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COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH RIPPED
DENSITY

RAPHAEL DANCHIN AND PIOTR BOGUSLAW MUCHA

ABSTRACT. Here we prove the all-time propagation of the H' regularity for the velocity field
solution of the two-dimensional compressible Navier-Stokes equations, provided the volume
(bulk) viscosity coefficient v is large enough. The initial velocity can be arbitrarily large
and the initial density is just required to be bounded. In particular, one can consider a
characteristic function of a set as an initial density.

Uniqueness of the solutions to the equations is shown, in the case of a perfect gas.

As a by-product of our results, we give a rigorous justification of the convergence to the
inhomogeneous incompressible Navier-Stokes equations when v tends to infinity.

Similar results are proved in the three-dimensional case, under some scaling invariant
smallness condition on the velocity field.

1. INTRODUCTION

We are concerned with the regularity and uniqueness issues of viscous compressible flows in
the unit torus T¢ with d = 2,3. The corresponding equations of motion read
(1) pt +div (pv) =0 in R, xT¢
' (pv); + div (pv @ v) — pAv — (A + p)Vdivo + VP =0 in Ry x T4

The pressure P is a given function of the density. The real numbers A\ and g designate the
bulk and shear viscosity coefficients, respectively, and are assumed to satisfy

(1.2) >0 and v:i=A+2u>0.
The system is supplemented with the initial data
(1.3) v]t=0 = vo, pli=o0 = po-

For smooth enough solutions of (1.1), the total mass and momentum are conserved through
the evolution that is, for all ¢ > 0,

aa) [ sttarde= [ w@) and [ oeo)de= [ (o) d.

Td
Furthermore, if we denote by e the potential energy of the fluid defined by the relation pe” =
P', and introduce the total energy

1
B = [ (Gotta)lo(t. o) + c(olt,) )da.
Td
then the following energy balance holds true:
t
15 E@) +/ (WIVPu() 3 + vldive(r)|2)dr = By = E(0) forall t e [0,T],
0

where P denotes the Ly-projector onto the set of solenoidal vector-fields and || - ||, the norm
in L,(T9).
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Since the pioneering works by P.-L. Lions in [18] and E. Feireisl in [14], it is well understood
that, in the case of an isentropic pressure law P(p) = p? with v > d/2, any finite energy initial
data (that is such that Ey < 0o) generates a global-in-time weak solution to (1.1) satisfying

t
(1.6) E(t) +/ (Ll VPu(r)[13 + vlidive(r)l3)dr < By for all t>0.
0

At the same time, even in the two-dimensional case, the regularity and uniqueness issues for
those general weak solutions are widely open, in sharp contrast with the theory for incom-
pressible homogeneous flows (see [17]).

On the other side of the coin, the global existence and uniqueness issues are by now quite
clear in the strong solution framework provided the data are small perturbations of a linearly
stable positive constant density state [4, 19, 20] . For large smooth data with density bounded
away from zero, well-posedness holds true only for small time [5, 21, 23]. Positivity of density
may be somewhat relaxed but some compatibility condition involving the initial velocity must
be satisfied (see [2]).

Our aim here is to provide the reader with a complete global-in-time existence theory with
propagation of the H' Sobolev regularity for the velocity, assuming only that the initial density
is bounded. We shall indeed achieve our goal provided that v is large enough (and, of course,
that the velocity is small enough in the case d = 3). A remarkable feature of our result is
that, even though the density need not be positive, one can exhibit some gain of regularity
for the velocity so that both divu and curlu are in Ly jo.(Ry; Loo) for some r > 1. Although
this does not imply that the full gradient of u is in Lj joc(R4; Loo), we will get uniqueness in
the case where P(p) = p despite the fact that the system under consideration is quasilinear
and partially hyperbolic.

As a by-product of our result of propagation of regularity, we shall get almost for free the
all-time convergence when v tends to +o0o to the following inhomogeneous incompressible
Navier-Stokes equation:

pt +div (pv) =0 in R, x T¢,
(1.7) (pv); +div (pv @ v) — pAv +VII =0 in Ry x TY
dive =0 in R, x T

To the best of our knowledge, this is the first example of a global-in-time result of convergence
from (1.1) to (1.7) in the truly inhomogeneous framework (see also our recent work in [10]).

For expository purposes, we shall assume from now on that

(1.8) /]l'd po(z)dx =1 and /Td(povo)(x) dx =0,

which is actually not restrictive, as one can rescale the density function and use the Galilean
invariance of the system to have those two conditions fulfilled.

Let us state our main global existence result in the case where the fluid domain is the
two-dimensional torus.

Theorem 1.1. Consider any nonnegative bounded function py and vector field vy in H'(T?)
satisfying (1.8), and assume that the pressure law is P(p) = ap” for some a >0 and v > 1.
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There exists vy depending only on v, p, Eo, |[Vuoll2 and ||pollec such that if v > vy then
System (1.1) admits a global-in-time solution (p,v) fulfilling the energy balance (1.5),

p € Loo(Ry x T2)NC(Ry; Ly(T?)) for all p < oo, and /pv € C(Ry; La(T?)).
In addition, we have, denoting v := vy + v - Vv,
(1.9) v € Loo(Ry; HY(T?)), V?*Pv € Lay(Ry x T?), /pb € La(Ry x T?),
VLD € Log toc(Ry; La(T?)),  VtVi € Ly(Ry x T?),
and both divv and curlv are in L1+€7100(R+;L00(T2)) for some € > 0.

Remark 1.1. The above existence result as well as its corollary, Theorem 1.3 (see just below),
are valid in T either locally in time for large data, or globally under a suitable scaling invariant
smallness condition. The reader is referred to Appendix C for more details.

In dimensions 2 and 3, in the case of a linear pressure law, our existence result is supple-
mented with uniqueness.

Theorem 1.2. Under the above assumptions with v = 1, then the solution constructed in
Theorem 1.1 (resp. Theorem C.1 in the appendix) if d =2 (resp. d = 3) is unique.

By taking advantage of the fact that the estimates that have been proved in Theorem 1.1
have some uniformity with respect to v, we get the following result of convergence of the
compressible Navier-Stokes equations to the incompressible and inhomogeneous Navier-Stokes
equations.

Theorem 1.3. Fiz some initial data (po,vo) in Loo(T?) x HY(T?) satisfying in addition
diveg = 0 and pg > 0, and denote by (p¥,v”) the corresponding global solution of (1.1)
provided by Theorem 1.1 for v > vy.

Then, for v going to oo, the whole family (p”,v") converges to the unique global solution of
system (1.7) supplemented with initial data (po,vo) given by Theorem 2.1 of [9], and we have

(1.10) dive” = O(w™Y2) in La(Ry x T?) N Loo(Ry; Lo(T?)).

Remark 1.2. For simplicity, we focus on the physically relevant case where the pressure
function P is given by P(p) = ap? for some v >1 and a > 0. However, most of our results
remain true whenever:

(1.11) P is a C' nonnegative function on Ry such that p— p ' P(p) is nondecreasing.

Let us review the main ideas leading to our results. Assuming that we are given a solution
(p,v) to (1.1), the first step is to establish global-in-time a priori estimates for the H' norm of
v in terms of the data, of the parameters of the system and of an upper bound for the density
p. That step is partly based on the work by B. Desjardins in [11] where the so-called viscous
effective flur G defined by

(1.12) G:=vdivv— P with v:=A+2u

plays a key role. Recall that, as observed before in e.g. the works by D. Hoff [15] and P.-L. Lions
[18], G has better regularity than divv or P taken separately. This property is the cornerstone
of the construction of weak solutions to (1.1). Furthermore, rewriting the momentum equation
in terms of G rather than P will spare us making integrability assumptions on Vp, in contrast
with our recent work in [10]. This will be the key to considering initial density with no
regularity whatsoever. In fact, thanks to it, we shall define a modified energy functional
that controls the H' regularity of the velocity and also contains some information on the
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density. Compared to Desjardins’ work, the main breakthrough is that, by tracking carefully
the dependency of the estimates with respect to v and by optimizing the use of the following
logarithmic interpolation inequality

1
2 1 ~ pll2]| Vo3
1.13 4d <C Vs log? Arnen” -2
( )<AJMIx>._H¢MMHvM0g<&HMb+|¢W@

we achieve global-in-time bounds depending only on the data and on p* := ||p||oc, While the
result in [11] was local. Note that, here, (1.13) is an appropriate substitute of the well-known
Ladyzhenskaya inequality

> with p:=p—1,

lolli < CllolllIVoll2
since bounds are available on ||,/pv||2 (through (1.5)), but not on |[v||z.

Step 1 required an a priori upper bound for the density. The second step will enable us to
discard that assumption. Again, it is partly based on the work by B. Desjardins in [11] where
the quantity F := logp + v 'A7!(pv) that may be seen as an approximate damped mode
associated to (1.1) is introduced. The new achievement here is that, by combining with the
first step and an obvious bootstrap argument, one ends up with a control on p* in terms of
the data only, provided that v is large enough.

In order to have a chance to prove uniqueness of the solutions, we need to exhibit more
regularity for Vuv. Ideally, since the system under consideration is partially quasilinear hy-
perbolic of order one, it would be good to have Vv in Lj joc(R4; Loo). The goal of step 3 is
to prove that dive and curlv are in Lj joc(Ry; Loo), which is “almost” what we want. To
achieve it, we shall adapt our recent work [9] dedicated to the inhomogeneous Navier-Stokes
equations (1.7) to the compressible situation. The main idea is to use time weighted estimates
to glean some regularity on v;, then to transfer time regularity to space regularity by using
elliptic estimates. The situation here is more complicated, though, owing to the pressure term
that cannot been discarded by means of the divergence free property. Nonetheless, by using
the convective derivative © rather than vy, we shall get bounds on /pt v in Leg joc(R4; L)
and VtV0 in Ly joc(Ry; Lo). Then, putting together with elliptic estimates and functional
embedding, one gets that dive and curlv are in Lj ¢ joc(Ry; Log) for some € > 0.

Steps 1 to 3 were just formal a priori estimates for smooth solutions. To complete the proof
of existence, we mollify the initial density so as to make it strictly positive and regular. Then,
one can resort to classical results to construct a local-in-time smooth solution corresponding
to those data. The difficulty is to establish that, indeed, the control of norms that has been
obtained so far allows to extend the solution for all time. Once it has been done, the uniform
bounds turn out to be enough to pass to the limit and to complete the proof of existence.
Since, compared to weak solutions, more regularity is available on the velocity, passing to the
limit is much more direct than in [14] or [18].

Remember that steps 1 to 3 give that dive and curlv are in Lii. joc(R4; Log) for some
e > 0. Hence, we miss by a little the property that Vv is in Lj joc(R4; L) and v need not
have a Lipschitz flow. Therefore, in contrast with what has been done for (1.7) or for (1.1) in
[7], it is not clear whether recasting the compressible Navier-Stokes equations in Lagrangian
coordinates may help to prove uniqueness. Nonetheless, in the particular case of a linear
pressure law, we succeed in proving stability estimates directly for (1.1) in Lo (0,T; H~1) for
the density and Ly(0,7; L) for the velocity. The proof has some similarities with that of
D. Hoff in [16] but does not require Lagrangian coordinates. Indeed we overcome the fact
that Vo ¢ L1 joc(R4; Loo) by combining the information that V € L4 jo.(R4; BMO) with a
suitable logarithmic interpolation inequality from [22].
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The rest of the paper unfolds as follows. The next section is dedicated to the proof of
regularity estimates for (1.1) assuming that the solution under consideration is smooth and
that v is large enough (this corresponds to steps 1 to 3 above). For better readability, we
focus there on d = 2, and the most technical parts of that section are postponed in appendix.
In Section 3, we prove the existence part of our main theorem (and also justify the convergence
of (1.1) to (1.7) for v going to oo ), while Section 4 is dedicated to uniqueness. Some technical
results like, in particular, Inequality (1.13) and time weighted estimates, and the case d = 3
are postponed in appendix.

2. REGULARITY ESTIMATES

The present section is devoted to proving regularity estimates for the velocity field of a
solution (p,v) to (1.1) in Ry x T, We focus on d = 2, the three dimensional case being
postponed in appendix.

As a start, we normalize the potential energy e in such a way that e(1) = ¢/(1) = 0, setting

? P(e)
(2.1) ) i=p [ S do= P)(p 1)
Hence, ||e||; is essentially equivalent to ||p — 1||3 and, in the case P(p) = p?, we have
Y
e(p) =plogp+1—p if y=1, and e(p) = pil—iJrl if v>1.
’y —_—

We shall often use the notations e and P instead of e(p) and P(p).

2.1. Sobolev estimates for the velocity. Here we derive a global-in-time H! energy esti-
mate that requires only a control on sup p. The overall strategy is inspired by [11].

Throughout the proof, we denote P:=P—P and G:= G — G where P and G stand for
the average of P and G. Note that we have

(2.2) G =vdivo — P.

Proposition 2.1. Consider a smooth solution (p,v) to (1.1) on [0,T] x T? satisfying (1.8).
Assume that the pressure law fulfills (1.11) and that, for some positive constant p*,

(2.3) 0<p(t,z) <p* forall (t,x) €[0,T] x T2
Let © := vy +v - Vv be the material derivative of v, and h := pP’ — P. There exist:

— a functional £ such that
1 1, ~ ~
&> 2/ <p|v|2 + u|VPu? + ;(G2 + P?) + 2e> dx,
T2

— an absolute positive constant C',
— a positive constant vy depending' only on the pressure function P, on p and on p*,
such that if v > vy then for all t € [0,T], we have

(2.4) 1+< / D(r dT)
< <1 + ;30 eXp{C<1 + (i);)QEcQ) log(e + P*)> })exp{c(ﬂzE@}j

Here we find v = max(u, C,/M P(p P(p ) 4y/p*(1+ h(p )
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with Ey defined in (1.5) and

v+h
2

1. 12 1 1~ , L
D= - 2 2 2 - 2 7P2 d 2 Ll 2 dr.
[ (GotoR + 2 9Pop 4 96 P (V5 v + I ) do

Proof. The beginning of the proof is independent of the dimension : we take the Lo inner
product of the momentum equation of (1.1) with o, and get

1 d
(2.5) /p\ idr+ 5 [ (R + Or(dive)?) da

+ VP-vtdx:/ (p0) - (v-Vov)dz.
Td Td

To handle the pressure term in the left-hand side, we start from
P, 4+ div (Pv) + hdive = 0.
Therefore, integrating by parts yields
d
VP vder = —— Pdivvdw—/ h(divv)zdac—i—/ Py -Vdivudz.
Td dt Td Td
Since
—(vdiv v)2 =P? - G?-2vPdivv and vVdive = V(P + G),
we get after integrating by parts once to avoid the appearance of some VP term,

d 1 1
(2.6) VP v dr=—— [ Pdivvde+ — / (P? — G*hdx +- | Pv-VGdx
Td dt Td V2 Td Td

1 P?
— / (— + 2Ph)d1vvdx.
vV J1d 2

Observing that

G=—-P and ]5/:—/ hdivvdz,
Td

we find that
/ (P? — GHhdx = u/ (P — G)divvhdz + 21/P/ hdivvdz
Td Td Td
- d _
(2.7) = 1/2/ (dive)*hdx —2v | Gdivvhdz —v—(P)%
Td Td dt

Let the function k be the unique solution of

P2
k:—pk:':—7—2Ph and k(1) = P?(1).

Then, we have
d
(2.8) / — 4+ 2Ph divodr = / (Osk + div (kv))da = / kdz.
Td Td dt Td
Hence, plugging (2.6) and (2. ) (2.8), we obtain

d k — (P)? 2 ~
VP vidr =— (”—Pdivv)dm— Gdivv hdx
Td dt Td 1% 1% Td

1
+/ (divv)?hdx + = [ Pv-VGdz.
Td vV Jrd



Now, denoting

g .- / <M\VU\2 + m(divv)Q + 1(/{ — (]5)2) — ﬁdivv)da:
Td 2 2 14

and reverting to (2.5), we conclude that

d ~
(2.9) 5+/ p]i)|2d:c+/ (divv)?hdz
dt Td Td

2 ~ 1
:/ (p0) - (v-Vv)de+ - | Gdivohdx—— | Pv-VGdzx.
Td vV JTd vV JTd
Observe that
E= / ﬁ(|Vv\2 - (divv)2) + L ((ydivv)2 —2vdivu P+ 2(k — (P)2)) dz
Td 2 2v
and that

. P
(2.10) ko) = Po) -5 |

~ 1 1/~, ~ L p2
§ = / <M|VPU|2+<G2+P2+p/ (27) d7->>da:.
2 Jpa v p T

Let P* :=||P(p)||co- Since we have for all p > 0,

? P2(o)
2

do.

Hence we have

2 T T
o [ S dr < oro) [ ar = Plo)(eto) + PG - )
< P*(e(p) + P(1)p) — P(p)P(1),

we get

(211) L[ 2 ir )iz < P*(Je + P(1) - PPQ).

and thus

(2.12) E> ;/Td (mvmy? + %(62 + ﬁ2)> dz — % <P*|I€H1 + P(1)(P* — p)>.

In order to get a control on the right-hand side of (2.9), let us rewrite the momentum equation
in terms of the viscous effective flux G = vdivv — P as follows:

(2.13) p(Av — Vdive) + VG = pi.

From it, we discover that

(2.14) W21 APoIE+ [VGI3 = o013 < o*llaoll3
Since we obviously have

2 ~ 1 2 ~
= | Gdivvhdz < / (dive)®hdz + = | G?hdz,
vV J1d 2 Td V2 Td
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equality (2.9) implies that

d~ 1 2 1 1
2.15) —&E+ = )12 AP 2 / divv)?hd
(2:15) €+ ZIVPoll + o CIAPUE+ 5 IVGIE + 5 | (dive)*hds

2 ~ 1
SH\/EU-V’UH%—FVQ/ G?hdx—~ | Pv-VGdz.
Td vV JTd

To bound the first term in the right-hand side, we decompose Vv into

RN

v

(2.16) Vo= VPu— %v%—A)*lé _

Hence
1 1= 1 R
V7o ol <3(Ivpo- VPOl + S5l TH-A) MGl + Jplvpu- TH-a) PR ).

From this point, we assume that d = 2. Then, Holder and Gagliardo-Nirenberg inequalities
yield

1
2
/11‘2 plv-VPu|*de < C+\/p* (/1r2 plol* da:) |V Pl|2|| VZPo||s.

Since the density is not bounded from below, in order to bound the right-hand side, one has
to take advantage of Inequality (1.13). We get

1 ~ Vol
3 [ plorVPoPds <OV |Vl Vol VPol92Polatost (e pl+ 121202
™ N2

2 *\ 2 2
H 2, Cp") 2 2 2 < ~ [pll2l[ Vo5
2.17 < —||APv|5 + ovl|5|Vu|5||VPu|5log| e+|plle+————5= |-

Arguing similarly and using the fact that V2(—A)~! maps L4(T?) to itself, we get

3 o218 1 2
(218) /pp‘v [v(-a)]| o < o IVGI
C(p*)?

+y4

HprWH%)

lv/pul3 Vo l3IGI13 log <e+llﬁ\lz+
Ivevl3

and also,

(2.19) 32/ plv- V2AT P dx
14 T2

1 =y Opf _ olellvel2Y 5
< 1P|+ 2L vaQHWHQlog<e+HpH2+ |2
w1 Pl + 5 Ve olzlivel: N x

Finally, we have, thanks to Inequality (A.3),

1 1
— | Pv-VGdr < P[]l VGe

v J12
C .. 1 -
< — Prlog2 (e +[|pll2) [Voll2[I VG 2.

Hence

v

1 1 * -
(2200 - / Pv-VGdr < L [VGI + Ol (P Vol 3log(e + [7]:)
T2

Therefore, plugging (2.17), (2.18), (2.19) and (2.20) in (2.15), we conclude that



de 1y, oo n 1/ .
(2.21) dté‘—l— ||\/ﬁv||2+4p* 5 TQ(leU)hd:L’

Cp* ~ )2 2 Loz, 2 2
< S tog(e+ 171 (PRIl + I P+ 5 [ G

P ||1 H2 ( *)2 (P*)2 12 ~ ||PH2||CU||2
+C ,ov2 Vv 2( VPu G logl e+ ||pllo + ——5=
H\/> HZ” ||2 3 H ”2 A H HQ || H2 ”\/> HQ

At this stage, in order to handle all the terms of the right-hand side, one may add up to £
some suitable multiple of the basic energy E and of a complementary relation involving e
from which one can glean some time-decay for ||P||2. Indeed, let us start with

Ore + div (ev) + Pdivv = 0.

Integrating on T? and remembering that vdive = P+G yields

d 1 ~ 1 ~~

(2.22) — [ edz+ = | |PP?dz=-= | PGdx.
dt T2 vV Jr2 vV Jr2

Let us set

£:=E+ B+l + 5 (P* ~ P()P()

=5 (P uvpo ] (642 (p / 1Pi§”d7)+<P*—P<1>)P<1>> +ac) .

In order to control the integral in the right-hand side of (2.22), one may use that

1 ~  ~ 1 1 ~

/ |P||G|dz < — / Pldz+ — | G*dx.

1% T2 21/ 2 T2
Then, Poincaré inequality implies that

1 2 VG|j3
v Jr2 \v 4p

Using also the fact that ||p]|3 = ||pl|3 — 1 < (p*) — 1, we get
d o 1 4p* (2 s 1~
ey z 1 —|P
Le 2 1vpili + o (1= 22 (2l +1))IVGIE + 1712

h *1 *

+/ (v+ 5 ) (@ive)>da + | VPo|l3 - cpogg“’)(p*ﬁnwg
T2
PPl (p*) (p ) . PV
< VoIVl | tog (e + g+ 21V,
Vel Vel s NG
Obviously, thanks to (2.11), we have
1 1, ~ ~ P

@2) &2 5 (IVpul + uITPol + 5 (161 + 1P1B)) + (2 5 )lelh )
Now, since

(2.24) pllVoll3 + (A + w)ldivoll3 = pllVPoll3 + vldivol3,

we have if v > p,

2
2 Hv?
4p*

v|[divoll + pl| VPol3 > pl Vol



10 R. DANCHIN AND P.B. MUCHA

Therefore, because for all A > 0,
log(e + p* 4+ p*A) <log(e+ p*) +log(1 + A) <log(e+ p*) + A,
if one assumes that
*] * P* 2 8
(2.25) 1> 202 Og(e;/g’ W g 32 (HhHoo > <1,
then the above inequalities imply that

d 2 \V4 2

dt /7ol
C *\ 2 2 V 2 vp é 2 1 * 1 1 HV’UH%
(VI3 Vo3 || I3+ 11613 ) (Tom(e + 5*) + log( 1+ 1
1 /7012
with
= Lol ez 4 L veE+ B+ L / (divo)? (v + h) dz + | Vol 3.
4 2 27 gy 2T 2T g | 2 2

So, finally, if one assumes that
(2.27) v>p, v2>20p 'p*logletp")(P*)?, v >8p* (20 |hllww +1) and v > P*/2,

the last condition ensuring that the coefficient of the last term in (2.23) is greater than 1, then
we have

1 1, ~ 1, =
(2.28) &2 5 (WAl + WPl + SIGIE + 1 IPIR) + el
and thus B
IVl <2e.  VPuE<2e/n and |G <20E.

Thanks to that, inequality (2.26) combined with the energy balance (1.5) and the fact that
the map r — rlog'/?(a + b/r) is nondecreasing on Ry if a > 1 and b > 0, implies that

d T ¢
— D < E I 1+ —
dt8+ <C p ol|Vv||5 € log +,ME0

v, oy 1P PIPIE 1oy 2 6
+ 5~ FEolog(e + p )+ +log(e + p")——=2)||Vv|5&
@ v’ V3

Note that Condition (2.27) entails that

PPl H2 p H
0%

Therefore applying Lemma A.1 with

+log(e + p* ) ———= HOO <1.

— — 1 — (p*)2 2 L (p*)2 * 2
A=l Bi= o f=CPLE|Vel; and g o1+ - Bolog(e + p*) ) [Vul3,

we get

1+,qu< /D dT>

ex E Vou 2d7'}
50 ( *)2 . t 5 p{C Ofo H “2

< _—

(1+ exp{C’(l—l— ‘M3 Eolog(e—i—p ))/0 |WUH2d7 5

22200]

which, in light of the basic energy conservation (1.5), yields (2.4). O
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Remark 2.1. We do not really need v to be large, as one has some freedom on the definition
of €, and lots of possibilities for bounding the right-hand side of (2.21). For small v, one
can get a global, but time dependent control on £. We chose not to treat that case here since
the condition that v is large will be needed in the next step, in order to remove the a priori
assumption that p is bounded.

2.2. An upper bound for the density. Here, we prove that, for large enough v, if the initial
data fulfill the assumptions of the previous section, then we have a global-in-time control on
the supremum of p. For simplicity, we assume that P(p) = p” for some v > 1.

Proposition 2.2. Consider a smooth solution (p,v) of (1.1) on [0,T] x T2. There exists vy
depending only on 7y, 1, |[pollec and & but independent of T such that if v > vy, then
E
(2.29) sup_[[p(t)loe < 2677 “[|oloc-
te[0,7)

Proof. Throughout the proof, we denote slightly abusively the right-hand side of (2.29) by p*.
We start from the observation that if p > 0 then

1~ ~

O logp+wv-Viegp = —dive = ——(P—i—G).
v

Remember that the definition of G ensures that
AG = 9,(div (pv)) + div (div (pv @ v)).
Therefore, following [11] and introducing
F :=logp+ v A~ div (pv),

we discover that (with the summation convention over repeated indices),

1~ 1, . .
(2.30) OF +v-VF+ =P =——[/,(~A)"'9,0]pv".

v v
Since we have

P(p) >~logp+1 forall p>0,
setting F'* := max(0, F) yields
1, . X 1 -
(2.31) O F " +v-VET + LFT < 2|, (—A)~19;0;]pv"] + %\(—A)’ldiv (pv)| + = (P - O).
v v v v

As P(p) = p?, we have P —1 = (v — 1)|le||1, so that the last term may be bounded by
(v — 1)Ey. Then, performing a time integration in (2.31) yields

-2 | AT j - i
232 [F* Ol < NP O+ 5 [ 20, (<8) 00,107 dr

Y ! —X(t—7) -1 3 v—1 -2t
+ﬁ ; e v |(=A) le(pU)(T)HOOdT—I—T(l—e v )EO.

Using that the average of pv is zero, Sobolev embedding and the properties of continuity of
Riesz operator imply that

(2.33) 1(=2) div (pv)[loo S (=A) 7' Vdiv (pv) |4 S [lpvlla-

Then we use again (1.13) and get

p*IIVUH%)

3 1 1 1
\wﬂrwwwwmswwnpwwwwb@G+w+
velzivels NZIE
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whence, thanks to the energy balance (1.5) and the definition of £ (assuming that v > p),

1 1 *E
(2.34) 1(=A) " div (pv) |0 < C(p*) T E¢[|V0] 2 log <e +p"+ 5E )
0

Since [v7, (—=A)719;0;]pv" = [07, A719;0;]pv’ with ¥ = v — v, the second term in the r.h.s. of
(2.32) may be bounded by means of Sobolev embedding and of the following Coifman, Lions,
Meyer and Semmes inequality (from [3]) as follows:

(2.35) w7, (=A)710:051pv" oo < 77, (=2) 10051 pv" s S [Volla2llpvlla.
To handle Vv, we use that
IVolhe S [VPolhe + v (| Glhz + 1Plhe)
S IVPPull2 + v (IVGl2 + |1 Poo)-
Hence, using once more (1.13),

. _ i N _ =
I[o7, (=2) 005100 oo < (0) 1 (IV*Pll2 + v~ VG2 + 17| Plloc)

IR IVl
xumwv@u?1og4(e+p*+ ,
2[IVell N

whence, using the energy conservation (1.5) and the definition of £ and D,

j - i *\ 2 — 1 NI 1T
(2.36) [|[v/, (—=2)7'8:01]pv'[|oe < ((0") 10 DE + (p) 107 Pllo)

1 Lo p*E
x EX||Vv]|2 1o 4<e+ 4+ )
$IVol logt e+ 7 + 2o

Plugging (2.34) and (2.36) in (2.32) and performing obvious simplifications, we end up with

v—1
(2.37) IFT()]loo < IFT(0)]loo + TEO

i} ’3E§ t g 1L 1 ~ 1 1 * p*g
O [ (D (P ) 90l 10 (e 4 ) Jar.
; 0

Now, let us consider the largest sub-interval [0,7p] of [0,7] on which (2.29) is fulfilled.
Then, Inequality (2.4) tells us that there exist vy depending only on ||po||cc, # and -y, and
Co > 0 (depending also on Ey, &) so that we have for all ¢t € [0,T], if v > vy,

(2.38) E(t)+ /t D(7) dr < Cp.
0

Inequality (2.37) thus becomes (taking a larger Cj as the case may be):

1
v—1 Co [t _o _(D2(7 ¥ 1
239) 1P 0o < 1O+ T2 B0+ L [ e300 (204 Dyvuio ar.

From Holder inequality, we have for all ¢ € [0,T7,

Co N o :
fperertiwatar<c(2) ([T omar) ([ imuent )
Y 0 0

0
t 1 3 T 3
and e—%(t—T)HVv(T)HQ2 dr < C<:> ! (/ ”VU(T)H%Q dT)
0 0
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As the integrals in the right-hand side may be bounded in terms of the data according to the
basic energy balance (1.5) and to (2.38), we eventually get (changing once again Cj if needed)
if v>uy:

_3 -1
() loo < [[FF(0)]oo + Cov 1 +

Ep.

Of course, owing to the definition of F*© and to (2.4) and (2.34), we have
logp < FT + v A7 div (pv)||eo < FT + 710,

Hence one can eventually conclude that
-1
(2.40) log p* <log py + Cou_% + LEO.
y
Now, if v is so large as to satisfy also

C()V_% < log?2,
then (2.40) combined with a bootstrap argument implies that we have (2.29) on [0, 7. O

2.3. Weighted estimates. That section is devoted to the proof of the following result, that
is based on the estimates that have been established so far. For better readability, we postpone
the most technical parts of the proof to the appendix.

Proposition 2.3. Define vy as in Proposition 2.2. Then, smooth solutions to (1.1) on [0,T] x
T2 fulfill, if v > vg:

T
(2.41) Sm)/‘Mﬂ%d$+/i/(MVPM2+VMW®Pﬁ¢mﬁS(%Te%i
te[0,7] J T2 0 JT2

where Cy depends on p*, u, & and on the pressure function, but is independent of v and T'.
Proof. Here it will be convenient to use the two notations f and % f to designate the con-
vective derivative of f, and we shall denote A : B = Zl j Ai;B;j it A and B are two d x d
matrices. Finally, if v is a vector field on T¢ then (Dv);; := 9;v° and (Vv);; := 007 for
1<4,j<d.

The general principle is to rewrite the momentum equation as:

(2.42) p0 — pAv — (v — p)Vdive + VP = 0,
then to take the material derivative and test it by t©v. We get
D D D D
2.4 —(pv) — p—Av — (v — p)—Vdi —VP ] (tt =0.
(2.43) /Ed<Dt(pU) Wy Av (v ,u)Dtlevv—l—DtV ) (to)dx =0

The rest of the proof consists in describing each term of (2.43). To this end, we shall repeatedly
use the fact that for all v > vy (where 1y is given by Proposition 2.2), we have

(2.44) IVl Ly0,rx12) < Co-
Indeed, recall the decomposition

1 ~ o~
(2.45) v:Pv—;veAr%G+Py
Proposition 2.1 and Sobolev embeddings imply that

1/2 1/2
(2.46) VPl 012y S VPO 0 V2PV (0 1ipy < Co-
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Furthermore, we have

(2.47) HG”LAL(OTMTQ) HGH 0TL2)||VGHL2 OTLz) <Gy,
and

1/2 1/2
(2.48) 1Pl zyorxry < 1P 0 2o 1PIL 0.ipny < ¥4,

Step 1. Obvious computations give (in any dimension):

D 1 D
2.4 —(pb) -tde = t t — plo)?
(2.49) L ppton-otdo = [ (5 i)+ g lof )
Integrating by parts, we see that
D .12 d .12 . .12
(2.50) —(plv|*t)de = — [ plo|*tde — divo(p|o|“t) dzx
Td Dt dt Td Td

Thanks to the mass conservation equation, we have

(2.51) / p']1')|2tda::—/ pdivv|0|*t de,
Td Td

whence

1
t)d 2de — = 0|2 do — divv|o|?t dz.
/Dtpu - .2 WERE 2/porv| . /po iv ofo[2 da

If d = 2 then one can bound the last term using that

/ pdivo|o|*tde = v 1 / (P + G)plo|*t dz:
T2 T2

< v PlloclVot ol + o v Gl lIVE O]
< Cov™H[Vpt oll3 + Cov™ 2|Vt 0] 3.

Since fTQ pvdxr = 0, one can take advantage of the Poincaré inequality (A.2) with p = 2 and
get:

(2.52) IVtoli < ClvEollz|VEValla < O+ IBll2) [VEVlIZ < Co™lIVE V3.

Hence,

[ paivelifras < o IVaalg + v PIVETIR ).

D 1d 1
2. —(p|o)? > - 0 2da — = |2
(2.53) /T el e = 55 [ plifds - 5 /T plif d

—C()(I/_l/ pt|i)|2d:L‘+1/_1/2/ t|Vi12d:U>-
T2 T2
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Step 2. The second term of (2.43) rewrites

D D
(2.54) —EA’U = —div EV’U —Vv-V% with (Vou-V?0) Z v’ 900"
7.k
Testing (2.54) by t0 and integrating by parts yields for d = 2,3,

D . D ) 9 .
—/TthAv-tvdx/TthVv.Vvtda:—/Td(Vv-V v) - vtdx.

D )
EVU = Vv — Vv - Vo,

Since

we get

D
(2.55) —/ —Av-todr = Vo2t da — / (Vo - Vo) : Votdr — / (Vv - V%) - 0t d.
Td Dt Td Td Td

The first term is the main one. The other two terms are denoted by I; and I, respectively.
Bounding I; is easy : using Holder inequality yields

11| = < |tV IVE V.

/ (Vo - Vo) : Votde
Td

Therefore, we have according to (2.44),

T
/ L(t) dt‘ < CoVT [|VE V| Ly (0.1%72)-
0

Bounding I3 is much more involved. We eventually get (see the details in appendix):

(2.56)

T
@sn) | [ mar) < (TVIEL 00 IVEb o

VTNVl 0 + v—2||m||L2(o,T;L4>))-

Plugging (2.56) and (2.57) in (2.55) and using (2.52) yields

(2.58) —u//( AU) Utdzdt>,u// V0|t da dt
T2

1/2 .
= CoTYA TV + VRT3l 2 (1300 IVE Vo a0, x72)-
Step 3. Now, we consider the third term from equation (2.43), namely
D D
(2.59) —EVdivv = —Vﬁdivv + Vv - Vdivo.

To control the right-hand side, we have to keep in mind that it involves only the potential part
Ouv of the velocity, since divv = div Qu. This enables us to write that

D
Vﬁtdivv = Vdivo — V(tr(Vv - VQu)).
Hence, testing (2.59) with vt and integrating by parts, we find that

D
(2.60) —/ —Vdivv-otdr :/ (divo)*tder — Ki + Ko
Td Dt Td

with K ::/ Tr(Vo-VQu)divotdr and Ko ::/ (Vo - Vdive) - ot de.
Td Td
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Since vQu = —V(—A)"Y(G + P), using (2.44), (2.47) and (2.48), we find that, if d = 2,

1%

T ~ o~
/0 K dt‘ < OVT ||Vl Ly 0.0 1P + Gllao.r:0n IVEV O Ly0.7:L0)

(2.61)

IN

Cov VT |Vt div | b, 0.1:1.).
Bounding Ky will be performed in the appendix. In the end, we get

T
| K
0

Thanks to (2.52), the conclusion of this step is that if v is large enough then

T
(2.63) (v—p // —levv vtdrdt > ( V—u)// (div )%t dx dt
']T2 T2

- COT1/4<(VT)1/4 H\/EdiV{JHLz(O,T;Lz) + (Hﬁﬂ\Lw (0,T;Ls) T1/4)H\/iv{)HL2(O,T;L2)>'

(2.62) v

1/2
< Cor A (VAR oy IVE a0 i + T IVE Vil 0 1) )

Step 4. The last term under consideration in (2.42) is

D D
2.64 —VP = P— P.
( ) Dtv V— D1 Vv -V
Here the analysis is simple: since P = —hdivv, we have

/VP vtder = L1+ Ly with L4 ::/ hdivvdivotdz
']TdD Td

and Lo := — v’ 8jP1)itd:1:.
Td

On the one hand, we obviously have
(2.65) L] < ”/ (divo)? t dz +Tu—1yhugo/ (divv)? da.
4 Jrd Td
On the other hand, integrating by parts a couple of times and using divv = 1/_1(]5 +C~}’) yields

Ly = ﬁVdivu-@tder/ PVv: Ditds
Td Td
1 [ = 1 [ ~ _
== PVP-i;td:H—/ PVG-vtdr+ | PVuv:Dotds
14 Td 1% Td Td

1 ~ 1 ~ ~
=—— | P?’divitde+~ | PVG-vtde+ | PVv:Dotdx.
21/ Td 1% Td Td

Hence we have, if d = 2,

T
/ Lo(t)dt
0

< 5HP||%4(0,T;L4)thiV@HLz(O,T;Lz)

+;||PHLOO(0,T;L4)||VGHL2(0,T;L2)HWHL2(0,T;L4)

Pl Lo 0.7:2.) I VU Lo 0,7:20) 1E VO Lo 0,7 L0) 5
whence, thanks to (2.48) and (2.52),

T
[ et czt\ < CWT VIVl Lyory,
0
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So this step gives

(2.66) /T2 —VP- -otdz > _//11“2 dlvv tdxdt —h(p )y—lTHdivv\|%2(07T;L2).

Step 5. Plugging inequalities (2.53), (2.58), (2.63) and (2.66) in (2.43) (after integrating on
[0,7]) and using the fact that for a smooth solution, we have +/pt 0|;—¢9 = 0, we discover that
for large enough v,

T T
. . 3v ..
||\/ptv||%oo(07T;L2) +2,u/0 |Vt VP35 dt + 2/0 |/t div o]|3 dt

T T
SCo(V_lfo H\/ﬁ@H%ﬂLfl/Z/O H\/fWH%dt)+H\/ﬁ@H%Q(O,T;Lg)JthHooTV_lHdivaZLQ(o,T;LQ)

.. 11/2 .
+CoT () IVE Y | pyo0,732) + (T + ||\/thUHL/OO(07T;L2))H\/EVUHLQ(O,TXT?))'
Taking advantage of inequality (2.4), we have

H\/ﬁi]H%g(O,T;Lg) + VHdiVUH%Q(o,T;Lg) < Co.

Furthermore, Young inequality implies that

. " .
CoVTIIVEV| 1y07:10) < §H\/iva%2(0,T;L2) + CoT

Cov ' "VTIVEAv 0| 1y (0.7:10) < ZH\/idivi;H%Q 0.1y + CoTv™ /% and

1/2 LK .
CoT™||\/pL 0|, / o (0.T:La) IVEVO|| y0,7:00) < C'0T+*\|\/7'5U||LOo 0,TLs) §H\/7EVUH%2(O,T;L2)‘

In the end, we thus have if v is large enough and T > 1,

1 t T
X2(t) + 2/ Y2(r)dr < CoT + Cov™* / X%dr with
0 0
1
X () = VP bl pa(oiLy) and Y () := (uIVEVPOL, 010, T VINVEAVHT, 0 7.1,)) 2
Then, applying Gronwall inequality completes the proof of the proposition. O

As a consequence of those weighted estimates, one can bound divv and VPv in L1(0,T; Lo)
as follows:

Corollary 2.1. Let (p,v) be a smooth solution of (1.1) on [0,T]xT? and assume that v > vy.
Then we have for all € € [0,1/2],

T T
(2.67) / |div o ¥ dt < Core /6 and / VPl dt < Cour.e
0 0

for some Core~o depending on €, T, p and on the data, but not on v.
Proof. From (1.12) and the previous section, one can write that
, ~ = L
VHdIVUHLHE(O,T;LOO) < HP”LHE(O,T;LOO) + ||G||L1+E(0,T;Loo) < CoTi+e + HGHLHE(O,T;LOO)-
Gagliardo-Nirenberg inequality implies that
~ 1/3 2/3

1Gllee S IGIL*IVGIE.

Hence, remembering that

(2.68) uw(Vdive — Av) + VG = po,
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we get
1Glloo S NG 2100137 S (012G 23 Ve o)|3 .

Then, integrating in time and using Holder inequality, we discover that

T _ 2(1+s) 14e ~ 2(1 3 < 2/3
/0 IGIA de < ()50 021G o) 5 IVED Héé%g(/o . “dt) |
whence, using (2.4) to bound G in Lo (0,T; Lo),

=~ 2/3
1G 212 071100) < Come v IVEDIT R 701

The last term may be bounded thanks to (2.41) and to (2.52).

Exactly in the same way, we have,
VPl S VP05 V2P )72,

The last term may be bounded thanks to (2.68) and (2.52), while the first one is bounded
from (2.4). O

3. THE PROOF OF EXISTENCE IN DIMENSIONS 2 AND 3

This section is mainly devoted to the construction of solutions fulfilling Theorem 1.1 (or
the corresponding statement in dimension 3, see the appendix). The main two difficulties we
have to face is that the initial density has no regularity whatsoever and is not positive. To
fit in the classical literature devoted to the compressible Navier-Stokes equations, one has to
mollify the initial data and to make the density strictly positive. Although this procedure
does not disturb the a priori estimates we proved hitherto, the state-of-the-art on the topics
just ensures the existence of a smooth solution corresponding to the regularized data on some
finite time interval. As a first, we thus have to justify that, indeed, the estimates we proved
so far ensure that smooth solution to be global, if v is large enough. Then, resorting to rather
classical compactness arguments will enable us to conclude the proof of Theorem 1.1.

At the end of the section, we justify the convergence from (1.1) to (1.7) since passing to the
limit therein is very similar to Step 4 of the proof of existence.

Step 1. The original initial data are:
(3.1) po € Loo(T9) and vy € HY(TY).

First, we want to change the initial density in such a way that it is bounded away from zero
and still has total mass equal to one. To this end, we introduce for any ¢ € (0, 1),

(3.2) p5 = max{pg,d} and then %= min{&;, 33},
where &5 > 1 is fixed so that

(3.3) / pode =1.
Td

Clearly, we have & — p§ := ||polloc When 6 — 0, and thus

(3.4) < p<pi and Yy — po pointwise.
Then we smooth out both ,58 and vg as follows:

(3.5) P =ms % ) and v = 75 * vy,

where (75)s5>0 is a family of positive mollifiers.
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Let us emphasize that the total mass of pg is still equal to one, and that pg > 6.

Step 2. We solve (1.1) with data (p),v]) according to the classical literature. For example,
one may use the following result (see [6, 21, 23]):

Theorem 3.1. Let py € Wpl(Td) and vy € W;?_Q/p(’]l‘d) for some p > d, with d = 2,3.
Assume that pg > 0. Then there exists Ty > 0 depending only on the norms of the data, and
on infpa po such that (1.1) supplemented with data py and vy has a unique solution (p,v) on
the time interval [0,Tp), satisfying®

(3.6) veW,2(0,Ty x T and p € C([0, Ty); W, (T4)).

Let us denote by (p?,v%) the maximal solution pertaining to data (pg,v3) provided by the
above statement, and by T° its existence time (that is (p%,v°) fulfills (3.6) for all T' < T°).
Since the solution is rather smooth, it satisfies all the formal estimates we proved so far, with
the same constants independent of § and for all T < T°. In particular, dive® is in L;(0,T; Lso)
for all T < T9, which implies that p° is bounded from below and above, according to the
following inequalities:

T T
(3.7) 5exp{—/ ||divv5||oodt} < po(t,z) < pgexp{/ ||divv5||oodt}.
0 0

Step 3. Our goal here is to prove that the solution (p?,v°) is actually global. To achieve it,
we shall argue by contradiction, assuming that T° is finite.

Now, the classical estimates for the continuity equations implies that for all T < T° (drop-
ping exponents § on (p?,1°%), for better readability):

T
(3-8) Vo)l < Va0l + C/O (IVolloo I Vollp + [[Vdiv o]l )dt.

Observe that the previous sections ensure that, uniformly with respect to 7' and §, we have
VPt € Loo(0,T%; L) and v/t Vi € Lo(0,T%; Ly). Combining with straightforward interpola-
tion arguments and Holder inequality, we deduce that

(3.9) pv € La(0,T°% L,y(T?)) forall 2<p<oo and a<p  if d=2,

(3.10)  pi € La(0,7% Lp(T?)  forall p€]2,6] and 1=5—-2% if d=3.
Remembering that Av 4+ vVdive — VP = —pv, we thus get

(3.11) Av+vVdive — VP € L,(0,T; L),

whence, using L, estimates for the Riesz operator and the fact that P = p7 with p bounded,
one may conclude that, uniformly with respect to §, we have for all ¢ < T,

(3.12) IV20(t)|l, < CIVp@)|lp, + h(t) with h e Ly(0,T%).

Hence we have for all T < T,
5 T T
(3.13) IV (D)l < (||woup+ /0 0 dt) exp{ /0 o+ uwnm)dt}-

2Recall that Wp2(0,To x T?) designates the set of functions v : [0,70) x T — R? such that v €
W, (0, To; Lp(T%)) N Lp(0, To; W2 (T?)), and W272/?(T%), the corresponding trace space on ¢ = 0 (that may be
identified to the Besov space Bf,,f/p (T).
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In order to close the estimates, we have to bound ||Vv|s. Since p > d and Vv is bounded
in L1(0,7; BMO) independently of ¢ (recall Corollary 2.1), one may start from the following
well known logarithmic inequality:

IVollw >

Ve < C||Vv log| e +
IVl < I ollasiolog (e + 1o

which, in light of (3.12), implies that

h+ ||V
||VU||OO < C”VUHBMO 10g<€ + HP‘P>

Vvl Brmo

Hence, plugging that inequality in (3.8), we discover that for all T' < 19,

T T
h+ ||V
IVl < V63l + /0 hdt +C /0 (1+ IVollsaro log<e+ ”p”p))\wupdt-

Vvl smo
Since
HV'UHBMO log <€ + HV'UHBW> S Cmax(h, HVUHBMO)
and IVl
IVelotog (e + o) < 1+ [Tollasio) os(e + [l )
we get

T T
1ol < V8l + / h(1+CVpll,)dt+C / (1+ V0l ar0) log (e + [V pllp) [Vl d.

From this and Osgood lemma, one can conclude (as T 9 g finite) that Vp and Vu belong to
Loo(0,7% Ly) and L1(0,T%; Lyo), respectively.
Putting together with (3.12), this leads to
(3.14) pr = —div (vp) € L40,T°; L,).
Hence, by Sobolev embedding, one can conclude that there exists o > 0 such that
(3.15) p € C¥([0,T%) x T%).
Now, one can go back to the momentum equation of (1.1), written in the form
(3.16) pvr — pAv — vVdive = —VP — pv - Vo.
Thanks to (3.7) and (3.15), one may apply Theorem 2.2. of [6] and get

(3.17) ”UHWI},Z(O,Tsde) < Cs (HVPHLP(QT‘SX’]N) + v V”HLP(O,T‘sXTd)) )

For general p > 2 if d=2, or 2 < p <6 if d =3, we do not know how to prove directly that
v- Vo isin L,(0,7° x T?%), and we shall need several steps.
More precisely, if d = 2, then one may use the fact that for all p < ¢ < oo,

1 1/1 1
. < CI2ol 202 with — — ~( 242
Vol < CITl 20l with - =2 (>4
which, combined with the fact that v € Lo (0,T%; H'(T?)) (from Proposition 2.1) and thus
v € Loo(0, 7% L,(T?)) for all r < oo, and (3.12) implies that v- Vv € Laa(0,T%; L,(T?)). Since
now, we know that the right-hand side of (3.16) belongs to La,(0,T%; L,(T?)), Theorem 2.2.
of [6] implies that

v € Loa(0,T% Ly(T?)) and  VZv € Lga(0,T%; Ly(T?)).
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Starting from that new information and arguing as above entails that the right-hand side of
(3.16) belongs to Lyqa(0,T7; L,(T?)), and so on. After a finite number of steps, we eventually

achieve v € Wp2(0,T% x T2).
For the 3D case we note that the information that v € Loo(0,7%; H'(T?)) implies that
(3.18) v € Loo(0,T; Lg(T?)).

Hence, to bound v - Vo in L,(T?), we need to have Vv in Ly with k such that % +1= %
(remember that 2 < p < 6 in the 3D case). By interpolation and the definition of a in (3.10),
we have

_ 4
(3.19) 190l < CIVZoly= o™,

Hence
40,2

da_
Vol < ClIVollgllvllg*,
and v - Vv is thus in L*/(4=9)(0, T9; L,(T?)) which, in view of Theorem 2.2. of [6] yields
O € Lygja—a)(0,T% Lp(T?) and V20 € Lygja—a)(0, 7% Ly (T?)).
Again, after a finite number of steps, we achieve
(3.20) HUHW;’Q(O,T‘SXTd) < 00.

Now, thanks to the trace theorem and the estimates that we proved for p, one may conclude
that, if T° is finite, then
T - T < d inf p(T) > 0.
s (0Tl o+ [(T)lhw) < o0 and inf p(T)

Thanks to that information, one may solve System (1.1) supplemented with initial data
(p(T),v(T)) whenever T < T, and the existence time Ty provided by Theorem 3.1 is in-
dependent of T. In that way, taking T = T% — T, /2, we get a continuation of the solution
beyond 79, thus contradicting the definition of 7.

Hence 7% = +oo. In other words, the solution (p°,v°) is global and all the estimates of the
previous sections are true on all interval [0, 7], and are uniform with respect to 4.

Step 4. The previous step ensures uniform boundedness of (p°,v°) in the desired existence
space. The last step is to prove the convergence of a subsequence. Since we have more
regularity than in the classical weak solutions theory, one can pass to the limit by following
the steps therein. However, this would give some restriction on =, if P = p? (namely v > d/2).
In our case, the higher regularity of the velocity will enable us to pass to the limit for any
~v > 1 (even for more general pressure laws) and by means of a much more elementary method.

To start with, let us observe that, up to extraction, we have
(3.21) ) = v in Lo(0,T x T for all T > 0.

Indeed, since (v9) and (v/£v!) are bounded in Lo(0,T; Lo), Lemma 3.2 of [9] implies that (v9)
is bounded in H%_Q(O,T; Ly(T%)) for all o > 0, which, combined with the fact that (v?) is
also bounded in Lo (0,7; H(T%)) implies that

(v°) is bounded in Hi(O, T x T9).
This entails (3.21) by standard compact Sobolev embedding.
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However, this is not enough to pass to the limit in the pressure term of the momentum
equation. To achieve it, we shall exhibit some strong convergence property for the effective
viscous flux G°.

From (3.11) and uniform estimates given by the previous sections, one knows that
(3.22) (G%) is bounded in Luo(0,T; Ly) N Lo(0,T; H') for all finite T > 0,
which already yields weak convergence.

To get strong convergence, we need to glean some compactness, and this will be achieved
by looking at uniform estimates for (G9).
Now, from the previous step, Sobolev embeddings and the relation

P = —div (P v°) — hodiv1?,
we gather that (P?) is bounded in Lo (0, T; W~1P) for all finite T > 0. Furthermore, we also

have the information that v/# div©® is bounded in Lo(0,T}; Lo). Since div (v°- V%) is bounded
in Ly(0,T; Wp_l) (again, use the previous step), one may conclude that

VtGy) is bounded in Ly (0,T; W, ™).
By suitable modification of Lemma 3.2 of [7], we deduce that
(G?) is bounded in H%_O‘(O,T; Wp_l) for all a >0,

and interpolating with (3.22) allows to get that (G°) is bounded in H?(0,T x T¢) for some
small enough 8 > 0. So, finally, up to extraction, we have

(3.23) G° = G in Ly(0,T x T forall T > 0.

We are now in a good position to prove the strong convergence of the density. After suitable
relabelling, the previous considerations ensure that there exists a sub-sequence (p™,v™)pen of
(p®,v%) such that, for all T > 0,

(3.24) Pt —*p in Leo(0,TxT% and o™ = v in Lo(0,T x TY).
Since for all n € N, we have

(3.25) py +div (p"v"™) =0,

the limit (p,v) fulfills

(3.26) pt + div (pv) = 0.

At this point, let us emphasize that, since divev € L1(0,7T; L) (another consequence of the
uniform estimates provided by the previous step) and p € Lo (0, T x T?), one can assert that
p is actually a renormalized solution of (3.26) (apply Theorem II1.2 of [13]), and thus fulfills

(3.27) (plog p)r + div (plog pv) + pdive = 0.

Of course, since (p™,v™) is smooth, we also have

(3.28) (p™log p™)¢ + div (p" log p™ v™) 4 p"dive™ = 0.

Then, remembering the definition of G™, we get

(3.29) (p"log p™); + div (p™ log p™ v™) + v p"P(p™) + v p"G™ = 0

and the limit version

(3.30) (plog p); + div (plog pv) + v~ 1pP(p) + v 1 pG = 0.
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Denote by plogp and pP(p) the weak limits of p"logp™ and p™P(p™), respectively. Since
functions z — zlogz and z — zP(z) are convex, we know that

(3.31) plogp > plogp and pP(p) > pP(p).
Furthermore, integrating (3.29) and (3.30) on [0,7] x T¢, we find that

V</Td(p"10gp” — plog p)(T') dz — /Td(pglogpg - pologpo)dfv>

T T
—I-/ / (p"P"™ — pP) dx dt + / / (p"G" — pG) dz dt = 0.
0 JTd 0 J1d

By construction, the term pertaining to the initial data tends to zero. Furthermore, since
(G™) converges strongly to G, the last term also tends to zero. This leads us to

T
/ (plog p — plog p)(T) dx + / / (pP — pP)dx dt = 0.
Td 0 J1d
Combining with (3.31), one may now conclude that

(3.32) plog p = plog p.

Since the function z — zlogz is strictly convex we find by standard arguments that (p™)
converges strongly and pointwise to p. Hence one can pass to the limit in all the nonlinear
terms (in particular in the pressure one) of the momentum equation, and to conclude that
(p,v) is indeed a solution to (1.1).

Besides, classical arguments that may be found in [13] ensure that p € C(Ry; L) for all
p < oo, and that strong convergence holds true in the corresponding space. Thanks to that
information, since (1.5) is fulfilled with data (pg,vy) by the sequence (p",v")nen, one may
pass to the limit and see that (p,v) satisfies (1.5) as well. Finally, since the internal energy
e is continuous with respect to time (a consequence of the strong convergence of p), one may
reproduce the argument that has been used in [9] so as to prove that \/pv € C(Ry;Lo). This
completes the proof of our existence theorems in dimensions 2 and 3. (]

We end this section with a fast justification of the convergence of solutions to (1.1) to those
of (1.7) when v goes to oo, leading to Theorem 1.3. As the proof goes along the lines of that of
Theorem 1.1, we just indicate the main steps. The starting point is the estimate provided by
Proposition 2.1 which ensures in particular (1.10), that (VG") is bounded in Lo(Ry x T?) and
that (v”) is bounded in Lo (Ry; H'), while Proposition 2.2 guarantees that (p”) is bounded
in Loo (R4 x T?). Hence, there exists (p,v) € Loo(Ry x T?) x Loo(Ry; H') and a subsequence
(p™,v™) of (p”,v") such that

Pt =% p in Loo(Ry xT?) and o™ — v in Leo(Ry; HY).

As in the proof of existence, in order to get some compactness, one may look at time weighted
estimates. More specifically, we know from Proposition 2.3 that if v > vy then

<2 T 12 . o2 CoT
sup p|v” |t dx + (u|VPOY|* + v|dive” | )tdedt < CoTe v,
te[0,1] JT2 0 JT2

and this ensures that of (v”) is bounded in, say, H'/4(0,T x T?) for all T > 0. Hence, we
actually have (extracting one more subsequence as the case may be),

v — v in LE.(Ry; La(T?)).
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Next, arguing exactly as in the proof of existence, we get that, for all finite 7" > 0,

(G”) is bounded in Loo(0,T; L2)NL2(0,T; H') and (VtGY) is bounded in Lo(0,T; W, ")
from which we deduce that (G") is bounded in H %_O‘(O, T; W, ) for all @ > 0 and, eventually
G" — G in L7 .(Ry;Ly(T?)).

Putting together all those results of convergence, one gets
Op+div(pv) =0 and O(pv) +div (pv ® v) — uAPv + VG = 0.

Since we know in addition (from (1.10)) that dive = 0, one can conclude that (p,v, VG)
satisfies (1.7). Finally, from the uniform bounds that are available for (p”,v"), one may check
that (p,v, VG) has the regularity of the solution constructed in Theorem 2.1 of [9], which is
unique. Hence the whole family (p”,v") converges to (p,v). O

4. THE PROOF OF UNIQUENESS

Here we show the uniqueness of the solutions we constructed in the paper, both in dimensions
2 and 3. The main difficulty we have to face is that having divv and VPv in L'(0,T; L) (see
Corollary 2.1) does not ensure that Vo is in L'(0,T; Ls,) so that, in contrast with our recent
work [7], it is not clear that one can reformulate System (1.1) in Lagrangian coordinates so as
to prove uniqueness. However, we do have Vv isin L,(0,7; BMO) for some r > 1, which will
turn out to be enough to prove uniqueness provided that the pressure law is linear. Actually,
we encounter the same difficulty as in D. Hoff’s paper [16]: since we have to estimate the
difference of the densities in Lo (0,7; H~!), we need, at some point, to bound the difference
of the pressures in H~' from the norm of the difference of the densities in H 1.

Here is the main statement of this section.

Proposition 4.1. Assume that P(p) = ap for some a > 0, and consider two finite energy
solutions (p,v) and (p,v) of (1.1) on [0,Tp] x T¢ (d = 2,3 ) with bounded density and ema-
nating from the same initial data. If, in addition, v and v are in Loo(0,To; HY), vtV and
VIV are in Ly(0, Ty x TY), /pt, \/ptv belong to Lo (0, Ty; Lo),

To
(4.1) Vi e LQ(O,T(); Lg) and / (1 + |10gt|)”Vf)(t>HBMo dt < 00,
0

then (p,0) = (p,v) on [0, Ty] x T<.

Proof. The general scheme of the proof is the same in dimensions 2 or 3. Assume that a =1
for notational simplicity and consider two solutions (p,v) and (p, ) to (1.1) corresponding to
the same initial data (pg,vo). The system for the difference

p:=p—p and w:=v-—0

reads

dpy + div (dp v + pdv) = 0,
42) { : ( )

pdvy + pv - Vv — pAdv — (X + p)Vdivdv + Vp = p v + pdv - V.

In order to show that dp = 0 and dv = 0, we shall perform suitable estimates in H-! for
&p(t), and for \/pdv in Lo(0,T x T?). To this end, we set ¢ := —(—A)"1dp (which makes
sense, since [r40pdx = 0) so that

(4.3) IVlle = llopll g+ = 1ol -1
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Now, testing the first equation of (4.2) by ¢ yields

ld
2 dt

IVl < de-vam&vwmx

The last term is bounded as follows:
ot Vods| < Vi 1 Vpola Vol

Regarding the first one, observe that (with the usual summation convention)

/ v.wépd:g:/ vj(?j(bAqﬁdac:—/ 8kvfaj¢8k¢da:+1/ divo [Vo|* da.
T Td Td 2 Jra
Hence, we have

< C[|Vo|Bmol|Ve & V3.

/ v-Vodpdx
Td

Now, in light of the following inequality (see e.g. [22, Thm. D]),
(4.4) 1120 < CllFl([og [|Lf[|1] 4 log(e + || flloo)),

we discover that

/ v-Vodpdx
Td

(4.5) < C|Vollsmol| Vo5 (| log [IVe13] + log(e + [V@12,))-

Since the densities are bounded by p*, we have
IVo(t)|loo < Cp*  for all t € [0, Tp).

Hence Inequality (4.5) implies that for some constant C' depending only on p*,

1d
2 dt

Since the initial quantity is zero, after integration, this gives for all ¢t € [0, Tp],

(4.6) 1613 < (Il + [Volsuol Voll2(1 + [log IV ]2)) ) V6]l

t t
(4.7) HV¢(75)||2§C< /0 I/ o]l dr + /O ||W||BMOHV¢||2<1+|log||v¢||2|>d7)-

Hence, using (4.3) and denoting Z(t) := supTStT_1/2||5p(7')||H,1, we get after using Cauchy-
Schwarz inequality, for all T' € [0, Tp],

t
(48)  Z(T) < C< s[lépT]/O IVollBmo Z(1 + |log 7| + |log Z|) dT + H\/ﬁ&JHLQ(o,Terd))
telo,
In order to control the difference of the velocities, we introduce the solution w to the
following backward parabolic system:

(4.9) { pwi + pv - Vw + pAw + (A+p)Vdivw = —pdv,
' U)‘t:T =0.

Solving the above system is not part of the classical theory for linear parabolic systems, as the
coefficients are rough and may vanish. However, if p and v are regular with p bounded away
from zero, this is well known, and the case we are interested may be achieved by a regularizing
process of p and v, after using Inequality (4.12) below for the corresponding regular solutions.
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Now, testing the equation by w, we find that

T T
(4.10) sup / p\w[Qd:r—l—// (1| VPw]? + v(divw)?) dz dt < // plv|? dz dt.
Td 0 JTd 0 JTd

te(0,T)
Next, we test (4.9) by w; and take advantage of the usual elliptic estimates given by
pAw + (A + p)Vdivw = —pw — pdv
that ensure that
P2 VEPw|f3 + v? | Vdivew|]3 = [|pw + pdv]|3 < p*[ly/p (@ + &3

in order to get

(@11)  sup / (WY Pw(t) P+ (divw(t))?) de
te(0,1) J1d

2 3 T
// (p[wt]2 6 *\VQPwIZ *\Vdivw|2)da: dt < 2/0 /er (plov> + plv - Vw|?) da dt.

If d =2 then we bound the last term as follows:

/m plv - VwlPdz < /p*|lp" o3IVl
<Cy *\\p1/4v\\i!!Vw\!2Hvzw!b

(p*)?
< O ol V|3 +

||V2w||
2 g

12 *
If d = 3, then we rather write that

1/2 3/2 1/2 3/2
/T plo- Vwldr < (o) ypolly [Vl Vel V2wl

< C(p"PIIVp I3Vl Vw3 + 19, *HVQsz-

Hence, using the properties of regularity of v, plugging the above inequality in (4.11), then
using Gronwall inequality, we get

(4.12)  sup / (plw]* + p|VPw|?* + v(divw)?)dz
te(0,T) JT4

T
+ / / (1| VPw|* + v(divw)? + 1| V*Pw|? + v*|Vdivw|® + plw|?) d dt
0J1d

T
SCT// p|ov|? dz dt,
0 JTd

with Cr depending only on the norms of the two solutions on [0, 7.

Let us next test (4.2) by w. We get

T T T
(4.13) // p|6u\2dxdt—/ dpdivwdz dt < / (0 w+ p(v- V) - w) dz dt.
0.J1d 0J1d 0 JTd
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One can bound the first term of the right-hand side as follows:

T T
/ dpv - wdxdt / / 126t 2% - wdx dt
0 JTd 0 JTd

<Nt720ll, oy 182V (@ w0)l 1y 0712

<720l oty IVEVOl o072 10 0,710
+ H ﬂé”LQ(O,T;LG) vaHLQ(O,T;Lg)) '
For bounding the last term of (4.13), one can just use the fact that

T
[ ot 50wt < Vi1l |90l maoiias loloise

Finally, we note that

T
/0 » dpdivwdz dt < T||t71/25pHLoo(0,T;H—1)||Vdivw”L2(0,T;L2)‘

Plugging the above three inequalities in (4.13), we get

T
(414 /0 /Td Pl dw dt < [t728pl1,_ o 7. (TIVivewlly o i)

+ CIVEV Ly 00 1wl o (0.7:2.00) + ClIVED Ly (0.7 L) va||L2(O,T;L3))
+ CllvVP ol Ly0,1:.) IV 2o 0.7 25) W Lo (0,73 1) -
Observe that our assumptions on v guarantee that we have
(4.15) IVEVO| 1y 07:00) + IVEO Lo 0,7:16) + VO La0.7: 1) < Cr-

Next, we have to bound the terms containing w in (4.14) by means of the data. Since de pw dx
need not be zero, Poincaré inequality (A.2) becomes

/ pw dx
Td

To bound the mean value of pw, we note that integrating (4.9) on [t, T] x T¢ readily gives

/Td(pw)(t, z)dz = /tT/w(p &) (r, x) dz dr.

Jwll2 < + 0" ([Vwl2.

Therefore we have

/T (pw)(t)da| < /o T2 p ol omr, forall ¢ e [0,T],
whence
(4.16) lw(®)ll2 < Cpe (IVw(®)ll2 + TY21V/p 0l py0,52,)) for all t € [0,T].

Then, combining with (4.12), we end up with

1wl £y 0,71y < CoxT"|\/p ol Ly07.1,) and IVwll 1,071y < Corllv/pdvllLy0,7L,)-

By interpolation and Sobolev embedding, it follows that for small enough ¢ if d = 2 (and
e=1/4if d =3), we have

(4.17) lwlla07:200) < CT* 7N /D 80 130,7:10)-
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Likewise, we have

2/3 1/3
IVl zy07:L5(12)) S WWHL/2 (0,T;La(T2)) ”VQU’”L/Q (0,T3La(T2))
1/2
and va”Lz(O,T;Lg(T3 ”vaL2 (0,T;Lo(T3)) HV2’LUHL/2 (0,T;Lo(T3))

whence
(418) ||vaL2(0,T;L3) < CT&”\/ﬁ&UHL2(O7T;L2) with «a= 1/3 if d= 2, o = 1/4 if d=3.

Finally, using once more that H'(T%) < Lg(T%) for d = 2,3, we get after plugging all the
above inequalities in (4.14), for all T € [0, Tp],

H\/MUH%Q(O,T;M) < CT1/3(Ht_1/25p||L°°(0,T;H—1)H\/E&UHLQ(O,T;LQ) + ||\fP5UH%2(0,T;L2)>'
Clearly, the above inequality implies that, if T is small enough then
(4.19) VB0 o011y < CTVZ(T).
Plugging that inequality in (4.8) and assuming that 7" is small enough, we obtain

2(t) gcT/O (1+ [log ) V5(7) | mrio Z(7)(1 + |log Z(r)|) dr for all ¢ € [0,T].

Then, Osgood lemma (see e.g. [1, Lem. 3.4]) implies that Z = 0 on [0,7], and thus, owing
o (4.19), that \/pdv =0 on [0,T7.
Now, since /pdv and dp are zero, the second equation of (4.2) becomes
pdv + pv - Vv — pAdv — (A + p)Vdivdv = 0,

which implies that

1 T :
SIVER I s+ | (HITPRIB -+ vldiv &lB) do =0,
Since [1q pdvdx = 0, this implies (in light of Inequality (A.2)) that d = 0 on [0,77], which
completes the proof of uniqueness.
To complete the proof of Theorem 1.2, it suffices to observe that Condition (2.67) implies
Assumption (4.1) in Proposition 4.1. O
APPENDIX A. SOME INEQUALITIES

The following Osgood type lemma has been used a number of times.

Lemma A.1. Let f and g be two locally integrable nonnegative functions on R, and assume
that the a.e. differentiable function X : Ry — Ry satisfies

X' < fXlog(A+BX)+gX forsome A>1 and B> 0.
Then we have for all t > 0,

ex 75fd’r
A+BX(t)§(A+Bef59dTX(0)) Pl fan,

Proof. 1t suffices to prove the inequality on [0,77] for all T > 0. Setting Y (t) := e~ fotngX(t),
then Z(t) := CrY (t) with Cr :=exp fOngT, we have for all ¢ € [0, 77,

BZ' < BZlog(A+ BZ) f < (A+BZ)log(A+BZ) f.
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Therefore, integrating once,

t
log(log(A + BZ(t))) < log(log(A 4+ BZ(0))) —i—/ fdr forall tel0,T].
0
Then considering t = T and taking exp twice gives
A+ BZ(T) < (A+ BZ(0))>® o 14,
Reverting to the original function X gives exactly what we want at ¢t = T. O

We also used the following Poincaré inequality.

Lemma A.2. Let p bein Ly(T%) with 1+ 5 =1 and 2<p < 2% if d>3 (2 <p < 400
if d=2). Assume that

(A.1) / pbdr =0 and M := pdx > 0.

Td Td
There exists a constant C, depending on p and on d (and with Co = 1), such that

C
(A.2) ||b]|2 < <1 + MPHP — ch/) Vbl for any real number c.
Furthermore, in dimension d = 2, we have
(A3) Il < Clog? e+ 12512 o
Proof. Let b be the average of b and b:=b—b. Then we have by Poincaré inequality,
(A.4) [Bll2 < [6] + [[]l2 < [b] + [IV2]]2.
Now, hypothesis (A.1) implies that for all real number ¢, we have
(A.5) —Mb= / (p — c)bdx.
Td

Therefore, by Sobolev embedding,
(A.6) MIB < lp = cllylIbllp < Collo = clly I VBl2

and, clearly, Co = 1. This gives (A.2).
To handle the endpoint case d = 2 and p = +o00, decompose b into Fourier series:
E(:E) _ Z /b\k 62i7rk~:c’
kez2\{(0,0)}

and set for any integer n,

by () = Z by 27k

1< [k|<n
By Cauchy-Schwarz inequality, it is easy to prove that

(A7) [bnloc < C'/logn || V]2.

Because the average of Zn is 0, one may write, thanks to (A.5) that for all ¢ € R,

—MEZ/TQ(p—c)gdm:/szgndaz+/w(p—c)(b—bn)dx.
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Therefore, using Hoélder and Poincaré inequality, and also (A.7),
MIb] < [|pll1]lballss + llp = cll2llb = bnll2
< ¢(iogn M +n7"p = 2 [ Vb]l2

Then taking n =~ ||p — c||2/M gives

(A8) Bl < Clog (e+ W) Vb,

which, combined with (A.4) yields (A.3). O

We used the following version of Desjardins’ estimate in [11].

Lemma A.3. Let p € Loo(T?) with p >0, and u € H*(T?). Then, we have for some universal
constant C,

||pu2||w\§>_
Iv/pul3

Proof. Let u:=wu — u and fix some n € N. Then, keeping the same notation as in the above
lemma and using Holder inequality,

1
(A.9) </ put dx) 2 < CH\/ﬁuHQHVUHZbg% <€+ lp ]—\/[c||2 N
T2

4 : =~ ~ ~\2 2 :
/pu de | = /(u—i—un—i—(u—un)) pu” dx
T2 T2
) 1
1 - 4
< fallpul + IVpullalm e + Il 17~ Tulls ([ putac) "

We thus have, using Young inequality and embedding H i (T?) — Lg(T?),

1

3 [
10) ([ utas) <2l ]+ ) + Clo T - .
Hence, taking advantage of (A.7) and of
(A.11) @ =@ 3 <™ Vall2.

Plugging (A.11) in (A.10), we get

1
3 ~ 11
([t ae)” < Ivaulatal + (Viognlyula-+ -l [9ul2) 19l

lpll2 ] Vull3
Iv/pull3

Then, taking n =~ and using (A.8) to bound |u| yields the desired inequality. O

APPENDIX B. END OF THE PROOF OF TIME WEIGHTED ESTIMATES IN THE 2D CASE

We here provide the reader with the proofs of Inequalities (2.57) and (2.62).
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Proof of (2.57). We use (2.45) to bound I, as follows:
1 -~
I, = Vv - V? <PU — ;V(—A)fl(G + P)) -vtdxr =: Io1 + Iog + Io3.
T2

From (2.68), we know that
(B.1) P IVEVEPu()|3 + VEVG@)3 < p* Vet o]
Since we have
Tl/ 1/2
Vo*

and a similar inequality for VG, combining (B.1) and Proposition 2.1 yields

1/2
IVEV*Polln 0 < ( V2P, om) (Mnﬂv%vnwj@z))

(p* )1/4

.11/2
(B.2) IVEV*PollLy07:00) + IVEVG 1, 0.7:10) < COT1/4”\/5UHLCO(0,T;L2)‘

Therefore, putting together with (2.44), we gather that

T
/ IZldt‘
0
.n1/2 Y
COT1/4H\/BUHL/OO(O,T§L2)H\/%U‘|L2(O’T;L4)'

Term Is9 is almost the same: taking into account (B.2), we obtain

IN

IV L0212y IVEVEPO| 1y (0.1:20) IVEON 1y 0.7:1.0)

(B.3)

IN

T
/0 Iy dt‘ < v IVl 00512 IVEVG Lao1: 1) VO 1o (0.7:10)

1/2 .
Cov ™ TVt ol ) 1 IVE B Lao.iLa)-

To handle Is3, we integrate by parts several times and get (with the summation convention
for repeated indices and the notation v := (—A)~!P):

(B.4)

IN

Irg = / akvﬂa]km 't dx

1 ; 1
= — 8kdivvai2k¢®’tdx+/ ! Db 00" t d
T2 v Jr2

14
1 D 92 ¥ 1 ~ 92 -7 1 7 22 ¥
=— | PO tdr + 2 GkGaik@bv tdr +— | Opv! O;,0 050" tdx
14 T2 vV JT2
1
T2

1 . )
+2/ 8kG8i2k1/)i;th:z+/ ! OXb 0;0" t duv.
14 T2 vV J12

Remembering that v := (—A)_lﬁ and integrating by parts one more time in the first term
of the right-hand side just above, we conclude that

1 ~ ) )
(B5) Ihy=-—55 | Pdivi'tdr - / Ot O0" t da
v T2

+y2/ G 02 v’ tda:—i—l/ v D% ap 0;0" t da.
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Hence, using Holder inequality and the continuity of V2(—A)~! on L4(T?), we get

r VE( |
[t dt\ S22 (1P ruen IVE Vil oy

+IVGIl Ly 0.1x12) |1 Pll o 0,700 |VEON L0 10)

Vol 1Bl omers [V v«a|rL2<o,w>>-

Hence, thanks to (1.5) and (2.48), one can conclude that

T
(B.6) /0 I»3(t) dt' < CoVT (v M IVEVll Lo0110) + V2 IVEO | Ly0.7:0) )

Proof of (2.62). We use the decomposition Ky = Ka1 + K22 + K33 with

Ky := / (VPv - Vdivw) - 0t dx, Ky := —i/ (V2(=A)'G - Vdivv) - ot dz
T2 T2

1 -
and K3 := —/ (V3(=A)"'P - Vdivo) - 0t dz.
T2

In order to handle K5 i, we integrate by parts (note that divPv = 0) and use the fact that
vdive = P+ G. We get, with the usual summation convention

L~ . 1 . .
K2 1= —{ 8Z(PU)] Pajvl \/idx + ; 01(7)1))] \/iajG i‘ll \/£d$
T2 T2

Therefore,

T o~
[ e dt' < VTIVPullisorin 1Pl 0mimy IVEVHl a0zt

VPOl Ly0.752.0) IVE VG L0750 IVED | Ly (0.7 L0)

. .11/2 .
(B.7) CO(\/TH\/{EVUHLQ(O,T;LQ) + T1/4||\/ﬁU”L/OO(QT;LQ)H\/gU”Lg(O,T;L;))'

IN

Next, integrating by parts in Ko 9 and using vdive = P+G gives
vEyy =— | VIVG-Vtodivodz + vt v2(—A)—1é VIV divo de
'JTZ
\[

v

V2(=A)7IG ViV G da
L Vi

v T2

VIVG - Vto divu dz +
2
V(=A)'G - ViV Pda
from which we get

T
V/O K2,2dt‘ < ||diVU||L4(0,T;L4)||\/iﬁ|\L2(o,T;L4)||\/£VG||L4(0,T;L2)

+ VTN G|y 0.7:L0) VIVl o 0750 (1G] Lago,r:20) + 1 Pllao.7:L4)
] 1/2 - :
CoT A IVt bl ooz VAL (o 7,1 + v VT IVEVilla(o,:82).

(B.8)

IN



33
Finally, using again the notation v := (—A)_lﬁ, we have
V2 Ky3 = — /T 8,051 8; Pt da: — /T 0,04 9; Gt du
- / 8;0%¢ P tv' da + / 8,050 P t9;0" da: — / 8,051 0;G 10" da
T2 T2 T2
1 ~ ~ . .
= — / P2 tdiv o dx + / 81'8]'1/}Pt8j2'}1 dx — / 818]¢ @th’ﬂ dx.
2 Jr2 T2 T2
Therefore,

1/2

T ~
/0 K3 dt’ S \/T||PH%4(O,T;L4)H\/Zv'[)HLQ(O,T;LQ)

+HJBHL4(0,T;L4)H\/%VGHM(O,T;LQ)Hﬁi)”m(omm)
(B.9) < Cov VTH\/EVf}HLz(o,T;LQ) + CO(VT)1/4H\/ﬁ@HlL/j(O,T;LQ) H\/%@HLQ(O,T;L;)-
Plugging (2.4), (B.2), (2.44), (2.47) and (2.48) in (B.7), (B.8) and (C.29) yields (2.62).

APPENDIX C. THE THREE-DIMENSIONAL CASE

This section is devoted to extending our existence result to the three-dimensional torus.
For expository purpose, we focus on the global-in-time issue for small data, although a similar
statement may be proved locally in time for large data.

Theorem C.1. Let vg € H'(T?) and po be a bounded and nonnegative function on T3. There
exists vy > 0 depending only on @, v and on the norms of the data, and co > 0 such that if

1 ~ ©’
2 2 . 2
(C.1) MHVPU0||2+;HP0||2+VHd1VUOH2 Scoma
then System (1.1) has a global solution (p,v) having the same properties as in Theorem 1.1.
The general strategy is basically the same as for the two-dimensional case, except that the
smallness condition spares our using the logarithmic interpolation inequality. We just point
out the main steps, and what has to be changed.

Step 1: Sobolev estimates for the velocity. The counterpart of Proposition 2.1 reads:

Proposition C.1. Let (p,v) be a smooth solution of (1.1) on [0,T] x T2, fulfilling (1.8) and
(2.3). Under condition (C.1) and for large enough v, there ezists a constant Cy depending
only on the data such that for all t € [0,T], we have

1, ~ ~ P* P*
ul|Po(t)|13 + ;(HG(t)H% +IP@®)3) + 7\\(\/57))@)”5 + 7”6@)!\1
' 2 B io2p 2, 2 T 2
+ ; v oll3 + EHV Pl + EHVGHQ + v|[divol]3 + THVUHQ dr < Co.

Proof. In order to be able to consider general initial data with large energy, it is suitable to
modify the definition of £ as follows: keeping the same definition for &£, we set

(C.2) E=E+ ” E + 25, (P*— P(1)),
which ensures that

(C.3) £ > Bpuf3+ i(||C~¥||§ +1P|I3) + Pillﬁ@ll% + Pj\l@\ll-
-2 2v 2v 2v
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Then, we start from Inequality (2.15) that is valid in any dimension and, instead of (1.13), we
use that

1/2 1/4 1/4
€y ([ottar) < ([ obPan) ([ ) <G vEol 1T
T3 T3 T3
One can thus bound the right-hand side of (2.16) as follows:

3/ plo-VPu? dz < 3/p||p" 0|3 VPol3
T3

< C,o*3/4|\fv||1/2llvv||3/2IIV7’ 1521V Pol 3

< *IIAPUH2+0 II\ﬁvII%IIWHSIIVPvH%,
4 Iz
3 2 14 \1/2. =201 1/4, 12117712
vz o] [VPEATG][ e < o) 0 RGN
<c< )34y —2||fv||”2HwnwHGH”ZHVGH?Q
(p >

+C

and also, thanks to Inequality (A.2),

P 1/2 3/2
| oo PPATIPE o < C Ul Vel PIE

V2

*\3/2
, o
sc( D IelZIP Bl
) ||P\|2

I/

IIV I3 +C IVoli311P13.

Next, instead of (2.20), we write that, in light of Inequality (A.2) with p = 2, we have

1 1 ~
" ) Pv-VG < —[|Pllo(1 + [IAll2)[Voll2 VG2

S

HPII2 (1 + 11212)*[V]l3-

Therefore, the right-hand side of Inequality (2.21) becomes

*\3
2(/32)
v

2 -
P2 Vol + = / &2 hde
1% T3

reivpiiees((2)° O ez + L I

Then, following the computations leading to (2.26) and assuming that v satisfies

*

P
(C.5) v> 8(p*)37 and % > 8||h/|eop®,

we get,

( )

d
e vp<o(ivpeivn((2))

1) + X oy )
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with

1 . 1
D= VAol +

8p*

12
4p*

IV*Pll3 +

1 P*
VG2 + / (dive)2(v + h) da + "2 | ol2.
2 T2 2V

Finally, using Inequality (C.3), we discover that if v satisfies (C.5), then we have the differential
inequality

d 2o OPPIPIE (04 o
(C.6) dt5+D§CIIV’vH25( gz o PeEn )
Setting
t 2 (p)* P (P)"
X(t):g(t)+/2)d7-, f(t) :=C||Vu(t)|lz, A:= (112 and B := u? Eo,
0

Inequality (C.6) rewrites
d
—X < (AX +BX?)f(1).

dt
This may be integrated into
X(t) < XO)  aprmar gup e.m B
V1+eX2(t) ~ /14 cX2(0) A
Bounding f according to (1.5), we see that under the smallness condition
A 1
(C.7) & < & —eam—>
B 2CAEg
e » —1
we have
X2( ) 2CAEq
0 e »
: X2(t) < for all ¢ > 0.
(C.8) (t) < 1—|—cX2(0)<1 0 202EO> orall t>0
T Trex2(0)€

Note that the largeness condition (C.5) on v guarantees that the argument of the exponential
function above is very small. Therefore, the smallness condition (C.7) may be simplified into

5
L
o KL ——
(p*)*Eo
For that latter condition to be fulfilled for v large enough compared to EZ, it suffices that
(C.1) holds true. O

Remark C.1. Note that the smallness condition means that one can take the initial energy
as large as we want provided that v is large enough, but that divvg must be (9(1/_1/2). At the
same time, there is no smallness condition on pg — 1 whatsoever.

Step 2: Upper bound for the density. In order to adapt Proposition 2.2 to the case
d = 3, the only changes are in (2.34) and (2.36). As regards (2.34), one may still start from
(2.33) then combine with (C.4) in order to get

_ 7 1 3 7 1 3
(C.9) I(=2)" (pv)lle < ClP)IVpll3 IVolI3 < Clo")SEFIIVoll3-
Next, instead of (2.35), in order to bound the commutator term, we write that

(C.10) I[v?, (=8)7'3i051pv"lloo S N7, (=) 0:0100" || 1,28 < IV0ll6lpv]ls-
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Now, combining Hélder inequalities, Sobolev embedding and interpolation inequalities yields
19 1 9
lpolls < (p%) = [lv/poll’ Hvll10
(o) B VAol HWH

i 9
C(p*) 3 | /poll3 0HVvHé“)IIVUHém-
Therefore, in T3, Inequality (2.35) becomes
117, (=) 70,0 )v e < C") B /B0l Vo] [V0l| 0
In order to bound the last term, we use that
IVolls < IVPvlls + v~ (IGlls + | Plle)
SIVPPolla + v (VG2 + 1| Plloo)-
Hence, using the energy conservation (1.5) and the definition of £ and D,

49 ~ 49
4 . o L 27 D\ 80 P\ 1
1) IR (-8) 10 £ BBVl (V)" 4 (1) 7).

v

Plugging inequalities (C.9) and (C.11) in (2.32), we get
+ + Y= 1 v %\ L é ! —-L t 7' 3
(CA2) [ETOlloo < IFT(O)lloo +——Eo + C 5 (p7)* Bg | IVo(r)ll; dr

#) 22 t
1% 0 v

Since the integrals in the right-hand side may be bounded in terms of the data according to
the basic energy inequality (1.5) and to (2.38), we eventually get if v is large enough:

-1

_27
IEY ()]l < ||FH(0)]|oo + Cov— 55 + L2 B,

with Cj depending only on Ey, &, ||pollec, i and . From this point, one can conclude as
in the two-dimensional case that (2.29) is fulfilled if v is large enough.

Step 3: Time weighted estimates. As in the 2D case, the starting point is Identity (2.43).
However, Inequality (2.44) that has been used all the time has to be replaced with an estimate
for t1/8Vv in Ly(0,T x T%): we write that the previous steps and to (B.1) imply that

1/2 1/2

OTL3)”V7)UHL2 (0,T;Lg)
9y 11/4 97 111/2
(0,T;L>) IVt V2Pol o1 IV POl 0 1ersy

(C.13) < Collvot ol o1,

Similarly, we have

”tl/gvpvﬂm(o TxT3) < Htl/A‘VP’UH

< VPl

||751/8V2(—A)_lé\|L4(0,TxT3 N ”G||L4 (0,TxT3)
1/4 1/4
S NG 021 IVEV G (0 g IV G S ey
(C.14) < coyl/s\\\/%|y;{j 0 TiLa)
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Since (2.48) is valid in any dimension, one can conclude that
(C.15) 1350 o xmsy < Co(IVpE ol + AT,

Substep 1. Compared to d = 2, the only change lies in the estimate for fT;,» pdivu|o]*t dz.
Now, still using that dive = v=}(P + G), we write that

/ pdivo|o|*tdr < 1/1/ (P + Q)plo|*t dz
i T2

< v (1P laolVoE o113 + /o IG 131V bll6 v/ ]]2)
< Cov (Wt I3 + IG5 IV G113 |V Vil|al|V/pE 0]lo)-

The first term may be treated as in the 2D case. As for the second one, we use the fact that
(2.68) ensures that

VG2 < Vo VP illa-

Hence, using Proposition 2.1 to bound ||G||2, we get

T T
[ patiteasa < e[ rfptvu%+u—3/4/ VBl IVl Ve Vet
0JT?2 0
Co r .12 1 T . .12 1% T .12
<2 [ivetols+— [Ivpsllvatolar)+5 [ Ivivilae
v \Jo V¥ Jo 0

In the end, we thus obtain
1d 1
1 t o 2da — 012 d
©16) [ ol da _2d [ plifae =3 [ plof ds
Co .12 1 T . ) H T )
-— ||\/PtU||2+7 Ivpolalvetolzdt ) =5 [ [VEVH|3 dt.
v \Jo Vv Jo 2 Jo

Substep 2. We have thanks to (C.15):

/OTll( t)dt

For bounding I2, we decompose it into three parts, as for d = 2. For I, we write that

(C.17)

< CoT1/4(H\/7’UHl/2 o1ina) TV PTYN IVEVS | Ly0.rxm9)-

T
| o dt\ < IVEVllL 02220 IVP0 ooy [ VE Ol otz

Let us notice that

- 11/2 _
(C.18) ”t1/4vaLoo(0,T;L3) < CO(H\/IEUHL/OO(QT;LQ) +v 2/3T1/4)
that stems from the fact that, as already used for proving (C.13) and (C.14), we have
L 01/2
(C.19) 1AV Poll L oize) < CollVaEol Y 01t
1/2
(C.20) 114G L0z < Cor IVAEDNY? gy

and from the obvious inequality

2/3 1/3
(C.21) 1Pl oritay < IPIG o 2 1P1L2 sy < vM3C0-
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Then, using Sobolev embedding and (C.18), we obtain

/0 ledt'<coT1/4(r\\/7v||2f0TL2)+ V23TV | VAV o 1)

In order to bound Iss, we now write that

T
/ 122 dt
0

Therefore, using the previous section and (C.18), we get

(C.22)

SvTHIVEVI L 070 VGl a0 mx13) IVE D] Lo 0,7:16)-

T
(C.23) / Iggdt‘ < Cov 2TVt o]} oy TV T IVEVE| Ly 00 x79)-
0

To bound I3, we use (B.5) as in the two-dimensional case. The first two terms of the decom-
position may be bounded as before. For the third one, we use the fact that

T ~ . ~
/o - 0,G 05 ' tdz| SVT VG| y0.1x1) |1 Pll 1 (07:15) 1VE D Lo (0,7:16)

< C[)\/TH\/EV'[}HLQ(O,TXT?’)
and that

/1r3 O’ O 050" tdr| < Tg/SHtl/gvaL4(0,Tx’]I‘3)”ﬁ"L4(O,T><T3)H\/ZV'DHLQ(O,TX’]I‘?’)

<C y1/4T3/8(||\/7v||2§ 071y F VAT IVEVO g0, mm).
Hence, one can conclude that

T VT | T%8 1/4 .
/0 Iz dt| < Co<y3/2 Yy 1v/pt o ”L/oo 0,T;L2) >"ﬁvv“Lg(O,TxT3)-

Putting together all the estimates of the second step, we get

T D T
(C.25) — u// (Av) -vtdrdt > ,u/ |Vo|%t da dt
0JT3 Dt 0

1/2 - .
- 00T1/4(||\/7U||L/00 0,T;L2) +v 2/3T1/4> H\/EVU”LQ(O,TX’]T:‘)-
Substep 3. To bound K7, we write that

T
|
0

(C.24)

v < CT1/4’\tl/svv\\L4(o,T;L4)Htl/s(ﬁ + é)\|L4(0,T;L4)H\[tdi"@HLg(o,T;Lz),
whence
4 < 1/4 - 111/4 —3/41/8
(C26) 14 ) K1 dt| < CoT (H\/EU”LN(O,T;LQ) +v T )

.1/4 1V U
x (Vl/g”\/ﬁUHL/OO(O,T;Lz) + ATYS) |V 0| Ly 0.7 10)-

We decompose K> as in the case d = 2. To bound K> 1, we write that

T ~
v /0 Koy dt| < VTPl Ly0zxe 1 Ploorxrs VE Vol nyorrs)
HIVEVP| Lo 0,1:L5) I VGl Ly 0,7513) IVE O | 0,73 6)
(C.27) < Co(VT + T4Vt oIl (o o)) IVE VO Lygo.mms).
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For K» 2, we have

T
V/O K2,2dt‘ < IWtdivollp 0,705 1VEON 1y (0.7:26) IV Gl Lo 0.7 xT2)

YRG0 IVEVO| Lo 1:L0) (182G a2y + 13 P Lyt
1/2 .
(C.28) < CUT1/4(T1/8 Sy 3/4H VP t”HL/OO OTLz))H\/EVUHLQ(O,T;LQ)'

Finally, we have

T o~
)2 / K2,3dt\ < VTP, 010 VY6 Lo 150

VTPl 07525 I VGl o000 IVE B L 0.7:20)
(C.29) < CoVVT|IVEVHl| Ly(0,7:Ls)-
Plugging (2.4), (B.2), (2.44), (2.47) and (2.48) in (C.27), (C.28) and (C.29) yields

/ Ko dt
0

The conclusion of this step is that, if v is large enough then

T
(C.30) (v—p // —levv vtdrdt > ( V—M)// (divo)>t dx dt
T3 0 JT3

- CU( 1/4f T+ T1/4‘|ﬁv|’2€ 0,T;L2) )H\/iv{)HLQ(O,T;Lz)
= Co(v T IRt 2 o, + 7 SVT) IVE Y 3] 10,7, 10)-

Substep 4. Term L; may still be bounded according to Inequality (2.65). As for Lo, we have

< CO(\/»—’_ T1/4H\/> Hi/: (0,T;L2) )|’\/£V1}||L2(O,T><’]T3)-

v

T
1, = ..
[ ma0at] < 1P o leiv il

+ ;”PHLOO(O,T;Lg)HVG||L2(0,T;L2)H“"||L2(0,T;L6)

+ 1Pl L 0.7:L00) VOl o075 [[E VOl Lo 0,7:2)
< CoVT |[VEV| 1y (0.7 L)-

So this step gives

D
(C.31) — VP -otde > —// (div0)? t da dt
T3 D T3
— PllcTv™ 1Hle”HL2(o,T;L2) — CoVT|IVE V| 1y (0,7:10)-
Susbstep 5. Combining Inequalities (2.53), (C.25), (C.30) and (C.31) yields for large v,
.12 T .12 3v T .2 T . )
VAR a2 | IVEVPolgdey [ IVEdivol3d <2 [ div oot ol d

1/2
+||\/5U||L2 0,T;L3) + [Pl TV~ l”ChVUHL2 0T><1I‘2)+ COT1/4( 1/8||\/>“J||L/oo (0,T:L5)
1/2
+V3/8T1/4) H\[dIVU”LQ(O,T;Lg) + COT1/4(”\/EUHL/OO(0,T;L2) + T1/4) H\/EVUHLQ(O,T;LQ)'
Playing with Young inequality and Gronwall Lemma yields Prop. 2.3 for d = 3.
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It is now easy to adapt Corollary 2.1 to the 3D case: we start from

=~ ~n1l/4 3/4
Gl S IGIS IV G

Hence, remembering (2.68) and using the embedding H'(T3) < Lg(T?),

Gl S (054G 33 IVE V|5,

Therefore, as in the 2D case,

iG]

5—3¢

1 3(14e) 14e, 1 ~ 14e L, 304e) T 5.5 B
LTis(O,T;Loo)’E(p*) v (2 |Gl L 0,1i2) ”\/EVUHLZEIO,T;LQ) 0 P ’

and one can thus conclude that dive is in L14.(0,7; Ls) provided that ¢ < 1/3. Bounding
Pu is left to the reader.
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