (∇v · ∇2v)i :=

∑
j,k

∂kv
j ∂j∂kv

i.

Testing (2.54) by tv̇ and integrating by parts yields for d = 2, 3,

−
∫
Td

D

Dt
∆v · tv̇ dx =

∫
Td

D

Dt
∇v : ∇v̇ t dx−

∫
Td

(∇v · ∇2v) · v̇ t dx.

Since
D

Dt
∇v = ∇v̇ −∇v · ∇v,

we get

(2.55) −
∫
Td

D

Dt
∆v · tv̇ dx =

∫
Td
|∇v̇|2t dx−

∫
Td

(∇v · ∇v) : ∇v̇ t dx−
∫
Td

(∇v · ∇2v) · v̇t dx.

The first term is the main one. The other two terms are denoted by I1 and I2, respectively.
Bounding I1 is easy : using Hölder inequality yields

|I1| =
∣∣∣∣∫

Td
(∇v · ∇v) : ∇v̇ t dx

∣∣∣∣ ≤ ‖t1/4∇v‖24‖√t∇v̇‖2.
Therefore, we have according to (2.44),

(2.56)

∣∣∣∣∫ T

0
I1(t) dt

∣∣∣∣ ≤ C0

√
T ‖
√
t∇v̇‖L2(0,T×T2).

Bounding I2 is much more involved. We eventually get (see the details in appendix):

(2.57)

∣∣∣∣∫ T

0
I2 dt

∣∣∣∣ ≤ (T 1/4‖
√
ρt v̇‖1/2L∞(0,T ;L2)

‖
√
t v̇‖L2(0,T ;L4)

+
√
T
(
ν−3/4‖

√
t∇v̇‖L2(0,T ;L2) + ν−2‖

√
t v̇‖L2(0,T ;L4)

))
·

Plugging (2.56) and (2.57) in (2.55) and using (2.52) yields

(2.58) − µ
∫ T

0

∫
T2

(
D

Dt
∆v

)
· v̇ t dx dt ≥ µ

∫ T

0

∫
T2

|∇v̇|2t dx dt

− C0T
1/4
(
T 1/4 + ‖

√
ρt v̇‖1/2L∞(0,T ;L2)

)
‖
√
t∇v̇‖L2(0,T×T2).

Step 3. Now, we consider the third term from equation (2.43), namely

(2.59) − D

Dt
∇div v = −∇ D

Dt
div v +∇v · ∇div v.

To control the right-hand side, we have to keep in mind that it involves only the potential part
Qv of the velocity, since div v = divQv . This enables us to write that

∇ D

Dt
div v = ∇div v̇ −∇(tr(∇v · ∇Qv)).

Hence, testing (2.59) with v̇ t and integrating by parts, we find that

(2.60) −
∫
Td

D

Dt
∇div v · v̇ t dx =

∫
Td

(div v̇)2 t dx−K1 +K2

with K1 :=

∫
Td

Tr(∇v · ∇Qv) div v̇ t dx and K2 :=

∫
Td

(∇v · ∇div v) · v̇ t dx.
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Since νQv = −∇(−∆)−1(G̃+ P̃ ), using (2.44), (2.47) and (2.48), we find that, if d = 2,

ν

∣∣∣∣∫ T

0
K1 dt

∣∣∣∣ ≤ C
√
T ‖∇v‖L4(0,T ;L4)‖P̃ + G̃‖L4(0,T ;L4)‖

√
tdiv v̇‖L2(0,T ;L2)

≤ C0ν
1/4
√
T ‖
√
tdiv v̇‖L2(0,T ;L2).(2.61)

Bounding K2 will be performed in the appendix. In the end, we get

(2.62) ν

∣∣∣∣∫ T

0
K2 dt

∣∣∣∣ ≤ C0T
1/4
(
‖
√
ρt v̇‖1/2L∞(0,T ;L2)

‖
√
t v̇‖L2(0,T ;L4)+T

1/4‖
√
t∇v̇‖L2(0,T ;L2)

)
·

Thanks to (2.52), the conclusion of this step is that if ν is large enough then

(2.63) − (ν−µ)

∫ T

0

∫
T2

D

Dt
∇div v · v̇ t dx dt ≥ (ν−µ)

∫ T

0

∫
T2

(div v̇)2t dx dt

− C0T
1/4
(

(νT )1/4 ‖
√
t div v̇‖L2(0,T ;L2) + (‖

√
ρt v̇‖1/2L∞(0,T ;L2)

+ T 1/4)‖
√
t∇v̇‖L2(0,T ;L2)

)
·

Step 4. The last term under consideration in (2.42) is

(2.64)
D

Dt
∇P = ∇ D

Dt
P −∇v · ∇P.

Here the analysis is simple: since Ṗ = −hdiv v , we have∫
Td

D

Dt
∇P · v̇ t dx = L1 + L2 with L1 :=

∫
Td
hdiv v div v̇ t dx

and L2 := −
∫
Td
∂iv

j ∂jP v̇
i t dx.

On the one hand, we obviously have

(2.65) |L1| ≤
ν

4

∫
Td

(div v̇)2 t dx+ Tν−1‖h‖2∞
∫
Td

(div v)2 dx.

On the other hand, integrating by parts a couple of times and using div v = ν−1(P̃ + G̃) yields

L2 =

∫
Td
P̃ ∇div v · v̇ t dx+

∫
Td
P̃ ∇v : Dv̇ t dx

=
1

ν

∫
Td
P̃ ∇P · v̇ t dx+

1

ν

∫
Td
P̃ ∇G · v̇ t dx+

∫
Td
P̃ ∇v : Dv̇ t dx

= − 1

2ν

∫
Td
P̃ 2 div v̇ t dx+

1

ν

∫
Td
P̃ ∇G · v̇ t dx+

∫
Td
P̃ ∇v : Dv̇ t dx.

Hence we have, if d = 2,∣∣∣∣∫ T

0
L2(t) dt

∣∣∣∣ ≤ 1

2ν
‖P̃‖2L4(0,T ;L4)

‖t div v̇‖L2(0,T ;L2)

+
1

ν
‖P̃‖L∞(0,T ;L4)‖∇G‖L2(0,T ;L2)‖t v̇‖L2(0,T ;L4)

+‖P̃‖L∞(0,T ;L∞)‖∇v‖L2(0,T ;L2)‖t∇v̇‖L2(0,T ;L2),

whence, thanks to (2.48) and (2.52),∣∣∣∣∫ T

0
L2(t) dt

∣∣∣∣ ≤ C0

√
T ‖
√
t∇v̇‖L2(0,T ;L2).
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So this step gives

(2.66)

∫
T2

D

Dt
∇P · v̇ t dx ≥ −ν

4

∫ T

0

∫
T2

(div v̇)2 t dx dt− h(ρ∗)ν−1T‖div v‖2L2(0,T ;L2)
.

Step 5. Plugging inequalities (2.53), (2.58), (2.63) and (2.66) in (2.43) (after integrating on
[0, T ]) and using the fact that for a smooth solution, we have

√
ρt v̇|t=0 = 0, we discover that

for large enough ν,

‖
√
ρt v̇‖2L∞(0,T ;L2)

+ 2µ

∫ T

0
‖
√
t∇P v̇‖22 dt+

3ν

2

∫ T

0
‖
√
t div v̇‖22 dt

≤ C0

(
ν−1
∫ T

0
‖
√
ρtv̇‖22+ν−1/2

∫ T

0
‖
√
t∇v̇‖22 dt

)
+‖√ρ v̇‖2L2(0,T ;L2)

+‖h‖∞Tν−1‖div v‖2L2(0,T ;L2)

+C0T
1/4
(
(νT )1/4‖

√
tdiv v̇‖L2(0,T ;L2) +

(
T 1/4 + ‖

√
ρt v̇‖1/2L∞(0,T ;L2)

)
‖
√
t∇v̇‖L2(0,T×T2)

)
·

Taking advantage of inequality (2.4), we have

‖√ρ v̇‖2L2(0,T ;L2)
+ ν‖div v‖2L2(0,T ;L2)

≤ C0.

Furthermore, Young inequality implies that

C0

√
T‖
√
t∇v̇‖L2(0,T ;L2) ≤

µ

2
‖
√
t∇v̇‖2L2(0,T ;L2)

+ C0T

C0ν
1/4
√
T‖
√
t div v̇‖L2(0,T ;L2) ≤

ν

2
‖
√
t div v̇‖2L2(0,T ;L2)

+ C0Tν
−1/2 and

C0T
1/4‖
√
ρt v̇‖1/2L∞(0,T ;L2)

‖
√
t∇v̇‖L2(0,T ;L2) ≤ C0T+

1

2
‖
√
ρt v̇‖2L∞(0,T ;L2)

+
µ

2
‖
√
t∇v̇‖2L2(0,T ;L2)

.

In the end, we thus have if ν is large enough and T ≥ 1,

X2(t) +
1

2

∫ t

0
Y 2(τ) dτ ≤ C0T + C0ν

−1
∫ T

0
X2 dτ with

X(t) := ‖√ρs v̇‖L∞(0,t;L2) and Y (t) :=
(
µ‖
√
t∇P v̇‖2L2(0,T ;L2)

+ ν‖
√
t div v̇‖2L2(0,T ;L2)

) 1
2 .

Then, applying Gronwall inequality completes the proof of the proposition. �

As a consequence of those weighted estimates, one can bound div v and ∇Pv in L1(0, T ;L∞)
as follows:

Corollary 2.1. Let (ρ, v) be a smooth solution of (1.1) on [0, T ]×T2 and assume that ν ≥ ν0.
Then we have for all ε ∈ [0, 1/2[,

(2.67)

∫ T

0
‖div v‖1+ε∞ dt ≤ C0,T,ε ν

−5/6 and

∫ T

0
‖∇Pv‖1+ε∞ dt ≤ C0,T,ε

for some C0,T,ε>0 depending on ε, T, µ and on the data, but not on ν.

Proof. From (1.12) and the previous section, one can write that

ν‖div v‖L1+ε(0,T ;L∞) ≤ ‖P̃‖L1+ε(0,T ;L∞) + ‖G̃‖L1+ε(0,T ;L∞) ≤ C0T
1

1+ε + ‖G̃‖L1+ε(0,T ;L∞).

Gagliardo-Nirenberg inequality implies that

‖G̃‖∞ . ‖G̃‖1/32 ‖∇G‖
2/3
4 .

Hence, remembering that

(2.68) µ(∇div v −∆v) +∇G = ρv̇,
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we get

‖G̃‖∞ . ‖G̃‖1/32 ‖ρv̇‖
2/3
4 . (ρ∗)2/3‖G̃‖1/32 t−1/3‖

√
t v̇‖2/34 .

Then, integrating in time and using Hölder inequality, we discover that∫ T

0
‖G̃‖1+ε∞ dt . (ρ∗)

2(1+ε)
3 ν

1+ε
6 (ν−1/2‖G̃‖L∞(0,T ;L2))

1+ε
3 ‖
√
t v̇‖2(1+ε)/3L2(0,T ;L4)

(∫ T

0
t−

1+ε
2−ε dt

)2/3

,

whence, using (2.4) to bound G̃ in L∞(0, T ;L2),

‖G̃‖L1+ε(0,T ;L∞) ≤ C0,T,ε ν
1/6‖
√
t v̇‖2/3L2(0,T ;L4)

.

The last term may be bounded thanks to (2.41) and to (2.52).

Exactly in the same way, we have,

‖∇Pv‖∞ . ‖∇Pv‖1/32 ‖∇
2Pv‖2/34 .

The last term may be bounded thanks to (2.68) and (2.52), while the first one is bounded
from (2.4). �

3. The proof of existence in dimensions 2 and 3

This section is mainly devoted to the construction of solutions fulfilling Theorem 1.1 (or
the corresponding statement in dimension 3, see the appendix). The main two difficulties we
have to face is that the initial density has no regularity whatsoever and is not positive. To
fit in the classical literature devoted to the compressible Navier-Stokes equations, one has to
mollify the initial data and to make the density strictly positive. Although this procedure
does not disturb the a priori estimates we proved hitherto, the state-of-the-art on the topics
just ensures the existence of a smooth solution corresponding to the regularized data on some
finite time interval. As a first, we thus have to justify that, indeed, the estimates we proved
so far ensure that smooth solution to be global, if ν is large enough. Then, resorting to rather
classical compactness arguments will enable us to conclude the proof of Theorem 1.1.

At the end of the section, we justify the convergence from (1.1) to (1.7) since passing to the
limit therein is very similar to Step 4 of the proof of existence.

Step 1. The original initial data are:

(3.1) ρ0 ∈ L∞(Td) and v0 ∈ H1(Td).
First, we want to change the initial density in such a way that it is bounded away from zero
and still has total mass equal to one. To this end, we introduce for any δ ∈ (0, 1),

(3.2) ρ̃δ0 = max{ρ0, δ} and then ρ̌δ0 = min{ξδ, ρ̃δ0},
where ξδ ≥ 1 is fixed so that

(3.3)

∫
Td
ρ̌δ0 dx = 1.

Clearly, we have ξδ → ρ∗0 := ‖ρ0‖∞ when δ → 0, and thus

(3.4) δ ≤ ρ̌δ0 ≤ ρ∗0 and ρ̌δ0 → ρ0 pointwise.

Then we smooth out both ρ̌δ0 and vδ0 as follows:

(3.5) ρδ0 = πδ ∗ ρ̌δ0 and vδ0 = πδ ∗ v0,
where (πδ)δ>0 is a family of positive mollifiers.
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Let us emphasize that the total mass of ρδ0 is still equal to one, and that ρδ0 ≥ δ.

Step 2. We solve (1.1) with data (ρδ0, v
δ
0) according to the classical literature. For example,

one may use the following result (see [6, 21, 23]):

Theorem 3.1. Let ρ0 ∈ W 1
p (Td) and v0 ∈ W

2−2/p
p (Td) for some p > d, with d = 2, 3.

Assume that ρ0 > 0. Then there exists T0 > 0 depending only on the norms of the data, and
on infTd ρ0 such that (1.1) supplemented with data ρ0 and v0 has a unique solution (ρ, v) on
the time interval [0, T0], satisfying2

(3.6) v ∈W 1,2
p (0, T0 × Td) and ρ ∈ C([0, T0];W 1

p (Td)).

Let us denote by (ρδ, vδ) the maximal solution pertaining to data (ρδ0, v
δ
0) provided by the

above statement, and by T δ its existence time (that is (ρδ, vδ) fulfills (3.6) for all T < T δ ).
Since the solution is rather smooth, it satisfies all the formal estimates we proved so far, with
the same constants independent of δ and for all T < T δ. In particular, div vδ is in L1(0, T ;L∞)
for all T < T δ, which implies that ρδ is bounded from below and above, according to the
following inequalities:

(3.7) δ exp

{
−
∫ T

0
‖div vδ‖∞ dt

}
≤ ρδ(t, x) ≤ ρ∗0 exp

{∫ T

0
‖div vδ‖∞ dt

}
·

Step 3. Our goal here is to prove that the solution (ρδ, vδ) is actually global. To achieve it,
we shall argue by contradiction, assuming that T δ is finite.

Now, the classical estimates for the continuity equations implies that for all T < T δ (drop-
ping exponents δ on (ρδ, vδ), for better readability):

(3.8) ‖∇ρ(T )‖p ≤ ‖∇ρδ0‖p + C

∫ T

0

(
‖∇v‖∞‖∇ρ‖p + ‖∇div v‖p

)
dt.

Observe that the previous sections ensure that, uniformly with respect to T and δ, we have√
ρt v̇ ∈ L∞(0, T δ;L2) and

√
t∇v̇ ∈ L2(0, T

δ;L2). Combining with straightforward interpola-
tion arguments and Hölder inequality, we deduce that

ρv̇ ∈ La(0, T δ;Lp(T2)) for all 2 < p <∞ and a < p′ if d = 2,(3.9)

ρv̇ ∈ La(0, T δ;Lp(T3)) for all p ∈]2, 6[ and 1
a = 5

4 −
3
2p if d = 3.(3.10)

Remembering that ∆v + ν∇div v −∇P = −ρv̇, we thus get

(3.11) ∆v + ν∇div v −∇P ∈ La(0, T ;Lp),

whence, using Lp estimates for the Riesz operator and the fact that P = ργ with ρ bounded,

one may conclude that, uniformly with respect to δ, we have for all t < T δ,

(3.12) ‖∇2v(t)‖p ≤ C‖∇ρ(t)‖p + h(t) with h ∈ La(0, T δ).

Hence we have for all T < T δ,

(3.13) ‖∇ρ(T )‖p ≤
(
‖∇ρδ0‖p +

∫ T

0
h(t) dt

)
exp

{∫ T

0
C(1 + ‖∇v‖∞) dt

}
·

2Recall that W 1,2
p (0, T0 × Td) designates the set of functions v : [0, T0) × Td → Rd such that v ∈

W 1
p (0, T0;Lp(Td))∩Lp(0, T0;W 2

p (Td)), and W
2−2/p
p (Td), the corresponding trace space on t = 0 (that may be

identified to the Besov space B
2−2/p
p,p (Td)).
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In order to close the estimates, we have to bound ‖∇v‖∞ . Since p > d and ∇v is bounded
in L1(0, T ;BMO) independently of δ (recall Corollary 2.1), one may start from the following
well known logarithmic inequality:

‖∇v‖∞ ≤ C‖∇v‖BMO log

(
e+

‖∇v‖W 1
p

‖∇v‖BMO

)
,

which, in light of (3.12), implies that

‖∇v‖∞ ≤ C‖∇v‖BMO log

(
e+

h+ ‖∇ρ‖p
‖∇v‖BMO

)
·

Hence, plugging that inequality in (3.8), we discover that for all T < T δ,

‖∇ρ(T )‖p ≤ ‖∇ρδ0‖p +

∫ T

0
h dt+ C

∫ T

0

(
1 + ‖∇v‖BMO log

(
e+

h+ ‖∇ρ‖p
‖∇v‖BMO

))
‖∇ρ‖p dt.

Since

‖∇v‖BMO log

(
e+

h

‖∇v‖BMO

)
≤ C max(h, ‖∇v‖BMO)

and

‖∇v‖BMO log

(
e+

‖∇ρ‖p
‖∇v‖BMO

)
≤ C(1 + ‖∇v‖BMO) log(e+ ‖∇ρ‖p),

we get

‖∇ρ(T )‖p ≤ ‖∇ρδ0‖p+

∫ T

0
h
(
1 +C‖∇ρ‖p

)
dt+C

∫ T

0

(
1 +‖∇v‖BMO

)
log
(
e+‖∇ρ‖p

)
‖∇ρ‖p dt.

From this and Osgood lemma, one can conclude (as T δ is finite) that ∇ρ and ∇u belong to
L∞(0, T δ;Lp) and L1(0, T

δ;L∞), respectively.
Putting together with (3.12), this leads to

(3.14) ρt = −div (vρ) ∈ La(0, T δ;Lp).
Hence, by Sobolev embedding, one can conclude that there exists α > 0 such that

(3.15) ρ ∈ Cα([0, T δ)× Td).
Now, one can go back to the momentum equation of (1.1), written in the form

(3.16) ρvt − µ∆v − ν∇div v = −∇P − ρv · ∇v.
Thanks to (3.7) and (3.15), one may apply Theorem 2.2. of [6] and get

(3.17) ‖v‖
W 1,2
p (0,T δ×Td) ≤ Cδ

(
‖∇P‖Lp(0,T δ×Td) + ‖v · ∇v‖Lp(0,T δ×Td)

)
·

For general p > 2 if d = 2, or 2 < p < 6 if d = 3, we do not know how to prove directly that
v · ∇v is in Lp(0, T

δ × Td), and we shall need several steps.
More precisely, if d = 2, then one may use the fact that for all p < q <∞,

‖∇v‖p∗ ≤ C‖∇2v‖1/2p ‖v‖1/2q with
1

p∗
=

1

2

(
1

p
+

1

q

)
which, combined with the fact that v ∈ L∞(0, T δ;H1(T2)) (from Proposition 2.1) and thus
v ∈ L∞(0, T δ;Lr(T2)) for all r <∞, and (3.12) implies that v ·∇v ∈ L2a(0, T

δ;Lp(T2)). Since

now, we know that the right-hand side of (3.16) belongs to L2a(0, T
δ;Lp(T2)), Theorem 2.2.

of [6] implies that

∂tv ∈ L2a(0, T
δ;Lp(T2)) and ∇2v ∈ L2a(0, T

δ;Lp(T2)).
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Starting from that new information and arguing as above entails that the right-hand side of
(3.16) belongs to L4a(0, T

δ;Lp(T2)), and so on. After a finite number of steps, we eventually

achieve v ∈W 1,2
p (0, T δ × T2).

For the 3D case we note that the information that v ∈ L∞(0, T δ;H1(T2)) implies that

(3.18) v ∈ L∞(0, T ;L6(T3)).

Hence, to bound v · ∇v in Lp(T3), we need to have ∇v in Lk with k such that 1
6 + 1

k = 1
p

(remember that 2 < p < 6 in the 3D case). By interpolation and the definition of a in (3.10),
we have

(3.19) ‖∇v‖k ≤ C‖∇2v‖1−a/4p ‖v‖a/46 .

Hence

‖∇v‖
4a
4−a
k ≤ C‖∇2v‖ap‖v‖

4a2

16−4a

6 ,

and v · ∇v is thus in L4a/(4−a)(0, T δ;Lp(T3)) which, in view of Theorem 2.2. of [6] yields

∂tv ∈ L4a/(4−a)(0, T
δ;Lp(T3)) and ∇2v ∈ L4a/(4−a)(0, T

δ;Lp(T3)).

Again, after a finite number of steps, we achieve

(3.20) ‖v‖
W 1,2
p (0,T δ×Td) <∞.

Now, thanks to the trace theorem and the estimates that we proved for ρ, one may conclude
that, if T δ is finite, then

sup
T<T δ

(
‖v(T )‖

W
2−2/p
p

+ ‖ρ(T )‖W 1
p

)
<∞ and inf

T<T δ
ρ(T ) > 0.

Thanks to that information, one may solve System (1.1) supplemented with initial data
(ρ(T ), v(T )) whenever T < T δ, and the existence time T0 provided by Theorem 3.1 is in-
dependent of T. In that way, taking T = T δ − T0/2, we get a continuation of the solution
beyond T δ, thus contradicting the definition of T δ.

Hence T δ = +∞. In other words, the solution (ρδ, vδ) is global and all the estimates of the
previous sections are true on all interval [0, T ], and are uniform with respect to δ.

Step 4. The previous step ensures uniform boundedness of (ρδ, vδ) in the desired existence
space. The last step is to prove the convergence of a subsequence. Since we have more
regularity than in the classical weak solutions theory, one can pass to the limit by following
the steps therein. However, this would give some restriction on γ, if P = ργ (namely γ > d/2).
In our case, the higher regularity of the velocity will enable us to pass to the limit for any
γ ≥ 1 (even for more general pressure laws) and by means of a much more elementary method.

To start with, let us observe that, up to extraction, we have

(3.21) vδ → v in L2(0, T × Td) for all T > 0.

Indeed, since (vδ) and (
√
t vδt ) are bounded in L2(0, T ;L2), Lemma 3.2 of [9] implies that (vδ)

is bounded in H
1
2
−α(0, T ;L2(Td)) for all α > 0, which, combined with the fact that (vδ) is

also bounded in L2(0, T ;H1(Td)) implies that

(vδ) is bounded in H
1
4 (0, T × Td).

This entails (3.21) by standard compact Sobolev embedding.
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However, this is not enough to pass to the limit in the pressure term of the momentum
equation. To achieve it, we shall exhibit some strong convergence property for the effective
viscous flux Gδ .

From (3.11) and uniform estimates given by the previous sections, one knows that

(3.22) (Gδ) is bounded in L∞(0, T ;L2) ∩ L2(0, T ;H1) for all finite T > 0,

which already yields weak convergence.

To get strong convergence, we need to glean some compactness, and this will be achieved
by looking at uniform estimates for (Gδt ).

Now, from the previous step, Sobolev embeddings and the relation

P δt = −div (P δ vδ)− hδdiv vδ,

we gather that (P δt ) is bounded in L∞(0, T ;W−1,p) for all finite T > 0. Furthermore, we also
have the information that

√
tdiv v̇δ is bounded in L2(0, T ;L2). Since div (vδ ·∇vδ) is bounded

in L2(0, T ;W−1p ) (again, use the previous step), one may conclude that
√
tGδt is bounded in L2(0, T ;W−1p ).

By suitable modification of Lemma 3.2 of [7], we deduce that

(Gδ) is bounded in H
1
2
−α(0, T ;W−1p ) for all α > 0,

and interpolating with (3.22) allows to get that (Gδ) is bounded in Hβ(0, T × Td) for some
small enough β > 0. So, finally, up to extraction, we have

(3.23) Gδ → G in L2(0, T × Td) for all T > 0.

We are now in a good position to prove the strong convergence of the density. After suitable
relabelling, the previous considerations ensure that there exists a sub-sequence (ρn, vn)n∈N of
(ρδ, vδ) such that, for all T > 0,

(3.24) ρn ⇀∗ ρ in L∞(0, T × Td) and vn → v in L2(0, T × Td).

Since for all n ∈ N, we have

(3.25) ρnt + div (ρnvn) = 0,

the limit (ρ, v) fulfills

(3.26) ρt + div (ρv) = 0.

At this point, let us emphasize that, since div v ∈ L1(0, T ;L∞) (another consequence of the
uniform estimates provided by the previous step) and ρ ∈ L∞(0, T × Td), one can assert that
ρ is actually a renormalized solution of (3.26) (apply Theorem II.2 of [13]), and thus fulfills

(3.27) (ρ log ρ)t + div (ρ log ρ v) + ρ div v = 0.

Of course, since (ρn, vn) is smooth, we also have

(3.28) (ρn log ρn)t + div (ρn log ρn vn) + ρndiv vn = 0.

Then, remembering the definition of Gn, we get

(3.29) (ρn log ρn)t + div (ρn log ρn vn) + ν−1ρnP (ρn) + ν−1ρnGn = 0

and the limit version

(3.30) (ρ log ρ)t + div (ρ log ρ v) + ν−1ρP (ρ) + ν−1ρG = 0.
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Denote by ρ log ρ and ρP (ρ) the weak limits of ρn log ρn and ρnP (ρn), respectively. Since
functions z 7→ z log z and z 7→ zP (z) are convex, we know that

(3.31) ρ log ρ ≥ ρ log ρ and ρP (ρ) ≥ ρP (ρ).

Furthermore, integrating (3.29) and (3.30) on [0, T ]× Td, we find that

ν

(∫
Td

(ρn log ρn − ρ log ρ)(T ) dx−
∫
Td

(ρn0 log ρn0 − ρ0 log ρ0) dx

)
+

∫ T

0

∫
Td

(ρnPn − ρP ) dx dt+

∫ T

0

∫
Td

(ρnGn − ρG) dx dt = 0.

By construction, the term pertaining to the initial data tends to zero. Furthermore, since
(Gn) converges strongly to G, the last term also tends to zero. This leads us to∫

Td
(ρ log ρ− ρ log ρ)(T ) dx+

∫ T

0

∫
Td

(ρP − ρP ) dx dt = 0.

Combining with (3.31), one may now conclude that

(3.32) ρ log ρ = ρ log ρ.

Since the function z 7→ z log z is strictly convex we find by standard arguments that (ρn)
converges strongly and pointwise to ρ. Hence one can pass to the limit in all the nonlinear
terms (in particular in the pressure one) of the momentum equation, and to conclude that
(ρ, v) is indeed a solution to (1.1).

Besides, classical arguments that may be found in [13] ensure that ρ ∈ C(R+;Lp) for all
p < ∞, and that strong convergence holds true in the corresponding space. Thanks to that
information, since (1.5) is fulfilled with data (ρn0 , v

n
0 ) by the sequence (ρn, vn)n∈N, one may

pass to the limit and see that (ρ, v) satisfies (1.5) as well. Finally, since the internal energy
e is continuous with respect to time (a consequence of the strong convergence of ρ), one may
reproduce the argument that has been used in [9] so as to prove that

√
ρ v ∈ C(R+;L2). This

completes the proof of our existence theorems in dimensions 2 and 3. �

We end this section with a fast justification of the convergence of solutions to (1.1) to those
of (1.7) when ν goes to ∞, leading to Theorem 1.3. As the proof goes along the lines of that of
Theorem 1.1, we just indicate the main steps. The starting point is the estimate provided by
Proposition 2.1 which ensures in particular (1.10), that (∇Gν) is bounded in L2(R+×T2) and
that (vν) is bounded in L∞(R+;H1), while Proposition 2.2 guarantees that (ρν) is bounded
in L∞(R+×T2). Hence, there exists (ρ, v) ∈ L∞(R+×T2)×L∞(R+;H1) and a subsequence
(ρn, vn) of (ρν , vν) such that

ρn ⇀∗ ρ in L∞(R+ × T2) and vn ⇀ v in L∞(R+;H1).

As in the proof of existence, in order to get some compactness, one may look at time weighted
estimates. More specifically, we know from Proposition 2.3 that if ν ≥ ν0 then

sup
t∈[0,T ]

∫
T2

ρ|v̇ν |2t dx+

∫ T

0

∫
T2

(µ|∇P v̇ν |2 + ν|div v̇ν |2)t dx dt ≤ C0T e
C0T
ν ,

and this ensures that of (vν) is bounded in, say, H1/4(0, T × T2) for all T > 0. Hence, we
actually have (extracting one more subsequence as the case may be),

vn → v in L2
loc(R+;L2(T2)).
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Next, arguing exactly as in the proof of existence, we get that, for all finite T > 0,

(Gν) is bounded in L∞(0, T ;L2)∩L2(0, T ;H1) and (
√
tGνt ) is bounded in L2(0, T ;W−1p )

from which we deduce that (Gν) is bounded in H
1
2
−α(0, T ;W−1p ) for all α > 0 and, eventually

Gn → G in L2
loc(R+;L2(T2)).

Putting together all those results of convergence, one gets

∂tρ+ div (ρv) = 0 and ∂t(ρv) + div (ρv ⊗ v)− µ∆Pv +∇G = 0.

Since we know in addition (from (1.10)) that div v = 0, one can conclude that (ρ, v,∇G)
satisfies (1.7). Finally, from the uniform bounds that are available for (ρν , vν), one may check
that (ρ, v,∇G) has the regularity of the solution constructed in Theorem 2.1 of [9], which is
unique. Hence the whole family (ρν , vν) converges to (ρ, v). �

4. The proof of uniqueness

Here we show the uniqueness of the solutions we constructed in the paper, both in dimensions
2 and 3. The main difficulty we have to face is that having div v and ∇Pv in L1(0, T ;L∞) (see
Corollary 2.1) does not ensure that ∇v is in L1(0, T ;L∞) so that, in contrast with our recent
work [7], it is not clear that one can reformulate System (1.1) in Lagrangian coordinates so as
to prove uniqueness. However, we do have ∇v is in Lr(0, T ;BMO) for some r > 1, which will
turn out to be enough to prove uniqueness provided that the pressure law is linear. Actually,
we encounter the same difficulty as in D. Hoff’s paper [16]: since we have to estimate the
difference of the densities in L∞(0, T ;H−1), we need, at some point, to bound the difference
of the pressures in H−1 from the norm of the difference of the densities in H−1.

Here is the main statement of this section.

Proposition 4.1. Assume that P (ρ) = aρ for some a > 0, and consider two finite energy
solutions (ρ, v) and (ρ̄, v̄) of (1.1) on [0, T0] × Td (d = 2, 3) with bounded density and ema-
nating from the same initial data. If, in addition, v and v̄ are in L∞(0, T0;H

1),
√
t∇v̇ and√

t∇ ˙̄v are in L2(0, T0 × Td),
√
ρt v̇,

√
ρ̄t ˙̄v belong to L∞(0, T0;L2),

(4.1) ∇v̄ ∈ L2(0, T0;L3) and

∫ T0

0
(1 + | log t|)‖∇v̄(t)‖BMO dt <∞,

then (ρ̄, v̄) ≡ (ρ, v) on [0, T0]× Td.

Proof. The general scheme of the proof is the same in dimensions 2 or 3. Assume that a = 1
for notational simplicity and consider two solutions (ρ, v) and (ρ̄, v̄) to (1.1) corresponding to
the same initial data (ρ0, v0). The system for the difference

δρ := ρ− ρ̄ and δv := v − v̄
reads

(4.2)

{
δρt + div (δρ v̄ + ρδv) = 0,

ρδvt + ρv · ∇δv − µ∆δv − (λ+ µ)∇div δv +∇δρ = δρ ˙̄v + ρδv · ∇v̄.

In order to show that δρ ≡ 0 and δv ≡ 0, we shall perform suitable estimates in Ḣ−1 for
δρ(t), and for

√
ρ δv in L2(0, T × Td). To this end, we set φ := −(−∆)−1δρ (which makes

sense, since
∫
Td δρ dx = 0) so that

(4.3) ‖∇φ‖2 = ‖δρ‖Ḣ−1 = ‖δρ‖H−1 .
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Now, testing the first equation of (4.2) by φ yields

1

2

d

dt
‖∇φ‖22 ≤

∣∣∣∣ ∫
Td

(v̄ · ∇φ δρ+ ρ δv · ∇φ) dx

∣∣∣∣·
The last term is bounded as follows:∣∣∣∣∫

Td
ρ δv · ∇φdx

∣∣∣∣ ≤√ρ∗ ‖√ρ δv‖2‖∇φ‖2.
Regarding the first one, observe that (with the usual summation convention)∫

Td
v̄ · ∇φ δρ dx =

∫
Td
v̄j∂jφ∆φdx = −

∫
Td
∂kv̄

j ∂jφ∂kφdx+
1

2

∫
Td

div v̄ |∇φ|2 dx.

Hence, we have ∣∣∣∣∫
Td
v̄ · ∇φ δρ dx

∣∣∣∣ ≤ C‖∇v̄‖BMO‖∇φ⊗∇φ‖H1 .

Now, in light of the following inequality (see e.g. [22, Thm. D]),

(4.4) ‖f‖H1 ≤ C‖f‖1(| log ‖f‖1|+ log(e+ ‖f‖∞)),

we discover that

(4.5)

∣∣∣∣∫
Td
v̄ · ∇φ δρ dx

∣∣∣∣ ≤ C‖∇v̄‖BMO‖∇φ‖22
(
| log ‖∇φ‖22|+ log(e+ ‖∇φ‖2∞)

)
·

Since the densities are bounded by ρ∗ , we have

‖∇φ(t)‖∞ ≤ Cρ∗ for all t ∈ [0, T0].

Hence Inequality (4.5) implies that for some constant C depending only on ρ∗,

(4.6)
1

2

d

dt
‖∇φ‖22 ≤ C

(
‖√ρ δv‖2 + ‖∇v̄‖BMO‖∇φ‖2(1 + | log ‖∇φ‖2|)

)
‖∇φ‖2·

Since the initial quantity is zero, after integration, this gives for all t ∈ [0, T0],

(4.7) ‖∇φ(t)‖2 ≤ C
(∫ t

0
‖√ρ δv‖2 dτ +

∫ t

0
‖∇v̄‖BMO‖∇φ‖2(1 + | log ‖∇φ‖2|) dτ

)
·

Hence, using (4.3) and denoting Z(t) := supτ≤t τ
−1/2‖δρ(τ)‖Ḣ−1 , we get after using Cauchy-

Schwarz inequality, for all T ∈ [0, T0],

(4.8) Z(T ) ≤ C
(

sup
t∈[0,T ]

∫ t

0
‖∇v̄‖BMO Z(1 + | log τ |+ | logZ|) dτ + ‖√ρ δv‖L2(0,T×Td)

)
·

In order to control the difference of the velocities, we introduce the solution w to the
following backward parabolic system:

(4.9)

{
ρwt + ρv · ∇w + µ∆w + (λ+µ)∇divw = −ρδv,
w|t=T = 0.

Solving the above system is not part of the classical theory for linear parabolic systems, as the
coefficients are rough and may vanish. However, if ρ and v are regular with ρ bounded away
from zero, this is well known, and the case we are interested may be achieved by a regularizing
process of ρ and v, after using Inequality (4.12) below for the corresponding regular solutions.
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Now, testing the equation by w, we find that

(4.10) sup
t∈(0,T )

∫
Td
ρ|w|2 dx+

∫ T

0

∫
Td

(
µ|∇Pw|2 + ν(divw)2

)
dx dt ≤

∫ T

0

∫
Td
ρ|δv|2 dx dt.

Next, we test (4.9) by wt and take advantage of the usual elliptic estimates given by

µ∆w + (λ+ µ)∇divw = −ρẇ − ρδv

that ensure that

µ2‖∇2Pw‖22 + ν2‖∇divw‖22 = ‖ρẇ + ρδv‖22 ≤ ρ∗‖
√
ρ (ẇ + δv)‖22

in order to get

(4.11) sup
t∈(0,T )

∫
Td

(
µ|∇Pw(t)|2+ν(divw(t))2

)
dx

+

∫ T

0

∫
Td

(
ρ|wt|2+

µ2

6ρ∗
|∇2Pw|2+

ν2

6ρ∗
|∇divw|2

)
dx dt ≤ 3

2

∫ T

0

∫
Td

(
ρ|δv|2 + ρ|v · ∇w|2

)
dx dt.

If d = 2 then we bound the last term as follows:∫
T2

ρ|v · ∇w|2dx ≤
√
ρ∗‖ρ1/4v‖24‖∇w‖24

≤ C
√
ρ∗‖ρ1/4v‖24‖∇w‖2‖∇2w‖2

≤ C (ρ∗)2

µ2
‖ρ1/4v‖44‖∇w‖22 +

µ2

12ρ∗
‖∇2w‖22.

If d = 3, then we rather write that∫
T3

ρ|v · ∇w|2dx ≤ (ρ∗)3/4‖√ρ v‖1/22 ‖∇v‖
3/2
2 ‖∇w‖

1/2
2 ‖∇

2w‖3/22

≤ C(ρ∗)3‖√ρ v‖22‖∇v‖62‖∇w‖22 +
µ2

12ρ∗
‖∇2w‖22.

Hence, using the properties of regularity of v , plugging the above inequality in (4.11), then
using Gronwall inequality, we get

(4.12) sup
t∈(0,T )

∫
Td

(
ρ|w|2 + µ|∇Pw|2 + ν(divw)2

)
dx

+

∫ T

0

∫
Td

(
µ|∇Pw|2 + ν(divw)2 + µ2|∇2Pw|2 + ν2|∇divw|2 + ρ|wt|2

)
dx dt

≤ CT
∫ T

0

∫
Td
ρ|δv|2 dx dt,

with CT depending only on the norms of the two solutions on [0, T ].

Let us next test (4.2) by w. We get

(4.13)

∫ T

0

∫
Td
ρ|δv|2 dx dt−

∫ T

0

∫
Td
δρ divw dxdt ≤

∫ T

0

∫
Td

(
δρ ˙̄v · w + ρ(δv · ∇v̄) · w

)
dx dt.
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One can bound the first term of the right-hand side as follows:∣∣∣∣∫ T

0

∫
Td
δρ ˙̄v · w dxdt

∣∣∣∣ =

∣∣∣∣∫ T

0

∫
Td
t−1/2δρ t1/2 ˙̄v · w dxdt

∣∣∣∣
≤ ‖t−1/2δρ‖L∞(0,T ;Ḣ−1)‖t

1/2∇( ˙̄v · w)‖L1(0,T ;L2)

≤ ‖t−1/2δρ‖L∞(0,T ;Ḣ−1)

(
‖
√
t∇ ˙̄v‖L2(0,T ;L2)‖w‖L2(0,T ;L∞)

+ ‖
√
t ˙̄v‖L2(0,T ;L6)‖∇w‖L2(0,T ;L3)

)
·

For bounding the last term of (4.13), one can just use the fact that∫ T

0

∫
Td
ρ(δv · ∇v̄) · w dxdt ≤

√
ρ∗‖√ρ δv‖L2(0,T ;L2)‖∇v̄‖L2(0,T ;L3)‖w‖L∞(0,T ;L6).

Finally, we note that∫ T

0

∫
Td
δρ divw dxdt ≤ T‖t−1/2δρ‖L∞(0,T ;Ḣ−1)‖∇divw‖L2(0,T ;L2).

Plugging the above three inequalities in (4.13), we get

(4.14)

∫ T

0

∫
Td
ρ|δv|2 dx dt ≤ ‖t−1/2δρ‖L∞(0,T ;Ḣ−1)

(
T‖∇divw‖L2(0,T ;L2)

+ C‖
√
t∇ ˙̄v‖L2(0,T ;L2)‖w‖L2(0,T ;L∞) + C‖

√
t ˙̄v‖L2(0,T ;L6)‖∇w‖L2(0,T ;L3)

)
+ C‖√ρ δv‖L2(0,T ;L2)‖∇v̄‖L2(0,T ;L3)‖w‖L∞(0,T ;L6).

Observe that our assumptions on v̄ guarantee that we have

(4.15) ‖
√
t∇ ˙̄v‖L2(0,T ;L2) + ‖

√
t ˙̄v‖L2(0,T ;L6) + ‖∇v̄‖L2(0,T ;L3) ≤ CT .

Next, we have to bound the terms containing w in (4.14) by means of the data. Since
∫
Td ρw dx

need not be zero, Poincaré inequality (A.2) becomes

‖w‖2 ≤
∣∣∣∣∫

Td
ρw dx

∣∣∣∣+ ρ∗‖∇w‖2.

To bound the mean value of ρw, we note that integrating (4.9) on [t, T ]× Td readily gives∫
Td

(ρw)(t, x) dx =

∫ T

t

∫
Td

(ρ δv)(τ, x) dx dτ.

Therefore we have∣∣∣∣∫
Td

(ρw)(t) dx

∣∣∣∣ ≤√ρ∗ T 1/2‖√ρ δv‖L2(0,T ;L2) for all t ∈ [0, T ],

whence

(4.16) ‖w(t)‖2 ≤ Cρ∗
(
‖∇w(t)‖2 + T 1/2‖√ρ δv‖L2(0,T ;L2)) for all t ∈ [0, T ].

Then, combining with (4.12), we end up with

‖w‖L2(0,T ;H1) ≤ C0,TT
1/2‖√ρ δv‖L2(0,T ;L2) and ‖∇w‖L2(0,T ;Ḣ1) ≤ C0,T ‖

√
ρ δv‖L2(0,T ;L2).

By interpolation and Sobolev embedding, it follows that for small enough ε if d = 2 (and
ε = 1/4 if d = 3), we have

(4.17) ‖w‖L2(0,T ;L∞) ≤ CεT 1/2−ε‖√ρ δv‖L2(0,T ;L2).
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Likewise, we have

‖∇w‖L2(0,T ;L3(T2)) . ‖∇w‖
2/3
L2(0,T ;L2(T2))

‖∇2w‖1/3
L2(0,T ;L2(T2))

and ‖∇w‖L2(0,T ;L3(T3)) . ‖∇w‖
1/2
L2(0,T ;L2(T3))

‖∇2w‖1/2
L2(0,T ;L2(T3))

,

whence

(4.18) ‖∇w‖L2(0,T ;L3) ≤ CT
α‖√ρ δv‖L2(0,T ;L2) with α = 1/3 if d = 2, α = 1/4 if d = 3.

Finally, using once more that H1(Td) ↪→ L6(Td) for d = 2, 3, we get after plugging all the
above inequalities in (4.14), for all T ∈ [0, T0],

‖√ρδv‖2L2(0,T ;L2)
≤ CT 1/3

(
‖t−1/2δρ‖L∞(0,T ;Ḣ−1)‖

√
ρδv‖L2(0,T ;L2) + ‖√ρδv‖2L2(0,T ;L2)

)
·

Clearly, the above inequality implies that, if T is small enough then

(4.19) ‖√ρδv‖L2(0,T ;L2) ≤ CT
1/3Z(T ).

Plugging that inequality in (4.8) and assuming that T is small enough, we obtain

Z(t) ≤ CT
∫ t

0
(1 + | log τ |)‖∇v̄(τ)‖BMO Z(τ)(1 + | logZ(τ)|) dτ for all t ∈ [0, T ].

Then, Osgood lemma (see e.g. [1, Lem. 3.4]) implies that Z ≡ 0 on [0, T ], and thus, owing
to (4.19), that

√
ρ δv ≡ 0 on [0, T ].

Now, since
√
ρ δv and δρ are zero, the second equation of (4.2) becomes

ρδvt + ρv · ∇δv − µ∆δv − (λ+ µ)∇div δv = 0,

which implies that

1

2
‖√ρδv‖2L∞(0,T ;L2)

+

∫ T

0

(
µ‖∇Pδv‖22 + ν‖div δv‖22

)
dx = 0.

Since
∫
Td ρ δv dx = 0, this implies (in light of Inequality (A.2)) that δv = 0 on [0, T ], which

completes the proof of uniqueness.

To complete the proof of Theorem 1.2, it suffices to observe that Condition (2.67) implies
Assumption (4.1) in Proposition 4.1. �

Appendix A. Some inequalities

The following Osgood type lemma has been used a number of times.

Lemma A.1. Let f and g be two locally integrable nonnegative functions on R+, and assume
that the a.e. differentiable function X : R+ → R+ satisfies

X ′ ≤ f X log(A+BX) + g X for some A ≥ 1 and B ≥ 0.

Then we have for all t ≥ 0,

A+BX(t) ≤
(
A+Be

∫ t
0 g dτX(0)

)exp ∫ t
0 f dτ ·

Proof. It suffices to prove the inequality on [0, T ] for all T ≥ 0. Setting Y (t) := e−
∫ t
0 g dτX(t),

then Z(t) := CTY (t) with CT := exp
∫ T
0 g dτ, we have for all t ∈ [0, T ],

BZ ′ ≤ BZ log(A+BZ) f ≤
(
A+BZ

)
log(A+BZ) f.
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Therefore, integrating once,

log(log(A+BZ(t))) ≤ log(log(A+BZ(0))) +

∫ t

0
f dτ for all t ∈ [0, T ].

Then considering t = T and taking exp twice gives

A+BZ(T ) ≤ (A+BZ(0))exp
∫ T
0 f dτ .

Reverting to the original function X gives exactly what we want at t = T. �

We also used the following Poincaré inequality.

Lemma A.2. Let ρ be in Lp′(Td) with 1
p + 1

p′ = 1 and 2 ≤ p ≤ 2d
d−2 if d ≥ 3 (2 ≤ p < +∞

if d = 2). Assume that

(A.1)

∫
Td
ρb dx = 0 and M :=

∫
Td
ρ dx > 0.

There exists a constant Cp depending on p and on d (and with C2 = 1), such that

(A.2) ‖b‖2 ≤
(

1 +
Cp
M
‖ρ− c‖p′

)
‖∇b‖2 for any real number c.

Furthermore, in dimension d = 2, we have

(A.3) ‖b‖2 ≤ C log
1
2

(
e+
‖ρ− c‖2
M

)
‖∇b‖2.

Proof. Let b̄ be the average of b and b̃ := b− b̄. Then we have by Poincaré inequality,

(A.4) ‖b‖2 ≤ |b̄|+ ‖b̃‖2 ≤ |b̄|+ ‖∇b‖2.

Now, hypothesis (A.1) implies that for all real number c, we have

(A.5) −Mb̄ =

∫
Td

(ρ− c)̃b dx.

Therefore, by Sobolev embedding,

(A.6) M |b̄| ≤ ‖ρ− c‖p′‖b̃‖p ≤ Cp‖ρ− c‖p′‖∇b‖2
and, clearly, C2 = 1. This gives (A.2).

To handle the endpoint case d = 2 and p = +∞, decompose b̃ into Fourier series:

b̃(x) =
∑

k∈Z2\{(0,0)}

b̂k e
2iπk·x,

and set for any integer n,

b̃n(x) :=
∑

1≤|k|≤n

b̂k e
2iπk·x.

By Cauchy-Schwarz inequality, it is easy to prove that

(A.7) ‖b̃n‖∞ ≤ C
√

log n ‖∇b‖2.

Because the average of b̃n is 0, one may write, thanks to (A.5) that for all c ∈ R,

−Mb̄ =

∫
T2

(ρ− c)̃b dx =

∫
T2

ρ b̃n dx+

∫
T2

(ρ− c)(̃b− b̃n) dx.
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Therefore, using Hölder and Poincaré inequality, and also (A.7),

M |b̄| ≤ ‖ρ‖1‖b̃n‖∞ + ‖ρ− c‖2‖b̃− b̃n‖2

≤ C
(√

log nM + n−1‖ρ− c‖2
)
‖∇b‖2.

Then taking n ≈ ‖ρ− c‖2/M gives

(A.8) |b̄| ≤ C log
1
2

(
e+
‖ρ− c‖2
M

)
‖∇b‖2,

which, combined with (A.4) yields (A.3). �

We used the following version of Desjardins’ estimate in [11].

Lemma A.3. Let ρ ∈ L∞(T2) with ρ ≥ 0, and u ∈ H1(T2). Then, we have for some universal
constant C,

(A.9)

(∫
T2

ρu4 dx

) 1
2

≤ C‖√ρu‖2‖∇u‖2 log
1
2

(
e+
‖ρ− c‖2
M

+
‖ρ‖2‖∇u‖22
‖√ρu‖22

)
·

Proof. Let ũ := u− ū and fix some n ∈ N. Then, keeping the same notation as in the above
lemma and using Hölder inequality,(∫

T2

ρu4 dx

) 1
2

=

(∫
T2

(
ū+ ũn + (ũ− ũn)

)2
ρu2 dx

) 1
2

≤ |ū|‖√ρu‖2 + ‖√ρu‖2‖ũn‖∞ + ‖ρ‖
1
4
2 ‖ũ− ũn‖8

(∫
T2

ρu4 dx

) 1
4

·

We thus have, using Young inequality and embedding Ḣ
3
4 (T2) ↪→ L8(T2),

(A.10)

(∫
T2

ρu4 dx

) 1
2

≤ 2‖√ρu‖2
(
|ū|+ ‖ũn‖∞

)
+ C‖ρ‖

1
2
2 ‖ũ− ũn‖

2

Ḣ
3
4
.

Hence, taking advantage of (A.7) and of

(A.11) ‖ũ− ũn‖
Ḣ

3
4
≤ n−1/4‖∇u‖2.

Plugging (A.11) in (A.10), we get(∫
T2

ρu4 dx

) 1
2

. ‖√ρu‖2 |ū|+
(√

log n‖√ρu‖2 + n−
1
2 ‖ρ‖

1
2
2 ‖∇u‖2

)
‖∇u‖2.

Then, taking n ≈ ‖ρ‖2‖∇u‖
2
2

‖√ρu‖22
and using (A.8) to bound |ū| yields the desired inequality. �

Appendix B. End of the proof of time weighted estimates in the 2D case

We here provide the reader with the proofs of Inequalities (2.57) and (2.62).
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Proof of (2.57). We use (2.45) to bound I2 as follows:

I2 =

∫
T2

∇v · ∇2

(
Pv − 1

ν
∇(−∆)−1(G̃+ P̃ )

)
· v̇t dx =: I21 + I22 + I23.

From (2.68), we know that

(B.1) µ2‖
√
t∇2Pv(t)‖22 + ‖

√
t∇G(t)‖22 ≤ ρ∗ ‖

√
ρt v̇‖22.

Since we have

µ

(ρ∗)1/4
‖
√
t∇2Pv‖L4(0,T ;L2) ≤

(
µT 1/2

√
ρ∗
‖∇2Pv‖L2(0,T ;L2)

)1/2(
µ‖
√
t∇2Pv‖L∞(0,T ;L2)

)1/2

and a similar inequality for ∇G, combining (B.1) and Proposition 2.1 yields

(B.2) ‖
√
t∇2Pv‖L4(0,T ;L2) + ‖

√
t∇G‖L4(0,T ;L2) ≤ C0T

1/4‖
√
tρ v̇‖1/2L∞(0,T ;L2)

.

Therefore, putting together with (2.44), we gather that∣∣∣∣∫ T

0
I21 dt

∣∣∣∣ ≤ ‖∇v‖L4(0,T×T2)‖
√
t∇2Pv‖L4(0,T ;L2)‖

√
t v̇‖L2(0,T ;L4)

≤ C0T
1/4‖
√
ρt v̇‖1/2L∞(0,T ;L2)

‖
√
t v̇‖L2(0,T ;L4).(B.3)

Term I22 is almost the same: taking into account (B.2), we obtain∣∣∣∣∫ T

0
I22 dt

∣∣∣∣ ≤ ν−1‖∇v‖L4(0,T×T2)‖
√
t∇G‖L4(0,T ;L2)‖

√
t v̇‖L2(0,T ;L4)

≤ C0ν
−1T 1/4‖

√
ρt v̇‖1/2L∞(0,T ;L2)

‖
√
t v̇‖L2(0,T ;L4).(B.4)

To handle I23, we integrate by parts several times and get (with the summation convention

for repeated indices and the notation ψ := (−∆)−1P̃ ):

I23 = −1

ν

∫
T2

∂kv
j ∂3ijkψ v̇

it dx

=
1

ν

∫
T2

∂kdiv v ∂2ikψ v̇
i t dx+

1

ν

∫
T2

∂kv
j ∂2ikψ ∂j v̇

i t dx

=
1

ν2

∫
T2

∂kP̃ ∂
2
ikψ v̇

i t dx+
1

ν2

∫
T2

∂kG̃ ∂
2
ikψ v̇

i t dx+
1

ν

∫
T2

∂kv
j ∂2ikψ ∂j v̇

i t dx

= − 1

ν2

∫
T2

P̃ ∂2ikkψ v̇
i t dx− 1

ν2

∫
T2

P̃ ∂2ikψ ∂kv̇
i t dx

+
1

ν2

∫
T2

∂kG̃ ∂
2
ikψ v̇

i t dx+
1

ν

∫
T2

∂kv
j ∂2ikψ ∂j v̇

i t dx.

Remembering that ψ := (−∆)−1P̃ and integrating by parts one more time in the first term
of the right-hand side just above, we conclude that

(B.5) I23 = − 1

2ν2

∫
T2

P̃ 2 div v̇i t dx− 1

ν2

∫
T2

P̃ ∂2ikψ ∂kv̇
i t dx

+
1

ν2

∫
T2

∂kG̃ ∂
2
ikψ v̇

i t dx+
1

ν

∫
T2

∂kv
j ∂2ikψ ∂j v̇

i t dx.
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Hence, using Hölder inequality and the continuity of ∇2(−∆)−1 on L4(T2), we get∣∣∣∣∫ T

0
I23(t) dt

∣∣∣∣ .
√
T

ν2

(
‖P̃‖2L4(0,T×T2)‖

√
t∇v̇‖L2(0,T×T2)

+‖∇G‖L2(0,T×T2)‖P̃‖L∞(0,T ;L4)‖
√
t v̇‖L2(0,T ;L4)

+ν‖∇v‖L2(0,T×T2)‖P̃‖L∞(0,T×T2)‖
√
t∇v̇‖L2(0,T×T2)

)
·

Hence, thanks to (1.5) and (2.48), one can conclude that

(B.6)

∣∣∣∣∫ T

0
I23(t) dt

∣∣∣∣ ≤ C0

√
T
(
ν−1‖

√
t∇v̇‖L2(0,T ;L2) + ν−2‖

√
t v̇‖L2(0,T ;L4)

)
·

Proof of (2.62). We use the decomposition K2 = K2,1 +K2,2 +K2,3 with

K2,1 :=

∫
T2

(∇Pv · ∇div v) · v̇t dx, K2,2 := −1

ν

∫
T2

(∇2(−∆)−1G̃ · ∇div v) · v̇t dx

and K2,3 := −1

ν

∫
T2

(∇2(−∆)−1P̃ · ∇div v) · v̇t dx.

In order to handle K2,1, we integrate by parts (note that divPv = 0) and use the fact that

ν div v = P̃ + G̃. We get, with the usual summation convention

K2,1 = −
√
t

ν

∫
T2

∂i(Pv)j P̃ ∂j v̇
i
√
t dx+

1

ν

∫
T2

∂i(Pv)j
√
t∂jG v̇

i
√
t dx.

Therefore,

ν

∣∣∣∣∫ T

0
K2,1 dt

∣∣∣∣ ≤ √T‖∇Pv‖L2(0,T ;L2)‖P̃‖L∞(0,T ;L∞)‖
√
t∇v̇‖L2(0,T ;L2)

+‖∇Pv‖L4(0,T ;L4)‖
√
t∇G‖L4(0,T ;L2)‖

√
t v̇‖L2(0,T ;L4)

≤ C0

(√
T‖
√
t∇v̇‖L2(0,T ;L2) + T 1/4‖

√
ρt v̇‖1/2L∞(0,T ;L2)

‖
√
t v̇‖L2(0,T ;L4)

)
·(B.7)

Next, integrating by parts in K2,2 and using ν div v = P̃ + G̃ gives

νK2,2 = −
∫
T2

√
t∇G ·

√
tv̇ div v dx+

√
t

∫
T2

∇2(−∆)−1G̃ ·
√
t∇v̇ div v dx

= −
∫
T2

√
t∇G ·

√
tv̇ div v dx+

√
t

ν

∫
T2

∇2(−∆)−1G̃ ·
√
t∇v̇ G̃ dx

+

√
t

ν

∫
T2

∇2(−∆)−1G̃ ·
√
t∇v̇ P̃ dx

from which we get

ν

∣∣∣∣∫ T

0
K2,2 dt

∣∣∣∣ ≤ ‖div v‖L4(0,T ;L4)‖
√
t v̇‖L2(0,T ;L4)‖

√
t∇G‖L4(0,T ;L2)

+ν−1
√
T‖G̃‖L4(0,T ;L4)‖

√
t∇v̇‖L2(0,T ;L2)

(
‖G̃‖L4(0,T ;L4) + ‖P̃‖L4(0,T ;L4)

)
≤ C0T

1/4‖
√
t v̇‖L2(0,T ;L4)‖

√
ρt v̇‖1/2L∞(0,T ;L2)

+ ν−1/2
√
T‖
√
t∇v̇‖L2(0,T ;L2).(B.8)
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Finally, using again the notation ψ := (−∆)−1P̃ , we have

ν2K2,3 = −
∫
T2

∂i∂jψ ∂jP̃ tv̇
i dx−

∫
T2

∂i∂jψ ∂jGtv̇
i dx

=

∫
T2

∂i∂
2
jψ P̃ tv̇

i dx+

∫
T2

∂i∂jψ P̃ t∂j v̇
i dx−

∫
T2

∂i∂jψ ∂jGtv̇
i dx

=
1

2

∫
T2

P̃ 2 tdiv v̇ dx+

∫
T2

∂i∂jψ P̃ t∂j v̇
i dx−

∫
T2

∂i∂jψ ∂jGtv̇
i dx.

Therefore,

ν2
∣∣∣∣∫ T

0
K2,3 dt

∣∣∣∣ . √T‖P̃‖2L4(0,T ;L4)
‖
√
t∇v̇‖L2(0,T ;L2)

+‖P̃‖L4(0,T ;L4)‖
√
t∇G‖L4(0,T ;L2)‖

√
t v̇‖L2(0,T ;L4)

≤ C0

√
νT‖
√
t∇v̇‖L2(0,T ;L2) + C0(νT )1/4‖

√
ρt v̇‖1/2L∞(0,T ;L2)

‖
√
t v̇‖L2(0,T ;L4).(B.9)

Plugging (2.4), (B.2), (2.44), (2.47) and (2.48) in (B.7), (B.8) and (C.29) yields (2.62).

Appendix C. The three-dimensional case

This section is devoted to extending our existence result to the three-dimensional torus.
For expository purpose, we focus on the global-in-time issue for small data, although a similar
statement may be proved locally in time for large data.

Theorem C.1. Let v0 ∈ H1(T3) and ρ0 be a bounded and nonnegative function on T3. There
exists ν0 > 0 depending only on µ, γ and on the norms of the data, and c0 > 0 such that if

(C.1) µ‖∇Pv0‖22 +
1

ν
‖P̃0‖22 + ν‖div v0‖22 ≤ c0

µ5

(ρ∗)3E0
,

then System (1.1) has a global solution (ρ, v) having the same properties as in Theorem 1.1.

The general strategy is basically the same as for the two-dimensional case, except that the
smallness condition spares our using the logarithmic interpolation inequality. We just point
out the main steps, and what has to be changed.

Step 1: Sobolev estimates for the velocity. The counterpart of Proposition 2.1 reads:

Proposition C.1. Let (ρ, v) be a smooth solution of (1.1) on [0, T ]×T3, fulfilling (1.8) and
(2.3). Under condition (C.1) and for large enough ν, there exists a constant C0 depending
only on the data such that for all t ∈ [0, T ], we have

µ‖Pv(t)‖22 +
1

ν

(
‖G̃(t)‖22 + ‖P̃ (t)‖22

)
+
P ∗

ν
‖(√ρ v)(t)‖22 +

P ∗

ν
‖e(t)‖1

+

∫ t

0

(
‖√ρ v̇‖22 +

µ2

ρ∗
‖∇2Pv‖22 +

1

ρ∗
‖∇G‖22 + ν‖div v‖22 +

µP ∗

ν
‖∇v‖22

)
dτ ≤ C0.

Proof. In order to be able to consider general initial data with large energy, it is suitable to

modify the definition of E as follows: keeping the same definition for Ẽ , we set

(C.2) E := Ẽ +
P ∗

ν
E +

P (1)

2ν
(P ∗ − P (1)),

which ensures that

(C.3) E ≥ µ

2
‖Pv‖22 +

1

2ν

(
‖G̃‖22 + ‖P̃‖22

)
+
P ∗

2ν
‖√ρ v‖22 +

P ∗

2ν
‖e‖1.
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Then, we start from Inequality (2.15) that is valid in any dimension and, instead of (1.13), we
use that

(C.4)

(∫
T3

ρ|v|4 dx
)1/2

≤
(∫

T3

ρ|v|2 dx
)1/4(∫

T3

ρ|v|6 dx
)1/4

. (ρ∗)1/4‖√ρ v‖1/22 ‖∇v‖
3/2
2 .

One can thus bound the right-hand side of (2.16) as follows:

3

∫
T3

ρ|v · ∇Pv|2 dx ≤ 3
√
ρ∗‖ρ1/4v‖24‖∇Pv‖24

≤ Cρ∗3/4‖√ρv‖1/22 ‖∇v‖
3/2
2 ‖∇Pv‖

1/2
2 ‖∇

2Pv‖3/22

≤ µ2

4ρ∗
‖∆Pv‖22 + C

(
ρ∗

µ

)6

‖√ρv‖22‖∇v‖62‖∇Pv‖22,

3

ν2

∫
T3

ρ
∣∣∣ v · [∇2(−∆)−1G̃

]∣∣∣2 dx ≤ C(ρ∗)1/2ν−2‖ρ1/4v‖24‖G̃‖24

≤ C(ρ∗)3/4ν−2‖√ρv‖1/22 ‖∇v‖
3/2
2 ‖G̃‖

1/2
2 ‖∇G‖

3/2
2

≤ 1

8ρ∗
‖∇G‖22 + C

(ρ∗)6

ν8
‖√ρv‖22‖∇v‖62‖G̃‖22,

and also, thanks to Inequality (A.2),

3

ν2

∫
T3

ρ|v · ∇2∆−1P̃ |2 dx ≤ C ρ
∗

ν2
‖v‖1/22 ‖∇v‖

3/2
2 ‖P̃‖

2
4

≤ C (ρ∗)3/2

ν2
‖∇v‖22‖P̃‖2‖P̃‖∞

≤ µP ∗

4ν
‖∇v‖22 + C

(ρ∗)3

µν3
‖P̃‖2∞
P ∗

‖∇v‖22‖P̃‖22.

Next, instead of (2.20), we write that, in light of Inequality (A.2) with p = 2, we have

−1

ν

∫
T3

Pv · ∇G ≤ 1

ν
‖P‖∞(1 + ‖ρ̃‖2)‖∇v‖2‖∇G‖2

≤ 1

8ρ∗
‖∇G‖22 + 2

ρ∗

ν2
‖P‖2∞(1 + ‖ρ̃‖2)2‖∇v‖22.

Therefore, the right-hand side of Inequality (2.21) becomes

2
(ρ∗)3

ν2
‖P‖2∞‖∇v‖22 +

2

ν2

∫
T3

G̃2 h dx

+C‖√ρv‖22‖∇v‖62
((

ρ∗

µ

)6

‖∇Pv‖22 +
(ρ∗)6

ν8
‖G̃‖22

)
+ C

(ρ∗)3

µν3
‖P̃‖2∞
P ∗

‖∇v‖22‖P̃‖22.

Then, following the computations leading to (2.26) and assuming that ν satisfies

(C.5) ν ≥ 8(ρ∗)3
P ∗

µ
and ν2 ≥ 8‖h‖∞ρ∗,

we get,

d

dt
E +D ≤ C

(
‖√ρ v‖22‖∇v‖62

((
ρ∗

µ

)6

‖∇Pv‖22 +
(ρ∗)6

ν8
‖G̃‖22

)
+

(ρ∗)3

µν3
‖P̃‖2∞
P ∗

‖∇v‖22‖P̃‖22
)
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with

D :=
1

4
‖√ρ v̇‖22 +

µ2

4ρ∗
‖∇2Pv‖22 +

1

8ρ∗
‖∇G‖22 +

1

2

∫
T2

(div v)2(ν + h) dx+
µP ∗

2ν
‖∇v‖22.

Finally, using Inequality (C.3), we discover that if ν satisfies (C.5), then we have the differential
inequality

(C.6)
d

dt
E +D ≤ C‖∇v‖22 E

(
(ρ∗)3/2‖P̃‖2∞

ν3µ1/2
+

(ρ∗)6

µ9
E0 E2

)
·

Setting

X(t) = E(t) +

∫ t

0
D dτ, f(t) := C‖∇v(t)‖22, A :=

(ρ∗)3P ∗

µν2
and B :=

(ρ∗)6

µ9
E0,

Inequality (C.6) rewrites
d

dt
X ≤ (AX +BX3)f(t).

This may be integrated into

X(t)√
1 + cX2(t)

≤ X(0)√
1 + cX2(0)

eA
∫ t
0 f(τ) dτ with c :=

B

A
·

Bounding f according to (1.5), we see that under the smallness condition

(C.7) E20 <
A

B

1

e
2CAE0

µ − 1
,

we have

(C.8) X2(t) ≤ X2(0)

1 + cX2(0)

(
e

2CAE0
µ

1− cX2(0)
1+cX2(0)

e
2CAE0

µ

)
for all t ≥ 0.

Note that the largeness condition (C.5) on ν guarantees that the argument of the exponential
function above is very small. Therefore, the smallness condition (C.7) may be simplified into

E0 �
µ5

(ρ∗)3E0
·

For that latter condition to be fulfilled for ν large enough compared to E2
0 , it suffices that

(C.1) holds true. �

Remark C.1. Note that the smallness condition means that one can take the initial energy
as large as we want provided that ν is large enough, but that div v0 must be O(ν−1/2). At the
same time, there is no smallness condition on ρ0 − 1 whatsoever.

Step 2: Upper bound for the density. In order to adapt Proposition 2.2 to the case
d = 3, the only changes are in (2.34) and (2.36). As regards (2.34), one may still start from
(2.33) then combine with (C.4) in order to get

(C.9) ‖(−∆)−1(ρv)‖∞ ≤ C(ρ∗)
7
8 ‖√ρ v‖

1
4
2 ‖∇v‖

3
4
2 ≤ C(ρ∗)

7
8E

1
8
0 ‖∇v‖

3
4
2 .

Next, instead of (2.35), in order to bound the commutator term, we write that

(C.10) ‖[vj , (−∆)−1∂i∂j ]ρv
i‖∞ . ‖[ṽj , (−∆)−1∂i∂j ]ρv

i‖
W 1, 247

. ‖∇v‖6‖ρv‖8.
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Now, combining Hölder inequalities, Sobolev embedding and interpolation inequalities yields

‖ρv‖8 ≤ (ρ∗)
19
20 ‖√ρ v‖

1
10
2 ‖v‖

9
10
12

≤ C(ρ∗)
19
20 ‖√ρ v‖

1
10
2 ‖∇v‖

9
10
12
5

≤ C(ρ∗)
19
20 ‖√ρ v‖

1
10
2 ‖∇v‖

27
40
2 ‖∇v‖

9
40
6 .

Therefore, in T3, Inequality (2.35) becomes

‖[vj , (−∆)−1∂i∂j ]ρv
i‖∞ ≤ C(ρ∗)

19
20 ‖√ρ v‖

1
10
2 ‖∇v‖

27
40
2 ‖∇v‖

49
40
6 .

In order to bound the last term, we use that

‖∇v‖6 . ‖∇Pv‖6 + ν−1
(
‖G̃‖6 + ‖P̃‖6

)
. ‖∇2Pv‖2 + ν−1

(
‖∇G‖2 + ‖P̃‖∞

)
·

Hence, using the energy conservation (1.5) and the definition of E and D,

(C.11) ‖[vj , (−∆)−1∂i∂j ]ρv
i‖∞ . (ρ∗)

19
20E

1
20
0 ‖∇v‖

27
40
2

((√
ρ∗D
µ

) 49
80

+

(
‖P̃‖∞
ν

) 49
40
)
·

Plugging inequalities (C.9) and (C.11) in (2.32), we get

(C.12) ‖F+(t)‖∞ ≤ ‖F+(0)‖∞ +
γ − 1

γ
E0 + C

γ

ν2
(ρ∗)

7
8E

1
8
0

∫ t

0
e−

γ
ν
(t−τ)‖∇v(τ)‖

3
4
2 dτ

+ C
(ρ∗)

19
20

ν
E

1
20
0

∫ t

0
e−

γ
ν
(t−τ)‖∇v‖

27
40
2

((√
ρ∗D(τ)

µ

) 49
80

+

(
‖P̃‖∞
ν

) 49
40
)
dτ.

Since the integrals in the right-hand side may be bounded in terms of the data according to
the basic energy inequality (1.5) and to (2.38), we eventually get if ν is large enough:

‖F+(t)‖∞ ≤ ‖F+(0)‖∞ + C0ν
− 27

80 +
γ − 1

γ
E0

with C0 depending only on E0, E0, ‖ρ0‖∞, µ and γ. From this point, one can conclude as
in the two-dimensional case that (2.29) is fulfilled if ν is large enough.

Step 3: Time weighted estimates. As in the 2D case, the starting point is Identity (2.43).
However, Inequality (2.44) that has been used all the time has to be replaced with an estimate

for t1/8∇v in L4(0, T × T3): we write that the previous steps and to (B.1) imply that

‖t1/8∇Pv‖L4(0,T×T3) ≤ ‖t1/4∇Pv‖
1/2
L∞(0,T ;L3)

‖∇Pv‖1/2L2(0,T ;L6)

. ‖∇Pv‖1/4L∞(0,T ;L2)
‖
√
t∇2Pv‖1/4L∞(0,T ;L2)

‖∇2Pv‖1/2
L2(0,T×T3)

≤ C0‖
√
ρt v̇‖1/4L∞(0,T ;L2)

.(C.13)

Similarly, we have

‖t1/8∇2(−∆)−1G̃‖L4(0,T×T3) . ‖G̃‖L4(0,T×T3)

. ‖G̃‖1/4L∞(0,T ;L2)
‖
√
t∇G‖1/4L∞(0,T ;L2)

‖∇G‖1/2
L2(0,T×T3)

≤ C0ν
1/8‖
√
ρt v̇‖1/4L∞(0,T ;L2)

.(C.14)
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Since (2.48) is valid in any dimension, one can conclude that

(C.15) ‖t1/8∇v‖L4(0,T×T3) ≤ C0

(
‖
√
ρt v̇‖1/4L∞(0,T ;L2)

+ ν−3/4T 1/8
)
·

Substep 1. Compared to d = 2, the only change lies in the estimate for
∫
T3 ρdiv v |v̇|2t dx.

Now, still using that div v = ν−1(P̃ + G̃), we write that∫
T3

ρdiv v|v̇|2t dx ≤ ν−1
∫
T2

(P̃ + G̃)ρ|v̇|2t dx

≤ ν−1
(
‖P̃‖∞‖

√
ρt v̇‖22 +

√
ρ∗‖G̃‖3‖

√
t v̇‖6‖

√
ρt v̇‖2

)
≤ C0ν

−1(‖√ρt v̇‖22 + ‖G̃‖1/22 ‖∇G‖
1/2
2 ‖
√
t∇v̇‖2‖

√
ρt v̇‖2

)
·

The first term may be treated as in the 2D case. As for the second one, we use the fact that
(2.68) ensures that

‖∇G‖2 ≤
√
ρ∗‖√ρ v̇‖2.

Hence, using Proposition 2.1 to bound ‖G̃‖2, we get∫ T

0

∫
T2

ρ div v|v̇|2t dx dt ≤ C0

(
ν−1
∫ T

0
‖
√
ρt v̇‖22 + ν−3/4

∫ T

0
‖√ρ v̇‖1/22 ‖

√
ρt v̇‖2‖

√
t∇v̇‖2 dt

)
≤ C0

ν

(∫ T

0
‖
√
ρt v̇‖22 +

1√
ν

∫ T

0
‖√ρ v̇‖2‖

√
ρt v̇‖22 dt

)
+
µ

2

∫ T

0
‖
√
t∇v̇‖22 dt.

In the end, we thus obtain

(C.16)

∫
T3

D

Dt
(ρ|v̇|2t) dx ≥ 1

2

d

dt

∫
T3

ρ|v̇|2dx− 1

2

∫
T3

ρ|v̇|2 dx

− C0

ν

(∫ T

0
‖
√
ρt v̇‖22 +

1√
ν

∫ T

0
‖√ρ v̇‖2‖

√
ρt v̇‖22 dt

)
− µ

2

∫ T

0
‖
√
t∇v̇‖22 dt.

Substep 2. We have thanks to (C.15):

(C.17)

∣∣∣∣∫ T

0
I1(t) dt

∣∣∣∣ ≤ C0T
1/4
(
‖
√
ρt v̇‖1/2L∞(0,T ;L2)

+ ν−3/2T 1/4
)
‖
√
t∇v̇‖L2(0,T×T3).

For bounding I2, we decompose it into three parts, as for d = 2. For I2,1, we write that∣∣∣∣∫ T

0
I21(t) dt

∣∣∣∣ ≤ ‖√t∇v‖L∞(0,T ;L3)‖∇
2Pv‖L2(0,T×T3)‖

√
t v̇‖L2(0,T ;L6).

Let us notice that

(C.18) ‖t1/4∇v‖L∞(0,T ;L3) ≤ C0

(
‖
√
ρt v̇‖1/2L∞(0,T ;L2)

+ ν−2/3T 1/4
)

that stems from the fact that, as already used for proving (C.13) and (C.14), we have

‖t1/4∇Pv‖L∞(0,T ;L3) ≤ C0‖
√
ρt v̇‖1/2L∞(0,T ;L2)

,(C.19)

‖t1/4G̃‖L∞(0,T ;L3) ≤ C0ν
1/4‖
√
ρt v̇‖1/2L∞(0,T ;L2)

,(C.20)

and from the obvious inequality

(C.21) ‖P̃‖L∞(0,T ;L3) ≤ ‖P̃‖
2/3
L∞(0,T ;L2)

‖P̃‖1/3
L∞(0,T×T3)

≤ ν1/3C0.
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Then, using Sobolev embedding and (C.18), we obtain

(C.22)

∣∣∣∣∫ T

0
I21 dt

∣∣∣∣ ≤ C0T
1/4
(
‖
√
ρt v̇‖1/2L∞(0,T ;L2)

+ ν−2/3T 1/4
)
‖
√
t∇v̇‖L2(0,T×T3).

In order to bound I22, we now write that∣∣∣∣∫ T

0
I22 dt

∣∣∣∣ . ν−1‖√t∇v‖L∞(0,T ;L3)‖∇G‖L2(0,T×T3)‖
√
t v̇‖L2(0,T ;L6).

Therefore, using the previous section and (C.18), we get

(C.23)

∣∣∣∣∫ T

0
I22 dt

∣∣∣∣ ≤ C0ν
−1/2T 1/4

(
‖
√
ρt v̇‖1/2L∞(0,T ;L2)

+ ν−2/3T 1/4
)
‖
√
t∇v̇‖L2(0,T×T3).

To bound I23, we use (B.5) as in the two-dimensional case. The first two terms of the decom-
position may be bounded as before. For the third one, we use the fact that∣∣∣∣∫ T

0

∫
T3

∂kG̃ ∂
2
ikψ v̇

i t dx

∣∣∣∣ . √T ‖∇G‖L2(0,T×T3)‖P̃‖L∞(0,T ;L3)‖
√
t v̇‖L2(0,T ;L6)

≤ C0

√
T ‖
√
t∇v̇‖L2(0,T×T3)

and that∣∣∣∣∫
T3

∂kv
j ∂2ikψ ∂j v̇

i t dx

∣∣∣∣ ≤ T 3/8‖t1/8∇v‖L4(0,T×T3)‖P̃‖L4(0,T×T3)‖
√
t∇v̇‖L2(0,T×T3)

≤ C0ν
1/4T 3/8

(
‖
√
ρt v̇‖1/4L∞(0,T ;L2)

+ ν−3/4T 1/8
)
‖
√
t∇v̇‖L2(0,T×T3).

Hence, one can conclude that

(C.24)

∣∣∣∣∫ T

0
I23 dt

∣∣∣∣ ≤ C0

(√
T

ν3/2
+
T 3/8

ν3/4
‖
√
ρt v̇‖1/4L∞(0,T ;L2)

)
‖
√
t∇v̇‖L2(0,T×T3).

Putting together all the estimates of the second step, we get

(C.25) − µ
∫ T

0

∫
T3

(
D

Dt
∆v

)
· v̇ t dx dt ≥ µ

∫ T

0

∫
T3

|∇v̇|2t dx dt

− C0T
1/4
(
‖
√
ρt v̇‖1/2L∞(0,T ;L2)

+ ν−2/3T 1/4
)
‖
√
t∇v̇‖L2(0,T×T3).

Substep 3. To bound K1, we write that

ν

∣∣∣∣∫ T

0
K1 dt

∣∣∣∣ ≤ CT 1/4‖t1/8∇v‖L4(0,T ;L4)‖t
1/8(P̃ + G̃)‖L4(0,T ;L4)‖

√
tdiv v̇‖L2(0,T ;L2),

whence

(C.26) ν

∣∣∣∣∫ T

0
K1 dt

∣∣∣∣ ≤ C0T
1/4
(
‖
√
ρt v̇‖1/4L∞(0,T ;L2)

+ ν−3/4T 1/8
)

×
(
ν1/8‖

√
ρt v̇‖1/4L∞(0,T ;L2)

+ ν1/4T 1/8
)
‖
√
t div v̇‖L2(0,T ;L2).

We decompose K2 as in the case d = 2. To bound K2,1, we write that

ν

∣∣∣∣∫ T

0
K2,1 dt

∣∣∣∣ ≤ √T‖∇Pv‖L2(0,T×T3)‖P̃‖L∞(0,T×T3)‖
√
t∇v̇‖L2(0,T×T3)

+‖
√
t∇Pv‖L∞(0,T ;L3)‖∇G‖L2(0,T×T3)‖

√
t v̇‖L2(0,T ;L6)

≤ C0

(√
T + T 1/4‖

√
ρt v̇‖1/2L∞(0,T ;L2)

)
‖
√
t∇v̇‖L2(0,T×T3).(C.27)
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For K2,2, we have

ν

∣∣∣∣∫ T

0
K2,2 dt

∣∣∣∣ ≤ ‖√t div v‖L∞(0,T ;L3)‖
√
t v̇‖L2(0,T ;L6)‖∇G‖L2(0,T×T3)

+ν−1T 1/4‖t1/8G̃‖L4(0,T ;L4)‖
√
t∇v̇‖L2(0,T ;L2)

(
‖t1/8G̃‖L4(0,T ;L4) + ‖t1/8P̃‖L4(0,T ;L4)

)
≤ C0T

1/4
(
T 1/8ν−3/4 + ν−3/4‖

√
ρt v̇‖1/2L∞(0,T ;L2)

)
‖
√
t∇v̇‖L2(0,T ;L2).(C.28)

Finally, we have

ν2
∣∣∣∣∫ T

0
K2,3 dt

∣∣∣∣ . √T ‖P̃‖2L4(0,T ;L4)
‖
√
t∇v̇‖L2(0,T ;L2)

+
√
T ‖P̃‖L∞(0,T ;L3)‖∇G‖L2(0,T×T3)‖

√
t v̇‖L2(0,T ;L6)

≤ C0

√
νT‖
√
t∇v̇‖L2(0,T ;L2).(C.29)

Plugging (2.4), (B.2), (2.44), (2.47) and (2.48) in (C.27), (C.28) and (C.29) yields

ν

∣∣∣∣∫ T

0
K2 dt

∣∣∣∣ ≤ C0

(√
T + T 1/4‖

√
ρt v̇‖1/2L∞(0,T ;L2)

)
‖
√
t∇v̇‖L2(0,T×T3).

The conclusion of this step is that, if ν is large enough then

(C.30) − (ν−µ)

∫ T

0

∫
T3

D

Dt
∇div v · v̇ t dx dt ≥ (ν−µ)

∫ T

0

∫
T3

(div v̇)2t dx dt

− C0

(
ν1/4
√
T + T 1/4‖

√
ρt v̇‖1/2L∞(0,T ;L2)

)
‖
√
t∇v̇‖L2(0,T ;L2)

− C0

(
ν1/8T 1/4‖

√
ρt v̇‖1/2L∞(0,T ;L2)

+ ν3/8
√
T
)
‖
√
t div v̇‖L2(0,T ;L2).

Substep 4. Term L1 may still be bounded according to Inequality (2.65). As for L2, we have∣∣∣∣∫ T

0
L2(t) dt

∣∣∣∣ ≤ 1

2ν
‖P̃‖2L4(0,T ;L4)

‖tdiv v̇‖L2(0,T ;L2)

+
1

ν
‖P̃‖L∞(0,T ;L3)‖∇G‖L2(0,T ;L2)‖t v̇‖L2(0,T ;L6)

+ ‖P̃‖L∞(0,T ;L∞)‖∇v‖L2(0,T ;L2)‖t∇v̇‖L2(0,T ;L2)

≤ C0

√
T ‖
√
t∇v̇‖L2(0,T ;L2).

So this step gives

(C.31)

∫
T3

D

Dt
∇P · v̇ t dx ≥ −ν

4

∫ T

0

∫
T3

(div v̇)2 t dx dt

− ‖h‖∞Tν−1‖div v‖2L2(0,T ;L2)
− C0

√
T‖
√
t∇v̇‖L2(0,T ;L2).

Susbstep 5. Combining Inequalities (2.53), (C.25), (C.30) and (C.31) yields for large ν,

‖
√
ρt v̇‖2L∞(0,T ;L2)

+2µ

∫ T

0
‖
√
t∇P v̇‖22 dt+

3ν

2

∫ T

0
‖
√
tdiv v̇‖22 dt ≤ 2

∫ T

0
‖div v‖∞‖

√
ρt v̇‖22 dt

+‖√ρ v̇‖2L2(0,T ;L2)
+ ‖h‖∞Tν−1‖div v‖2L2(0,T×T2)+ C0T

1/4
(
ν1/8‖

√
ρt v̇‖1/2L∞(0,T ;L2)

+ν3/8T 1/4
)
‖
√
t div v̇‖L2(0,T ;L2) + C0T

1/4
(
‖
√
ρt v̇‖1/2L∞(0,T ;L2)

+ T 1/4
)
‖
√
t∇v̇‖L2(0,T ;L2).

Playing with Young inequality and Gronwall Lemma yields Prop. 2.3 for d = 3.
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It is now easy to adapt Corollary 2.1 to the 3D case: we start from

‖G̃‖∞ . ‖G̃‖1/42 ‖∇G‖
3/4
6 .

Hence, remembering (2.68) and using the embedding Ḣ1(T3) ↪→ L6(T3),

‖G̃‖∞ . (ρ∗)3/4‖G̃‖1/42 t−3/8‖
√
t∇v̇‖3/42 .

Therefore, as in the 2D case,

‖G̃‖1+εL1+ε(0,T ;L∞) . (ρ∗)
3(1+ε)

4 ν
1+ε
8 (ν−

1
2 ‖G̃‖L∞(0,T ;L2))

1+ε
4 ‖
√
t∇v̇‖

3(1+ε)
4

L2(0,T ;L2)

(∫ T

0
t−

3+3ε
5−3ε dt

) 5−3ε
8

,

and one can thus conclude that div v is in L1+ε(0, T ;L∞) provided that ε < 1/3. Bounding
Pv is left to the reader.
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E-mail address: raphael.danchin@u-pec.fr

(P.B. Mucha) Instytut Matematyki Stosowanej i Mechaniki, Uniwersytet Warszawski, ul. Ba-
nacha 2, 02-097 Warszawa, Poland.

E-mail address: p.mucha@mimuw.edu.pl


