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Abstract Continuous environmental change – such as slowly rising temperatures –
may create permanent maladaptation of natural populations: Even if a population
adapts evolutionarily, its mean phenotype will usually lag behind the phenotype fa-
vored in the current environment, and if the resulting phenotypic lag becomes too
large, the population risks extinction. We analyze this scenario using a moving-
optimum model, in which one or more quantitative traits are under stabilizing se-
lection towards an optimal value that increases at a constant rate. We have recently
shown that, in the limit of infinitely small mutations and high mutation rate, the evo-
lution of the phenotypic lag converges to an Ornstein-Uhlenbeck process around a
long-term equilibrium value. Both the mean and the variance of this equilibrium lag
have simple analytical formulas. Here, we study the properties of this limit and com-
pare it to simulations of an evolving population with finite mutational effects. We
find that the small-jumps limit provides a reasonable approximation, provided the
mean lag is so large that the optimum cannot be reached by a single mutation. This
is the case for fast environmental change and/or weak selection. Our analysis also
provides insights into population extinction: Even if the mean lag is small enough to
allow a positive growth rate, stochastic fluctuations of the lag will eventually cause
extinction. We show that the time until this event follows an exponential distribution,
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whose mean depends strongly on a composite parameter that relates the speed of
environmental change to the adaptive potential of the population.

Keywords adaptation · evolutionary rescue · global change · Ornstein-Uhlenbeck
process · phenotypic lag · population extinction

Mathematics Subject Classification (2000) 92D15

1 Introduction

With global change threatening the survival of many species, an increasing number of
theoretical and empirical studies focuses on the potential role of “rapid evolution” and
“evolutionary rescue” in preventing extinction (reviewed in, e.g., Hairston et al, 2005;
Gonzalez et al, 2013; Kopp and Matuszewski, 2014). An important parameter in these
studies is the mode of environmental change, which a given population may experi-
ence as either sudden or gradual (e.g., Gomulkiewicz and Holt, 1995). Here, we focus
on gradual change, as experienced, for example, by oceanic phytoplankton exposed
to increases in surface temperature and acidity (e.g., Collins et al, 2014). This sce-
nario can be addressed in the so-called moving-optimum model, which assumes that
one or more quantitative characters are subject to stabilizing selection towards an op-
timal value that increases (or decreases) over time. If the optimum moves at constant
speed, an evolving population will follow at a certain phenotypic distance or “lag”,
whose size depends on the speed of environmental change, the strength of selection
and the available genetic variation (reviewed in Kopp and Matuszewski, 2014). In a
seminal study, Bürger and Lynch (1995, see also Lynch and Lande, 1993) derived a
“critical rate of environmental change”, beyond which the lag becomes too large for
the population to tolerate and extinction is inevitable. Their model (and subsequent
extensions, e.g., Gomulkiewicz and Holt, 1995; Jones et al, 2004; Gomulkiewicz and
Houle, 2009; Chevin et al, 2010) uses a quantitative-genetics approach, that is, it
assumes that adaptation occurs from standing genetic variation, the trait under selec-
tion is determined by many loci with small individual effects, and genetic variance is
constant (although the latter assumption can be relaxed in simulations).

In contrast, Kopp and Hermisson (2007, 2009a) focused on adaptation from new
mutations, and investigated how the moving optimum affects the probability and time
of fixation for alleles of both small and large effect. Following this work, Kopp and
Hermisson (2009b) formulated an “adaptive-walk approximation”, which neglects
fixation time and assumes that the population evolves via a stochastic jump process,
where an “adaptive jump” (or “step”) occurs whenever a beneficial mutation arrives
and escapes loss due to genetic drift (see the strong-selection-weak-mutation model
introduced by Gillespie, 1983a,b). They showed that the characteristics of the adap-
tive walk (in particular, its step-size distribution) depend crucially on a composite pa-
rameter γ , which can be interpreted as the ratio of the speed of environmental change
to the “adaptive potential” of the population. Small γ (slow change/high adaptive po-
tential) corresponds to an “environmentally-limited regime”, in which the population
stays close to the optimum and only small-effect mutations contribute to adaptation.
In contrast, large γ defines a “genetically-limited regime”, in which the phenotypic
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lag is large and the adaptive walk is shaped primarily by the distribution of incoming
mutations.

Matuszewski et al (2014) extended this model to account for a multidimensional
phenotype with universal pleiotropy (meaning that each mutation affects every trait).
This amounts to a moving-optimum version of Fisher’s well-known “geometric model”
(Fisher, 1930), which was originally introduced to argue for the pre-eminence of
small mutations in adaptive evolution, but later has been shown to provide empiri-
cally accurate predictions under a wide range of conditions (e.g., Orr, 1998, 2005;
Martin and Lenormand, 2006; Tenaillon, 2014). A key feature of Fisher’s model is a
“cost of complexity”, since an increase in the number of phenotypic dimensions de-
creases the proportion of beneficial mutations and, hence, the rate of adaptation (Orr,
2000). Under a moving optimum, this translates into a larger phenotypic lag and an
adaptive walk that proceeds via rarer (but larger) steps (Matuszewski et al, 2014).

The adaptive-walk approximation to the moving-optimum model also poses some
interesting mathematical problems, which have been covered in depth by Nassar
(2016) and Nassar and Pardoux (2017). Recently, Nassar and Pardoux (2018) de-
veloped a “small-jumps limit” to the adaptive-walk approximation, by assuming that
infinitely small mutations arrive at an infinitely high rate (similar to the “canonical
equation” of adaptive dynamics, e.g. Geritz et al, 1998; Champagnat et al, 2002;
Champagnat, 2006; Boettiger et al, 2010). In this limit, the evolution of the phe-
notypic lag converges to an Ornstein-Uhlenbeck process around a long-term equi-
librium, providing simple analytical predictions for its mean and variance. The aim
of the present paper is to use this small-jumps limit as an approximation to adap-
tive walks with finite step sizes, as well as to more genetically explicit models of
polygenic adaptation under a moving optimum. We show that the approximation
works well in part of the genetically-limited regime. For the environmentally-limited
regime, we obtain some scaling relations based on a different approximation from
Matuszewski et al (2014). Finally, we exploit the above-mentioned Ornstein-Uhlen-
beck process to gain some insight into the long-term extinction risk of populations in
slowly-changing environments.

2 The model

Following Matuszewski et al (2014), our model is set up as follows: A population of
constant size N is subject to Gaussian stabilizing selection towards a (d-dimensional)
moving optimum that changes linearly with speed vector v. That is, at time t, the
phenotypic displayed by an individual with trait vector z equals x = vt− z, and the
corresponding fitness is

W (x) = exp
(
−x′Σ−1x

)
, (1)

where the positive definite matrix Σ describes the shape of the fitness landscape (and
′ denotes transposition). Without loss of generality (Matuszewski et al, 2014), we set

v = ve1 with v > 0, and (2)

Σ = σ
2I, (3)
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where e1 is the unit vector (1,0, . . .)′ and I the identity matrix in Rd . In other words,
v is a horizontal vector and Σ is isotropic. Note that, in the following, we will retain
boldface notation for the lag x even in the one-dimensional case (d = 1), whereas
we will generally refer to the speed of environmental change as v (the only non-zero
element of v). We will also refer to σ−2 as a measure for the strength of selection.

For the adaptive-walk approximation, the population is assumed to be monomor-
phic at all times (i.e., its state is completely characterized by x). Mutations arise at
rate Θ/2 = Nµ (where µ is the per-capita mutation rate and Θ = 2Nµ is a standard
population-genetic parameter), and their phenotypic effects α are drawn from a dis-
tribution p(α). In this paper p(α) always is a multivariate normal with mean 0 and
positive definite covariance matrix M, that is

p(α) =
1√

(2π)d det(M)
exp
(
−1

2
α
′M−1

α

)
, (4)

even though some of the results by Nassar and Pardoux (2017, 2018) are valid under
more general conditions. In the isotropic case, M = ω2I, where ω is the variance of
mutational effects. For general M, we define

ω̄
2 = d

√
det(M), (5)

which is the geometric mean of the eigenvalues of M and can be loosely interpreted
as the average variance of mutational effects across phenotypic directions (see Ma-
tuszewski et al, 2014).

We neglect the possibility of fixation for deleterious mutations. Yet even benefi-
cial mutations have a significant probability of being lost due to the effects of genetic
drift while they are rare. A mutation with effect α that arises in a population with
phenotypic lag x has a probability of fixation

g(x,α) =

{
1− exp(−2s(x,α)) if s(x,α)> 0,
0 otherwise

(6)

where

s(x,α) =
W (x−α)

W (x)
−1≈ (2x−α)′Σ−1

α (7)

is the selection coefficient. Equation (6) is a good approximation to the fixation prob-
ability derived under a diffusion approximation (Malécot, 1952; Kimura, 1962), as
long as the population size N is not too small. Note that Matuszewski et al (2014)
used the even simpler approximation g(x,α)≈ 2s(x,α) (Haldane, 1927; for more ex-
act approximations of the fixation probability in changing environments, see Uecker
and Hermisson, 2011; Peischl and Kirkpatrick, 2012). Once a mutation gets fixed, it
is assumed to do so instantaneously, and the phenotypic lag x of the population is
updated accordingly. We call the resulting stochastic process Xt an “adaptive walk”.
Three example realizations are illustrated in Figure 1.

In a rigorous mathematical treatment of the above model, Nassar (2016) and Nas-
sar and Pardoux (2017) have formalized the process Xt – describing the evolution
of the phenotypic lag via the quasi-instantaneous fixation of beneficial mutations –
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Fig. 1 Three example realizations of an adaptive walk in one dimension (d = 1), showing the evolution
of the lag Xt between the population phenotype z and a linearly moving optimum vt, for three different
speeds of environmental change v. In (A) and (B), the process is recurrent, whereas in (C) it is transient.
(A) corresponds to the environmentally-limited regime and (B) to the genetically-limited regime (see main
text). Results are from simulations of equation (A1) (“adaptive-walk simulations”) with ω2 = 1, Θ = 1
and σ = 0.1.
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by means of a stochastic differential equation, which we here repeat in Appendix A
(eq. A1). For the univariate case (d = 1), they show that Xt is (Harris) recurrent if
v < m (see Fig. 1A,B) and transient if v > m (Fig. 1C), where

m =
Θ

2

∫
R+

α p(α)dα =Θω/
√

8π (8)

is the rate of adaptation that is attained when every beneficial mutation goes to fixa-
tion. (The behavior in the limiting case v = m depends on additional technical condi-
tions.) For d > 1, we conjecture that the above criterion remains valid in the case of
isotropic mutations (M = ω2I), whereas in the presence of mutational correlations,
simulations suggest that the value of v at the boundary to the transient case isless than
m.

The aim of this paper is to better understand the behaviour of the process Xt
by using the small-jumps limit developed in Nassar and Pardoux (2018) as an ap-
proximation. To assess the performance of this approximation, we will compare its
predictions to the results of two types of simulations, using methods developed in
Matuszewski et al (2014).

First, “adaptive-walk simulations” (like those shown in Fig. 1) are performed by
a straightforward implementation of equation (A1), that is, by repeatedly (i) drawing
the waiting time for a new mutation from an exponential distribution with intensity
Θ/2; (ii) drawing the size of the mutation from its distribution p(α) (eq. 4); and (iii)
accepting the mutation with its fixation probability g(x,α) (eq. 6); note that, except
for the simulation of extinction times, we used the approximate expression for the
selection coefficient s given on the right-hand side of eq. (7), which causes fewer
numerical problems at high values of v. The calculation of summary statistics for
these simulations is described in Appendix B.

Second, individual-based simulations represent a much more realistic model, in
which fixations are not instantaneous and multiple mutations may segregate simulta-
neously. Briefly, we model an initially monomorphic population of N haploid individ-
uals, which are characterized by L genetic loci that additively determine the multivari-
ate phenotype z and, hence, the lag x. Generations are discrete and non-overlapping.
Each generation comprises (i) viability selection (individuals are removed with prob-
ability 1−W (x), eq. 1), (ii) population regulation (random individuals are removed
as long as the population size exceeds a carrying capacity K) and (iii) sexual repro-
duction (individuals are randomly assigned to mating pairs, each of which produces
B offspring; offspring genotypes are derived from parental genotypes by taking into
account recombination at rate r between adjacent loci and mutation at per-locus rate
µ). In all simulations reported here, we used L = 10, K = 1000, ω = 1, µ = 5×10−5

or µ = 5×10−4 (yielding a population-wide mutation rate Θ = 2NLµ = 1 or Θ = 10
and mutational variance Vm = Lµω2 = 0.0005 or Vm = 0.005), and B = 2 or B = 8;
for more details, see Matuszewski et al (2014). Note that individual-based simulations
will be applied only to a subset of parameter combinations investigated by means of
adaptive-walk simulations.
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3 Results

3.1 Evolution of the phenotypic lag

Nassar and Pardoux (2018) have studied a small-jumps limit of the process Xt (eq. A1)
based on the rescaling

α̃ = εα and t̃ =
t

ε2 with ε > 0

of mutational effects and time, respectively. In particular, they show that, for ε → 0,
the rescaled process Xε

t converges in probability towards a deterministic solution X̄t ,
given by the differential equation

dX̄t

dt
= v−σ

−2
ΘMX̄t . (9)

For x0 = 0, its solution is

X̄t =
(
1− exp(−σ

−2
ΘMt)

) M−1v
Θσ−2 , (10)

which converges exponentially to the equilibrium value

X̄t −−→
t→∞

X̄∞ =
M−1v
Θσ−2 . (11)

Using (2) and (5), equation (11) can be rewritten as

X̄∞ = γω̄

(
M
ω̄2

)−1

e1, (12)

where

γ =
v/ω̄

Θ(σ/ω̄)−2 (13)

is the scaled rate of environmental change defined in Matuszewski et al (2014), whose
denominator can be interpreted as the “adaptive potential” of the population (see
Kopp and Hermisson, 2009b). In the univariate case, ω̄2 = M = ω2, and the adaptive
potential is equal to the constant factor in the second term on the right-hand side of
equation (9), which describes phenotypic change in the population due to mutation
and selection. Furthermore, in this case, X̄∞/ω = γ , that is, the equilibrium mean
lag, when measured in units of the typical size of mutations, is simply given by γ .
In the multivariate case, the additional term (M/ω̄2)−1e1 corresponds to the first
column of the inverse of the scaled mutation matrix. Its entries are related to the
partial correlation coefficients between the effects of mutations on trait 1 (whose
optimum value is directly affected by v) and each of the other traits (i.e., the partial

correlation between trait 1 and trait i is given by −m−1
1i /
√

m−1
ii m−1

11 , where the m′s
are the elements of the matrix M). Thus, the equilibrium mean lag depends only on γ
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and the structure of mutational correlations in the direction of the moving optimum.
We note that an alternative way of rewriting equation (11) is

X̄∞ = γ1ω

(
M
ω2

)−1

e1, (14)

where ω2 the variance of new mutations in the direction of the optimum (i.e., the
first entry of the matrix M) and γ1 is equal to γ in the one-dimensional case. The
difference to equation (12) is that γ1 does not capture the genetic constraints imposed
by mutational correlations (as reflected in the quantity ω̄2, eq. 5).

To calculate the variance of the lag in the small-jumps limit, Nassar and Pardoux
(2018) consider the process

Uε
t =

Xε
t − X̄t√

ε
. (15)

They show that, for ε → 0, this process converges to an Ornstein-Uhlenbeck process

dUt =−σ
−2

ΘMUtdt +Λ
1
2 (X̄t)dBt . (16)

The first term on the right-hand side of equation (16) describes the tendency of the
process to return to its mean. It is equal to the mutation-selection term in equation (9)
(and, for d = 1, also to the adaptive-potential term in the denominator of γ; eq. 13).
The second term describes the tendency of the process to fluctuate around the mean,
where Bt is a d-dimensional standard Brownian motion and the matrix Λ(X̄t) is the
infinitesimal variance of the process (defined in Appendix C, eq. C1). An explicit ex-
pression for this term can be obtained only for the special case of isotropic mutations
(i.e., M = ω2I) in the limit of large time (when X̄t converges to X̄∞). For this case,
we show in Appendix C that the infinitesimal variance is 4vω/

√
2π in the direction

of the optimum, and half this value in all other directions (covariances are zero).
Thus, the infinitesimal variance reflects the factors that drive the process away from
the mean, that is, the rate of environmental change and the typical size of mutations
(and, hence, jumps). The variance-covariance matrix of the process Ut is given by its
second moment, which for the limit t→∞, we denote by S̄2 (eq. C4). In the isotropic
case, it is given by equation (C14), which shows that the variance around the mean
lag is

S̄2
1 =

2v√
2πΘσ−2ω

=
2ω2γ√

2π
(17a)

in the direction of the optimum and

S̄2
i>1 =

v√
2πΘσ−2ω

=
ω2γ√

2π
(17b)

in all other directions, with all covariances equal to zero. Note that the standard devi-
ation of the lag in the direction of the optimum is very close to its mean: S̄1 ≈ 0.9X̄1
(eq. 12, 17a; here and in the following, we abusively denote by X̄i the i’th element of
the vector X̄∞, and by S̄2

i the i’th diagonal element of the matrix S̄2).
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Since Ut is an Ornstein-Uhlenbeck process, its stationary distribution is Gaussian
with mean 0 and covariance matrix S̄2. Similarly, for ε � 1 and large t, the pro-
cess Xε

t ≈ X̄t +
√

εUt , and hence Xε
t ∼ N (X̄∞,εS̄2). We note that in contrast to the

original process Xt , the limiting process Xε
t is symmetric and no longer reflects the

inherent asymmetry of the original model (where the first element of Xt increases
gradually due to environmental change and decreases suddenly due to fixations). For
the original process Xt with finite jumps, equations (12) and (17) are approximate
predictions for the long-term mean and variance of the phenotypic lag X if we abu-
sively approximate Xt by X̄t +Ut (i.e., set ε = 1). It is this approximation that we
investigate in the following.

Figure 2 compares the predictions from the small-jumps limit to results from
adaptive-walk simulations, for the case of a single evolving trait (d = 1). As can be
seen, the predictions from the small-jumps limit are fairly accurate if X̄∞/ω = γ & 1
(and very good for γ & 10), provided v is not too close to m. In other words, the ap-
proximation is good if the mean lag is larger than the size of a typical mutation (such
that adaptive jumps are small relative to the lag, see Fig. 1B), but the system is not too
close to the boundary of the transient case. For γ . 1 or v→m, in contrast, equations
(12) and (17) underestimate both the mean size of the lag and its variance, but the
reasons are different in the two cases. For v→ m, the approximation does not cap-
ture the divergence of the phenotypic lag as the process approaches transience. The
reason is that equation (9) assumes weak selection, and in particular, that the fixation
probability g(x,α) ≈ 2s(x,α), whereas the real fixation probability of finitely-sized
mutations is lower (see eq. 6) and saturates at 1 as Xt → ∞. For γ . 1, the small-
jumps approximation is invalid because adaptive jumps are large relative to the mean
lag (and often overshoot the optimum, leading to Xt < 0, see Fig. 1A). Indeed, simu-
lations show that the mean lag is significantly larger than predicted by equation (12).
The reason is that, for γ � 1, adaptive jumps are relatively rare (because only few
mutations are beneficial), and the lag will continue to increase until a successful mu-
tation arrives. Figure 2C shows, in addition, that for small γ the variance of the lag
converges to the square of the mean, such that the coefficient of variation is close
to 1 (Fig. 2D). Finally, the results from adaptive-walk simulations are in very close
agreement with those from individual-based simulations (Fig. S1, S2), at least as long
as recombination is high and/or the population-wide mutation rate is not too large. In
contrast, for Θ � 1 and recombination rate r→ 0 (such as in asexual organisms with
large population sizes), the lag increases, most likely because co-segregating benefi-
cial mutations compete for fixation.

The above results remain largely valid also in the multivariate case (see Fig. S3
for the case of d = 4 traits). In particular, with isotropic mutations (M = ω2I), the
mean lag in the direction of the optimum (X̄1) is almost identical to the one in the
univariate case (except for high values of the scaled selection strength (σ/ω)−2 =
σ−2ω2, where the lag is slightly increased; Fig. S3A). The lag in all other directions
fluctuates around zero (not shown), with a variance that is predicted to be half as large
as the one in the direction of the optimum (eq. 17). However, this prediction holds
true only for a limited range of parameter values (that is, those for which the mean
lag fits the prediction very well; Fig. S3B-D). For v→m, the variance in the direction
of the optimum explodes (Fig. S3B), whereas for small v (i.e., small γ), the ratio of
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variances Var(X1)/Var(X2) converges to a value that is close to
√

2 (rather than 2;
Fig. S3D) – a finding for which we have no analytical explanation.

When mutational effects on different traits are correlated (parameter ρ in Fig. S4),
the key prediction from the adaptive-walk approximation is a bias in those traits
whose optimum is not affected by environmental change. For example, in Figure S4B,
a positive mutational correlation between traits 1 and 2 creates a positive mean lag in
the direction of trait 2 (while having relatively little effect on trait 1, unless ρ is close
to 1). This is the “flying-kite effect” described by Jones et al (2004) and Matuszewski
et al (2014). Adaptive-walk simulations show that it is fully operational only if se-
lection is rather weak and environmental change is fast (such that γ1 & 10, Fig. S4B,
S5B). In these cases, the variance of trait 2 approaches that of trait 1 (Fig. S4C-E,
S5C-E), and the lags of the two traits are correlated (Fig. S4F, S5F). Note that both
the ratio of variances and the correlation depend only on the strength of mutational
correlations (see eq. C9).

3.2 Population survival and extinction

A question of considerable interest for conservation is how much environmental
change a population can compensate by adaptive evolution without going extinct
(e.g., Bürger and Lynch, 1995; Kopp and Matuszewski, 2014). While our model does
not include explicit population dynamics – and, hence, cannot be used to study extinc-
tion directly – a simple approach is to assume that extinction risk is strongly elevated
once the phenotypic lag exceeds a critical threshold Xcrit. For example, if individuals
that survive selection have, on average, B > 1 offspring, population size will start
declining once the population (mean) fitness W (Xt) (eq. 1) drops below 1/B, that is,
once the total size of the lag ||Xt ||=

√
X′tXt > Xcrit, where

Xcrit =
√

σ2 lnB. (18)

Extinction will usually follow rapidly (Bürger and Lynch, 1995), even though “evo-
lutionary rescue” (Gonzalez et al, 2013) is still possible by the timely arrival and
fixation of a beneficial mutation (Orr and Unckless, 2008; Uecker and Hermisson,
2011; Orr and Unckless, 2014). If the process Xt is transient, the lag will reach the
critical size after at most Xcrit/(m−v) generations. In contrast, if the process is recur-
rent, it may spend most of its time below Xcrit. Note, however, that even in this case,
eventual extinction is certain, because the lag has a non-zero probability of reach-
ing any arbitrarily large size. The key question is, therefore: For how long will the
size of the lag typically remain below Xcrit? Neglecting the possibility of evolutionary
rescue, we will call this the “time to extinction” and denote it by Te.

Obviously, the time to extinction strongly depends on the rate of environmental
change (Fig. 3). Typically, extinction risk is negligible if the mean lag in the direction
of the optimum is less than one mutational standard deviation (γ < 1, corresponding
to v/(ωΘ) < σ−2ω2 in Fig. 3), unless the fitness effect of a single mutation is very
high (σ−2ω2 close to 1, Fig. 3E, F). For γ > 1, we can gain additional insights from
the small-jumps limit.
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First, extinction risk should certainly be high if the mean size of the lag at equi-
librium, ||X̄∞||, is greater than Xcrit. It follows immediately from equation (12) that
this is the case if v exceeds the “critical rate of environmental change” (Bürger and
Lynch, 1995)

vcrit =
Θ
√

σ−2 lnB
||M−1e1||

. (19)

Note that, in the absence of mutational correlations, this expression simplifies to
vcrit = XcritΘσ−2ω2, that is, the product of the critical lag and the “adaptive poten-
tial”.

If v > vcrit, the time to extinction might be estimated by setting the right-hand side
of equation (10) equal to Xcrite1 and solving for t (see Bürger and Lynch, 1995). How-
ever, the solution diverges as v→ vcrit, and generally overestimates the real time to
extinction, because it neglects stochastic fluctuations. Indeed, simulations show that,
for v> vcrit, the time to extinction is typically of order Xcrit/v, that is, it is only slightly
prolonged by the fixation of beneficial mutations (see Fig. 3). If, on the contrary,
v < vcrit, we can use the fact that the process converges to an Ornstein-Uhlenbeck
process around X̄∞ (eq. 16). The time to extinction can then be decomposed into the
time for Xt to go from 0 to X̄∞ and the additional time from X̄∞ to the boundary
of the region defined by ||Xt || ≤ Xcrit. Unless v is close to vcrit, the first part will be
much shorter than the second and can be approximated (and slightly underestimated)
by X̄∞/v. The second part is highly stochastic and can be approximated by the exit
time Tf of the process X̄∞ +Ut from the region with ||Xt || ≤ Xcrit when starting at
X̄∞. Thus, in summary,

Te ≈

{
X̄∞/v+Tf if v≤ vcrit,

Xcrit/v if v > vcrit.
(20)

To the best of our knowledge, analytical results are available only for d = 1, when
the exit time corresponds to the first-passage time of the one-dimensional Ornstein-
Uhlenbeck process by the point Xcrit. Following Thomas (1975) and Ricciardi and
Sato (1988, see also Finch, 2004), Tf has mean

E(Tf ) =

√
π/2
δ

∫ X̃crit

0

(
1+ erf

(
t√
2

))
exp
(

t2

2

)
dt

=
1

2δ

∞

∑
k=1

(√
2X̃crit

)k

k!
Γ

(
k
2

) (21)

and variance

Var(Tf ) =

√
2π

δ 2

∫ X̃crit

0

∫ t

−∞

∫ X̃crit

s

(
1+ erf

(
r√
2

))
exp
(

r2 + t2− s2

2

)
dr ds dt−E(Tf )

2

= E(Tf )
2− 1

2δ 2

∞

∑
k=1

(√
2X̃crit

)k

k!
Γ

(
k
2

)(
φ

(
k
2

)
−φ(1)

)
,

(22)
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where δ = Θσ−2ω2 is the denominator of γ (“adaptive potential”), X̃crit = (Xcrit−
X̄∞)/S is the normalized mean lag, φ(·) is the digamma function, and erf(x)= 2/

√
π
∫ x

0 e−t2
dt

is the Gauss Error Function.

Figure 3 compares these predictions to results from adaptive-walk simulations.
As long as σ−2ω2 ≤ 0.01, the mean time to extinction is well approximated by (20)
and (21), even though it is slightly underestimated in the region where v ≈ vcrit (be-
cause we neglect adaptive steps before Xt reaches X̄∞ or Xcrit, respectively) and for
small values of v/(ωΘ) (probably as a result of the finite intervals between jumps
in our simulations). Similarly, the variance is well approximated by (20) and (22),
as long as v < vcrit (whereas we lack a prediction for the variance in the opposite
case v > vcrit). Note that, in Figure 3, the predictions were improved (in particular
for σ−2ω2 = 0.01) by replacing the mean lag X̄∞ according to equation (12) by the
value found in simulations (see Fig. 2). Also note that, for small v/(ωΘ), the mean
and standard deviation of the time to extinction are nearly identical, suggesting that
Te follows an exponential distribution. Finally, for σ−2ω2 > 0.01, the approximation
(20) breaks down, because γ < 1 even for large v/(ωΘ) and, hence, the small-jumps
approximation does not apply. Extinction is nevertheless fast, because even a small
deviation from the optimum (relative to the mutational standard deviation) has dra-
matic fitness consequences.

The above results are largely confirmed by individual-based simulations (Fig. S6).
In particular, for σ−2ω2 ≤ 0.001, results from individual-based simulations are very
close to those from adaptive-walk simulations. In contrast, for σ−2ω2 ≥ 0.01 (and
most clearly for σ−2ω2 ≥ 0.1), extinction takes longer in individual-based simu-
lations than in adaptive-walk simulations. This might seem surprising, since the as-
sumption of instantaneous fixations in the adaptive-walk simulations should be favor-
able for adaptation. However, rapid fixation of a single mutation might also prevent
the establishment of other mutations that arise slightly later, thus reducing the to-
tal number of mutations that contribute to adaptation. Individual-based simulations
further show that for σ−2ω2 ≥ 0.1, “real” extinction times are substantially larger
than the times needed for mean fitness to drop below 1/B, showing that evolutionary
rescue is common in this regime.

Finally, some simple scaling relations can be obtained for v < vcrit by applying a
further approximation to the first-passage time Tf . Indeed, for X̃crit & 1.5, the mean
E(Tf ) (eq. 21) is well approximated by

E(Tf )≈
√

2π

δ X̃crit
exp
(

X̃2
crit
2

)
, (23)

(Ricciardi and Sato, 1988) and the variance Var(Tf ) (eq. 22) by the square of this
value (showing again that, for small v, Te converges to an exponential distribution).
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Fig. 3 The time Te (relative to the mean interval between new mutations, Θ−1) until the population mean
fitness W (Xt) drops below 1/B = 1/2 for the first time (“time to extinction ”), as a function of the scaled
rate of environmental change v/(ωΘ) for various values of the scaled strength of selection σ−2ω2, in
the one-dimensional model (d = 1). Circles show the mean and crosses the standard deviation from 1000
replicated adaptive-walk simulations. The solid line shows the analytical prediction for the mean, (eq. 20
and 21, where X̄∞ from eq. 12 has been replaced by the mean lag from simulations, see Fig. 2). The
prediction for the standard deviation (square root of eq. 22) is not shown, because it is very close to the
prediction for the mean, except for v→ vcrit (eq. 19, vertical dotted line), where it converges to 0 (because
our approximation eq. 20 considers stochasticity only after the process has reached its long-term mean X̄∞,
and at this value, the population is already extinct).

For most values of X̃crit, the estimate (23) is dominated by the exponential term

exp
(

X̃2
crit
2

)
= exp

(
(Xcrit− X̄∞)

2

2S2

)

= exp

√2πΘωσ−2

4v

(√
lnB
σ−2 −

v
Θω2σ−2

)2


= exp

[√
2π

4γ

(
Xcrit

ω
− γ

)2
]
.

(24)

In particular, as long as v� vcrit, the difference Xcrit− X̄∞ (the squared term in the
exponent) depends only weakly on v, Θ and ω . To a first approximation, therefore,
the mean time to extinction in this case scales with exp(Θω/v) (second line of equa-
tion 24). In contrast, the dependence on σ−2 is more complex, since σ−2 affects both
Xcrit and X̄∞, leading to a non-monotonic relation if v is intermediate (Fig. 4). The
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Fig. 4 The time Te (relative to the mean interval between new mutations, Θ−1) until the population mean
fitness W (Xt) drops below 1/B = 1/2 for the first time (“time to extinction”), as a function of the scaled
strength of selection σ−2ω2 for an intermediate rate of environmental change v/(ωΘ) = 0.02. The dashed
line marks the minimal time Xcrit/v. Note that for σ−2ω2 < 0.001, the rate of environmental change
v > vcrit. For further details, see Fig. 3.

reason is that, for both low and high σ−2, the mean time to extinction approaches the
minimum Xcrit/v. For small σ−2, selection is so weak that, even though Xcrit is large,
almost no mutations get fixed. For large σ−2, Xcrit is so small that the population
has a high probability of going extinct before the first fixation can occur. In contrast,
for intermediate σ−2, Xcrit is sufficiently large and selection sufficiently efficient to
prevent population extinction over long periods due to the fixation of beneficial mu-
tations. Finally, the last line of equation (24) shows that if Xcrit� X̄∞ is treated as a
constant and is measured relative to ω then the time to reach this value scales with
exp(γ−1).

As mentioned above, no analytical results are available for extinction times in
the multidimensional model (d > 1). Not only do we lack an approximation for exit
times in the multidimensional Ornstein-Uhlenbeck process, but the small-jumps limit
also fails to capture a crucial effect of multidimensionality, the so-called “cost of
complexity” (Orr, 2000). As first noted by Fisher (1930), increasing dimensional-
ity causes a decrease in the proportion of beneficial mutations, making adaptation
more difficult, but this effect vanishes as mutational effect sizes tend to zero (where
there are always 50% beneficial mutations). To study the effect of multidimension-
ality with finite mutations, we therefore must resort to simulations. Figure S7 shows
results for uncorrelated mutations. Simulated extinction times are still very close to
the theoretical predictions from the one-dimensional model as long as selection is
weak (σ−2ω2 ≤ 10−4). In contrast, extinction times are somewhat shorter for moder-
ate selection strengths, σ−2ω2 = 10−3 or 10−2, and they are strongly reduced under
strong selection σ−2ω2 ≥ 10−1, where they are often close to the theoretical min-
imum Xcrit/v. These adaptive-walk results are again confirmed by individual-based
simulations (colored symbols in Fig. S7). In summary, the effects of multidimension-
ality are strongest under strong selection (see Fig. S8).
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When mutational effects are correlated (and the dominant eigenvector of the M-
matrix does not point in the direction of optimum), extinction occurs faster than
without correlation (Fig. S9), especially when selection is weak (σ−2ω2 small). The
reason is that correlations reduce the amount of independent genetic variation that is
created in the direction of the optimum, and this limits the response to selection when
the lag is large, whereas it is less important when the lag is small (i.e., under strong
selection).

4 Discussion

We have studied a stochastic process describing an “adaptive-walk” of an evolving
population following a moving phenotypic optimum via the quasi-instantaneous fixa-
tion of beneficial mutations. In particular, we used a recently developed small-jumps
limit (Nassar and Pardoux, 2018), which allowed us to derive analytical approxima-
tions for the long-term mean and variance of the phenotypic lag in multiple dimen-
sions, and for the mean and variance of the time to extinction in the univariate case.
Even though valid only in part of parameter space, these approximations are highly
instructive and allow us to place our results in the context of previous studies of the
moving optimum model. They also provide new insight into the long-term extinction
risk of populations in slowly-changing environments.

Evolution of the phenotypic lag Our analytical results show that the evolution of the
phenotypic lag depends strongly on the composite parameter γ (eq. 13; see Kopp and
Hermisson, 2009b; Matuszewski et al, 2014), which scales the rate of environmental
change relative to the “adaptive potential” of the population (see eq. 9, 16). Indeed,
in the small-jumps limit, γ is equal to the long-term mean of the lag, X̄∞, when the
latter is measured in units of the mutational standard deviation ω (and mutational
correlations are absent). Comparison to simulations (Fig. 2, S3) shows that the pre-
dictions from the small-jumps limit perform reasonably well as long as γ & 1, that is,
as long as the mean lag exceeds the effect size of a typical mutation (and, in addition,
environmental change is not too close to the boundary of the transient case, in which
continued adaptation is impossible). This observation conforms nicely to the classi-
fication introduced in Kopp and Hermisson (2009b), who stated that for γ � 1, the
adaptive process is “environmentally-limited”, whereas for γ � 1, it is “genetically-
limited”. The idea is that for γ � 1, the mean lag is so small (X̄∞ � ω) that large
mutations are usually selected against (as they would overshoot the optimum by too
much), and hence, which mutations are fixed depends primarily on the rate of envi-
ronmental change. In contrast, for γ � 1, the mean lag is large (X̄∞ � ω), so most
mutations that have positive effects in the direction of the optimum (α1 > 0) are pos-
itively selected and their rate of fixation depends primarily on genetic factors (i.e.,
their rate of appearance; for a discussion of the boundary between these two regimes,
see Supporting Information 3 in Matuszewski et al, 2014). It is, thus, in part of the
genetically-limited regime (i.e., the part with intermediate v) that the small-jumps
approximation is most accurate. More precisely, the small-jumps approximation re-
quires that σ−2ω̄2 is small and v/(ω̄Θ) has intermediate values. This means either
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Genetically-limited
regime (unless close to
transient case)

Environmentally-limited
regime

Parameter range γ & 1 γ . 1

With isotropic mutation

Mean of X1/ω equal to γ proportional to γ1/(d+3)

Variance of X1/ω proportional to γ proportional to γ2/(d+3)

CV of X1/ω proportional to 1/
√

γ close to 1

Ratio of variances X1 to X2 equal to 2 close to
√

2

With correlated mutations

Flying kite effect present weak or absent

Correlation within lag present weak or absent

Table 1 The long-term behavior of the phenotypic lag in the genetically- and environmentally-limited
regime, respectively. Xi stands for the lag in the direction of trait i. CV is the coefficient of variation
(standard deviation over mean).

weak selection (small σ−2) or small mutations (small ω̄2) in combination with slow
environmental change or a high mutation rate. We note that realistic values of σ−2ω̄2

are probably in the middle of the range we investigated. For example, Bürger and
Lynch (1995), based on published empirical estimates, assumed ω̄2 = 0.05 and con-
sidered values of σ−2 between 0.005 and 0.5, implying σ−2ω̄2 between 0.00025 and
0.025 (or 0.0125 if selection is “diluted” by non-genetic phenotypic variation).

In the environmentally-limited regime (γ � 1), the small-jumps approximation
fails, because most mutations are large relative to the phenotypic lag. Indeed, Kopp
and Hermisson (2009b) and Matuszewski et al (2014) proposed a different approxi-
mation for this case: Since most large mutations are selected against, the successful
mutations resulting in adaptive jumps come from the center of the distribution of new
mutations, which can be approximated by a uniform distribution with appropriate
density. Unfortunately, this approximation did not allow us to obtain results about the
long-term behavior of the lag. However, some scaling relations can be obtained by
focusing on the first jump of the adaptive walk, using results from Matuszewski et al
(2014). In particular, immediately before and after the first jump, the mean lag in the
direction of the optimum is proportional to γ1/(d+3) and its variance to γ2/(d+3), which
explains the initial slope of the curves for σ−2ω2 = 1 in Figures 2A,B and S3A,B
(for further details, see Appendix D). A comparison between the environmentally-
and genetically-limited regimes is given in Table 1.

Time to population extinction We then applied our results to investigate the time
until the population reaches a dangerously high level of maladaptation, entailing a
significant risk of extinction. Following Lynch and Lande (1993) and Bürger and
Lynch (1995), we calculated a “critical rate of environmental change” vcrit, beyond
which the equilibrium phenotypic lag becomes too large for the population to tolerate.
The result is very simple: In the absence of mutational correlations, the critical rate of
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environmental change equals the critical phenotypic lag times the adaptive potential
of the population.

However, even below this critical rate, the population will ultimately go extinct
due to stochastic fluctuations. So far, the time until this event had been studied only
by simulations (e.g., Bürger and Lynch, 1995). Here, we used the fact that, in the
small-jumps limit, the adaptive walk converges to an Ornstein-Uhlenbeck process
around the expected mean lag. We then used known results on the first-passage time
of this process to derive analytical predictions for the time to extinction, at least in the
univariate case. A simple approximation yields that the time to extinction is roughly
proportional to exp(Θω/v), that is, it is exponential in the mutation rate, mutational
standard deviation and the inverse of the speed of environmental change (e.g., Fig. 3).
In contrast, the dependence on the strength of stabilizing selection is more complex
and non-monotonic, since this parameter influences not only the adaptive potential
but also the critical phenotypic lag (Fig. 4). Finally, the distribution of the time to
extinction is approximately exponential if v is sufficiently below vcrit. The best fit is
reached for slowly changing environments, where extinction times are on a palaeon-
tological timescale. Indeed, there is empirical support for an exponential distribution
of species life times (Stenseth and Smith, 1984; Pigolotti et al, 2005). The traditional
explanation goes back to van Valen (Van Valen, 1973), stating that Red Queen dy-
namics prevent any one species from attaining a long-term fitness advantage, such
that extinction is mostly based on demographic stochasticity. Our model provides an
alternative explanation: species go extinct due to the eventual failure (even for large
populations) of catching up with an ever-changing (biotic or abiotic) environment.
This should remain true even if environmental change is non-linear (e.g., sinusoidal
on a large timescale).

Effect of multidimensionality An obvious draw-back of our small-jumps limit is its
inability to capture the “cost of complexity” (Orr, 2000), since the latter vanishes as
the phenotypic effect size of mutations tends to zero: independently of the number
of traits under selection, there will always be 50% beneficial mutations. As a conse-
quence, in the isotropic model, the predicted mean lag in the direction of the opti-
mum (as well as its variance) are independent of the number of traits d. In contrast,
adaptive-walk simulations with finite mutations show that both the mean lag and its
variance increase with d (compare Fig. 2 and S3), and this effect is strongest if σ−2ω2

is large, that is, mutational effect sizes are large or selection is strong (meaning that
the fitness landscape has a strong curvature). The same result holds for the time to
extinction, which is strongly decreased in complex organisms (large d) if selection is
strong (or mutations are large) but not if selection is weak (or mutations are small;
Fig. S8).

Environmental change affecting a single trait also induces variation in other traits
that are pleiotropically affected by the same set of genes. If mutation is isotropic (no
correlation between the effects on different traits), the small-jumps approximation
predicts that these latter traits have a lag with mean zero and a variance that is exactly
half the variance of the lag of the first trait. If mutations are correlated, the lag in the
first trait induces a correlated lag in the other traits (Fig. S4, S5), a phenomenon that
has been called the “flying-kite effect” (Jones et al, 2004; Matuszewski et al, 2014).
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Strong mutational correlations also increase the lag of the first trait (Fig. S4A) and
decrease extinction times (Fig. S9), showing that they function as a genetic constraint
to adaptation, analogous to the one caused by genetic correlations in the standing
genetic variation (Walsh and Blows, 2009; Chevin, 2012).

Comparison to previous models Both the adaptive-walk approximation and its small-
jumps limit are closely related to approaches used in the theory of “adaptive dynam-
ics” (a theory of mutation-limited evolution mostly used to study eco-evolutionary
dynamics and frequency-dependent selection, e.g., Geritz et al, 1998). Indeed, our
deterministic equation (9) for the mean lag can be seen as a version of the “canonical
equation” (e.g., Champagnat et al, 2002; Champagnat, 2006) of adaptive dynamics
(even though it lacks a factor 1/2 that is usually present in the latter). Similarly, our
equation (17a) for the variance in the direction of the optimum follows from an in-
stance of the “fluctuation equation” developed by Boettiger et al (2010). Our analysis
and simulations thus provide some guidance for when adaptive-dynamics type ap-
proximations yield quantitatively accurate predictions for trait dynamics away from
equilibria or “singular strategies” (Geritz et al, 1998) – namely, when the optimal
phenotype cannot be reached by a single mutation, but the fixation probability is still
approximately linear in the selection coefficient.

More generally, and independently of the small-jumps limit, the good fit between
adaptive-walk and individual-based simulations (Fig. S1, S2, S6, S7) shows that –
at least in the simple scenario studied here – long-term evolution of a polygenic trait
can be accurately predicted by just focusing on the selection gradient and the “incom-
ing” genetic variance (Θ/2)ω2 (which equals the product of the mutational variance
µω2 and the [effective] population size N), while neglecting other genetic details.
This reflects results from Kopp and Hermisson (2009b), who had already shown that,
in the moving-optimum model, the adaptive-walk approximation produces accurate
predictions for the distribution of adaptive substitutions (i.e., jump sizes) even in sit-
uations with moderately high mutation rate. An exception occurs, however, when the
population-wide mutation rate is high (such that several beneficial mutations enter
the population each generation) and recombination is low or absent (e.g., in asexu-
als; Fig. S1, S2). It is well-known that, in this case, beneficial mutations that arise
on different genetic backgrounds compete for fixation (a phenomenon called clonal
interference or Hill-Robertson effect; Hill and Robertson, 1966; Gerrish and Lenski,
1998), which reduces the overall rate of adaptation and may strongly increase ex-
tinction risk in temporarily variable environments (not investigated here, but already
shown by Bürger, 1999).

Short-term adaptation, in contrast, occurs mainly from standing genetic variation
(Hermisson and Pennings, 2005; Barrett and Schluter, 2008; Matuszewski et al, 2015)
and is most often modelled using approaches from quantitative genetics (Lande,
1976). This includes most previous applications of the moving-optimum model to
questions about the phenotypic lag and population extinction risk (Lynch and Lande,
1993; Bürger and Lynch, 1995; Gomulkiewicz and Holt, 1995; Chevin et al, 2010).
These models have the same gradient-structure as equation (9), and it is therefore not
surprising that their results for the mean lag X̄∞ and the critical rate of environmental
change vcrit are analogous to ours. In particular, in the model by Bürger and Lynch
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(1995) the mean lag in the one-dimensional case is given by X̄∞ = v(σ2
g +Vs)/σ2

g ,
where σ2

g is the additive (standing) genetic variance, and Vs equals σ2/2 in our no-
tation. Replacing σ2

g by the “incoming” variance (Θ/2)ω2 yields X̄∞/ω = v/ω + γ .
The difference to our equation (12) (i.e., the term v/ω) stems from the fact that stand-
ing genetic variation reduces the effective strength of selection (and, hence, increases
the lag). Similarly, the approximate expression for the critical rate of environmen-
tal change in the Bürger and Lynch (1995) model, vcrit = σ2

g
√

2lnB/VS (see eq. A6
in Kopp and Matuszewski, 2014), is identical to equation (19) when again setting
σ2

g = (Θ/2)ω2.
It is tempting to use these similarities for a comparison of, for example, critical

rates of environmental change when adaptation is based on either new mutations or
standing genetic variation. However, such a comparison is problematic because the
amount of standing genetic variation is difficult to predict (which makes the results
by Bürger and Lynch, 1995 “deceptively simple” in the authors’ own words). If one
assumes that the environment was stable before t = 0 (i.e., the optimum was stable for
a sufficiently long period before the onset of change), the amount of genetic variation
at mutation-selection-drift balance is bounded above by the variance of a neutral trait,
Θω2 = 2VmN (Lynch and Hill, 1986), which is exactly twice the variance coming in
from new mutations (Θω2/2). This seems to suggest that, under weak selection, the
presence of standing genetic variation might increase the critical rate of environmen-
tal change by at most a factor of 2. However, standing variance might be higher due
to some sort of balancing selection, and we did not assess the effect of its immediate
availability on the chances of evolutionary rescue under strong selection. Overall, the
role of standing variation versus new mutations in preventing population extinctions
is a topic that requires further study.

Unlike for the mean value of the lag, the predictions for its long-term variance
differ markedly between quantitative genetic models and ours (or those from adap-
tive dynamics). In particular, a slightly simplified version of equation (8b) in Bürger
and Lynch (1995) states that limt→∞ Var(X̄) = Vs/(2N) + σ2

g /(2Vs), with σ2
g and

Vs as defined above. This expression is independent of the speed of environmental
change, whereas our equation (17a) is linear in v. This difference likely reflects the
fact that evolution in quantitative genetic models (from standing genetic variation) is
“smooth”, whereas in our model, it happens in jumps, such that faster environmental
change leads to larger jumps (Kopp and Hermisson, 2009b). Interestingly, this ef-
fect remains valid even in the limit of infinitesimally small jumps. Furthermore, our
individual-based simulations (Fig. S2) show that the variance of the mean lag does
indeed increase with v (and that eq. 17a is very accurate). The only exception oc-
curs for weak selection and slow change, where the variance seems to be more or
less independent of v. However, it is difficult to say whether this occurred because
the system is closer to the assumptions from quantitative genetics, or for some other
reason.

Conclusions The small-jumps limit to the adaptive-walk approximation provides eas-
ily interpretable analytical results about long-term adaptation in gradually changing
environments. In particular, evolution in such environments resembles an Ornstein-
Uhlenbeck process around an average phenotypic lag, which allows to make pre-
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dictions about the scaling of extinction risk on long (potentially) palaeontological
timescales. The predictions are most accurate in parts of parameter space where se-
lection is weak and the speed of environmental change is intermediate. For very slow
environmental change, some additional insights can be gained from another approxi-
mation that assumes that all beneficial mutations are equally likely. Beyond the small-
jumps limit, the adaptive-walk approximation itself, which neglects fixation time and
co-segregation of alleles and is very easy to simulate, provides accurate predictions
over a very wide range of parameters, provided that standing genetic variation is ab-
sent or has been depleted.
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5 Appendix A: Stochastic differential equation for the phenotypic lag

According to Nassar (2016) and Nassar and Pardoux (2017), the evolution of the
phenotypic lag Xt of the population can be described by the stochastic differential
equation

Xt = x0 +vt−
∫
[0,t]×Rd×[0,1]

αΓ (Xs− ,α,ξ )N (ds,dα,dξ ). (A1)

Here, N is a Poisson point process over R+×Rd× [0,1] with intensity ds ν(dα) dξ

where

ν(dα) =
Θ

2
p(α)dα



24 Kopp, Nassar, Pardoux

and

Γ (x,α,ξ ) = 1{ξ≤g(x,α)}.

Recall that g(x,α) is the fixation probability of a mutation of size α that hits the
population when the lag is x, as defined by (6) and (7). The points of the Poisson point
process (Ti,Ai,Ξi) are such that the (Ti,Ai) form a Poisson point process over R+×
Rd of the mutations that hit the population with intensity dsν(dα), and the Ξi are i.i.d.
U [0,1], globally independent of the Poisson point process of the (Ti,Ai). Ti’s are the
times when mutations are proposed and Ai’s are the effect sizes of those mutations.
The Ξi are auxiliary variables determining fixation: a mutation gets instantaneously
fixed if Ξi ≤ g(XTi ,Ai), and is lost otherwise.

6 Appendix B: Summary statistics for adaptive-walk simulations

Summary statistics for adaptive-walk simulations depend on the evolution of the phe-
notypic lag between adaptive steps. Let tk be the time between steps k−1 and k, ξ k
the size of the lag immediately after step k− 1 and ζ k = ξ k + vtk the size of the lag
just before step k. The mean lag over n steps is given by

X̄ =
∑

n
k=1 tk (ξk +ζk)/2

∑
n
k=1 tk

,

and the variance is

Var(X1) =
∑k |ξ 3

k,1−ζ 3
k,1|

3v∑k tk
− X̄2

1

in the direction of the optimum (i.e., for trait 1), and

Var(Xi>1) =
∑k tkξ 2

k,i

∑k tk
− X̄2

i

in all other directions. Covariances involving trait 1 are

Cov(X1,Xi>1) =
∑k tkξk,i(ξk,1 +ζk,1)/2

∑k tk
− X̄1X̄i

and those not involving trait 1 are

Cov(Xi>1,X j>1) =
∑k tkξk,iξk, j

∑k tk
− X̄iX̄ j.
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7 Appendix C: The large-time variance in the small-jumps limit

As shown in Nassar and Pardoux (2018), for ε→ 0, the process Uε
t (15) converges to

the Ornstein-Uhlenbeck process (16), where the infinitesimal variance is given by

Λ(x) = 2Θσ
−2
∫
(x|α)≤0

|(x | α) |α⊗α p(α)dα (C1)

(here, (·|·) denotes the inner product of two vectors and ⊗ the outer product). Thus,

Ut =
∫ t

0
e−Θσ−2(t−s)M

Λ
1
2 (X̄s)dBs, (C2)

and its second moment is given by

E(Ut ⊗Ut) =
∫ t

0
e−Θσ−2(t−s)M

Λ(X̄s)e−Θσ−2(t−s)Mds, (C3)

or, by a change of variables and writing A =Θσ−2M,

E(Ut ⊗Ut) =
∫ t

0
e−sA

Λ(X̄t−s)e−sAds. (C4)

We call S̄2 the limit of this second moment for t→ ∞ (when X̄t → X̄∞):

S̄2 = lim
t→∞

E(Ut ⊗Ut) =
∫

∞

0
e−sA

Λ(X̄∞)e−sAdt. (C5)

An alternative way of characterizing S̄2 is as the solution to the equation

AS̄2 + S̄2A = Λ(X̄∞) (C6)

(this follows from equation (C5) by noting that d/dt(e−tAΛe−tA) =−Ae−tAΛe−tA−
e−tAΛe−tAA and was used for the numerical calculation of predictions in Fig. S4 and
S5).

We now write M = ω̄2M0 (see eq. 5). Λ(X̄∞) can then be written as

Λ(X̄∞) =
2v
ω̄2

∫
(M−1

0 e1|α)≤0
|(M−1

0 e1|α)|α⊗α p(α)dα, (C7)

and hence

M0S̄2 + S̄2M0 =
2σ2v
Θω̄4

∫
(M−1

0 e1|α)≤0
|(M−1

0 e1|α)|α⊗α p(α)dα. (C8)

Therefore,

S̄2 =
σ2v

Θω̄4 Φ(M0), (C9)

where Φ(M0) is a matrix that depends only on M0, that is, only on the structure of the
mutation matrix. This shows, in particular, that in Fig. S4E,F where M = ω2

(
1 ρ

ρ 1

)
,

the ratio of variances of the lag in different dimensions and the correlations between
these lags depend only on ρ .
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Finally, an explicit expression for S̄2 is possible in the particular case where the
mutation matrix is isotropic (M = ω2I). In this case,

S̄2 =
1

2Θσ−2 M−1
Λ
(
X̄∞

)
, (C10)

and the matrix Λ(X̄∞) evaluates to

Λ(X̄∞) =
2v
ω2

∫
Rd−1

∫
∞

0
α1α⊗α p(α)dα

=
2v

(2π)
d
2 ωd+2

∫
Rd−1

∫
∞

0
α1α⊗αe

− 1
2ω2

d
∑

i=1
α2

i
dα.

(C11)

The first element of this matrix is

Λ1,1(X̄∞) =
2v√

2πω3

∫
∞

0
α

3
1 e−

α2
1

2ω2 dα1 =
4vω√

2π
. (C12)

For i = 2, ...,d,

Λi,i(X̄∞) =
2v

2πω4

∫
R

α
2
i e−

α2
i

2ω2 dαi

∫
∞

0
α1e−

α2
1

2ω2 dα1 =
2vω√

2π
.

For 2≤ i < j ≤ d,

Λi, j(X̄∞)=Λ j,i(X̄∞)=
2v

(2π)
3
2 ω5

∫
R

αie
− α2

i
2ω2 dαi

∫
R

α je
−

α2
j

2ω2 dα j

∫
∞

0
α1e−

α2
1

2ω2 dα1 = 0.

Similarly, for all i 6= 1,
Λ1,i(X̄∞) = Λi,1(X̄∞) = 0.

Hence,

Λ(X̄∞) =
2vω√

2π


2 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 0 ... 1

 . (C13)

It follows that

S̄2 =
v√

2πΘσ−2ω


2 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 0 ... 1

=
ω2γ√

2π


2 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 0 ... 1

 , (C14)

because, for M = ω2I, ω̄ = ω .
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8 Appendix D: The environmentally-limited regime

As argued in the main text, γ� 1 corresponds to the environmentally-limited regime,
in which the lag is small relative to the size of new mutations and the small-jumps
approximation fails. Matuszewski et al (2014) (see also Kopp and Hermisson, 2009b)
showed that in this regime the distribution of new mutations can be approximated by
a uniform distribution with density equal to p(0), the value of the density at α = 0.
Unfortunately, this approximation does not allow to calculate the long-term moments
of the process. We can, however, gain some insights from focusing on the lag before
and after the first adaptive substitution. In particular, it follows from equation (S18)
and (S28) in Matuszewski et al (2014) that, just before the first substitution, the lag
in the direction of the optimum has the cumulative distribution function

P(X1−
1 ≤ x) = 1− exp

(
−η(d)p(0)

γ
xd+3

)
(D1)

with mean

E(X1−
1 ) =

(
γ

η(d)p(0)

) 1
d+3

Γ

(
d +4
d +3

)
(D2)

and variance

Var(X1−
1 ) =

(
γ

η(d)p(0)

) 2
d+3
[

Γ

(
d +5
d +3

)
−Γ

(
d +4
d +3

)2
]
, (D3)

where

η(d) =
π

d
2

(d +3)Γ (2+ d
2 )

(D4)

and

p(0) =
(

1√
2πω̄2

)d

. (D5)

Obviously, the lag in all other directions is zero before the first jump. Immediately
after the first jump, the lag in any direction has mean 0 and variance

Var(X1+
i ) =

1
d +4

(
γ

η(d)p(0)

) 2
d+3

Γ

(
d +5
d +4

)
(D6)

(equation S33 of Matuszewski et al, 2014). These results explain several patterns seen
in the environmentally-limited regime.

First, the mean lag in the direction of the optimum is proportional to γ1/(d+3)
(eq. D2). For the log-log plots in Figures 2A and S3A, this explains the initial slope
of the curves for large σ−2ω2. Indeed, the slope between the first two values of
v/(ωΘ) for σ−2ω2 = 1 (red curve) is 1/3.95 for d = 1 (Fig. 2A) and 1/6.32 for
d = 4 (Fig. S3A). In contrast, in the genetically-limited regime, the slope equals 1,
and close to the boundary of the transient case, it tends towards infinity.

Similarly, the variance of the lag in the direction of the optimum both before and
after the first step is proportional to γ2/(d+3) (eq. D3 and D6), and in consequence,
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the standard deviation is proportional to γ1/(d+3) (same as the mean). This explains
the initial slope of the σ−2ω2 = 1 curves in Figures 2B and S3B, which is 1/3.93
for d = 1 (Fig. 2B) and 1/6.67 for d = 4 (Fig. S3B). It also explains why, in the
environmentally-limited regime, the coefficient of variation (i.e., the standard devia-
tion divided by the mean) tends to be independent of γ , and when using equation (D3),
why it is close to one (Fig. 2C,D and Fig. S3C; note that the gamma functions in
eq. D2 and D3 are close to unity and can be neglected).

In contrast, in the multivariate case of the environmentally-limited regime, the
variance of the lag in the direction of the optimum seems to exceed the variance in
the other directions by about a factor of

√
2 if there are no mutational correlations

(Fig. S3D), but we do not have an analytical explanation for this observation. Note
that, due to symmetry, the variance of the lag is identical in all directions immediately
after the first jump (eq. D6), but in between jumps, X1 increases while the other
components stay constant.

Finally, the above results can explain the dependence of extinction time on the
speed of environmental change in the case of very strong selection (the only case
where a non-negligible extinction risk exists in the environmentally-limited regime).
For very high σ−2ω2 (Fig. 3E,F), extinction times from simulations appear to be
approximately exponential in 1/v. This is in agreement with equation (D1), according
to which the probability that the process reaches Xcrit before the first jump (when
starting at 0) is given by exp(−X4

crit/(3
√

2πω2γ)), and hence, the time until this event
occurs for the first time should arguably scale with exp(1/v) (but not exp(1/γ), since
Xcrit depends on σ2).



Small-jumps limit in the moving-optimum model 29
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Fig. S1 Comparison of the normalized mean phenotypic lag X̄/ω predicted by equation (12) (dashed line),
adaptive-walk simulations (black symbols; same data as in Fig. 2A) and individual-based simulations with
and without recombination (red symbols: Θ = 1, r = 0.5; blue symbols: Θ = 10, r = 0; averaged over
106 generations) with B = 8 offspring per individual, in the one-dimensional model (d = 1). Missing
values at low values of v/(ωΘ) are those where the mean lag in the individual-based simulations was
(slightly) negative (i.e., the mean phenotype was overshooting the optimum). Missing values at high values
of v/(ωΘ) are those where the individual-based population went extinct. Error bars represent the standard
deviation of the mean also shown in Figure S2. For further details, see Figure 2.
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Fig. S2 Comparison of the standard deviation of the normalized phenotypic lag X/ω predicted by equa-
tion (17) (dashed line), adaptive-walk simulations (black symbols; same data as in Fig. 2B) and individual-
based simulations (red and blue symbols) with B = 8 offspring per individual, in the one-dimensional
model (d = 1). For further details, see Figure S1.
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Fig. S3 The long-term steady state of the normalized phenotypic lag X/ω in the model with d = 4 traits
and isotropic mutations (M = ω2I). (A) to (C) are as in Fig. 2 for the lag in the direction of the optimum
(that is, for trait 1, whose optimum is directly affected by environmental change, see eq. 2). (D) shows the
ratio of the variances of the lag with respect to traits 1 and 2 (the latter being orthogonal to the direction of
the optimum). The horizontal dashed line shows the prediction from eq. (17). The solid vertical lines mark
the boundary of the transient case for d = 1, which should be unchanged in the multidimensional case as
long as mutations are isotropic, even though this conjecture has not been proved. For further details, see
Fig. 2.
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Fig. S4 The long-term steady state of the normalized phenotypic lag X/ω in the model with d = 2 traits,
for fast environmental change, v/(ωΘ) = 0.01, and various values of the scaled selection strength σ−2ω2,

as a function of the strength of mutational correlations, ρ , when the mutation matrix is M = ω2
(

1 ρ

ρ 1

)
.

Dashed lines are predictions from the small-jumps limit (eq. 12 and C5), whereas points show results from
adaptive-walk simulations (averaged over 1000000 adaptive steps). (A) The mean lag in the direction of
the optimum (i.e., for trait 1). (B) The ratio of mean lags for traits 2 (orthogonal to the direction of the
optimum) and 1, showing the “flying-kite effect” (with our choice of M, the predicted ratio is simply equal
to ρ). (C) and (D) The standard deviations of the lag for traits 1 and 2 respectively. (E) The ratio of the
variances of the lag for traits 1 and 2. (F) The correlation of the lags for traits 1 and 2.
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Fig. S5 The long-term steady state of the normalized phenotypic lag X/ω in the model with d = 2 traits

and moderate mutational correlations, that is, a mutation matrix M = ω2
(

1 ρ

ρ 1

)
with ρ = 0.5. Trait 1

is in the direction of the optimum (eq. 2), whereas trait 2 is orthogonal to this direction. (A) shows the
lag for trait 1 with the predictions (dashed lines) from eq. (12), whereas (B) shows the ratio of the lags
for traits 2 and 1 (“flying-kite effect”). (C) and (D) show the standard deviations of the lag for trait 1 and
2, respectively, with the predictions obtained by numerical evaluation of eq. (C5). (E) shows the ratio of
the variances of the lag for traits 1 and 2. Note that the predicted value depends only on ρ . (F) shows the
correlation of the lag in directions 1 and 2, with the prediction again depending only on ρ . High values
of v/(ωΘ) are close to the transient case (see Fig. 2), but the exact boundary is unknown. Adaptive-walk
simulations where run for between 105 and 107 adaptive steps (for low and high v/(ωΘ), respectively),
with a burn-in period of one tenth of this duration. For further details, see Fig. 2.
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Fig. S6 Comparison of the “time to extinction”, Te (relative to the mean interval between new mutations,
Θ−1), in adaptive-walk and individual-based simulations for a single evolving trait (d = 1). Results shown
in black are the same is in Fig. 3 (solid line: analytical predictions from eq. 20 and 21; circles and crosses:
means and standard deviations of the time to reach fitness 1/B = 1/2 in adaptive-walk simulations). Col-
ored symbols show results from individual-based simulations (averages over 20 replicates). Red circles and
crosses are the means and standard deviations of the first time the population mean fitness dropped to 1/B.
Blue circles and crosses are for the times the population actually went extinct. No individual-based results
are shown for parameter values where the extinction time in some replicates exceeded 2×107 generations.
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Fig. S7 Comparison of the “time to extinction”, Te (relative to the mean interval between new mutations,
Θ−1), in adaptive-walk and individual-based simulations for a model with three pleiotropic traits (d = 3).
The black line is the analytical prediction from the one-dimensional model (d = 1, eq. 20 and 21, same
as in Fig. 3). Black circles and crosses represent the means and standard deviations of the time to reach
fitness 1/B = 1/2 in adaptive-walk simulations. Red symbols show the same results for individual-based
simulations (averages over 20 replicates). Blue circles and crosses are for the time the individual-based
population actually went extinct. For further details see Fig. 3 and S6.
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Fig. S8 The time Te (relative to the mean interval between new mutations, Θ−1) until the population mean
fitness W (Xt) drops below 1/B= 1/2 for the first time (“time to extinction”) as a function of the number of
traits, d, for different values of the scaled selection strength σ−2ω2. The speed of environmental change, v
was chosen among those used in Fig. 3 such that TeΘ for d = 1 is between 106 and 107. Results are means
from 1000 adaptive-walk simulations.
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Fig. S9 The time Te (relative to the mean interval between new mutations, Θ−1) until the population mean
fitness W (Xt) drops below 1/B = 1/2 for the first time (“time to extinction”) in the model with d = 2

traits as a function of mutational correlation ρ , when the mutation matrix M = ω2
(

1 ρ

ρ 1

)
. The dotted

line shows the analytical prediction for the one-dimensional case (d = 1, eq. 20), and the dashed line the
simulation results for this case. Results are means from 1000 adaptive-walk simulations.


