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Résumé — Poroélasticité et poro-élastoplasticité en grandes déformations — Cet article examine
quelques aspects de la formulation du comportement d’un milieu poreux saturé en évolution isotherme
dans le domaine des transformations finies. Après avoir rappelé les résultats propres aux solides non
poreux, on s’intéressera successivement aux comportements poroélastique et poro-élastoplastique.

Si la phase solide qui constitue le squelette présente un comportement élastique dans le domaine des
grandes déformations, un passage micro-macro démontrera que l’énergie libre du squelette constitue un
potentiel thermodynamique pour le comportement macroscopique. Les arguments de ce potentiel sont la
déformation macroscopique du squelette ainsi que la porosité lagrangienne. Ces deux quantités
s’interprètent commes des variables d’état macroscopiques. Dans le cas où le comportement du solide est
élastoplastique en grandes déformations, on propose un cadre thermodynamique permettant de formuler
une théorie de la poroplasticité finie.

Les techniques de changement d’échelle permettent de clarifier certains aspects de la formulation du
comportement macroscopique. En particulier, la validité du concept de contrainte effective en
poroélasticité et en poroplasticité finies est établie lorsque la phase solide est incompressible. 

Même lorsque la déformation macroscopique imposée à un élément de volume de milieu poreux est
infinitésimale, le champ de déformation à l’échelle microscopique peut être non infinitésimal. De ce fait,
la simulation du comportement macroscopique de ce volume élémentaire dans le cadre d’un passage
micro-macro doit être effectuée en tenant compte de transformations finies à l’échelle microscopique. Ce
point est illustré par l’exemple du chargement œdométrique.
Mots-clés : porélasticité, poroplasticité, grandes déformations, approche micro-macro.

Abstract — Poroelasticity and Poroplasticity at Large Strains — This paper reviews some aspects of the
formulation of the constitutive behavior of a saturated porous material in isothermal evolutions in the
domain of large strains. First, the results concerning the nonporous solid are recalled. Then, the
poroelastic and poro-elastoplastic behaviors at large strains are successively considered.
When the solid phase is elastic at large strains, a micro-macro approach shows that the free energy of
the skeleton is a macroscopic thermodynamic potential. The latter depends on the macroscopic strain of
the skeleton and on the lagrangian porosity, which can be interpreted as macroscopic state variables.
When the solid is elastoplastic at large strains, a theory of finite poro-elastoplasticity is proposed within
a macroscopic thermodynamic framework.
The homogenization techniques allow to clarify some aspects of the formulation of the macroscopic
behavior. In particular, the validity of the effective stress principle in finite poroelasticity and
poroplasticity is established when the solid phase is incompressible. Even if the macroscopic strain
applied to an elementary volume is infinitesimal, the strain field at the microscopic scale may not be
infinitesimal. Hence, the simulation of the macroscopic behavior of this elementary volume in the
framework of a micro-macro approach must take into account possible large strains at the microscopic
scale.
Keywords: poroelasticity, poroplasticity, large strains, micro-macro approach.
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INTRODUCTION

The purpose of this paper is to review some basic aspects of
the formulation of a constitutive law at large strains. It is
restricted to the isothermal evolutions of a fully saturated
medium.

The easiest way to address this issue is certainly to begin
with the monophasic case, that is, the case of a solid material
with no porosity. This is the situation which is encountered at
the microscopic scale when the solid constituent of the
porous medium is considered. We shall therefore introduce
finite elasticity and finite plasticity, which could possibly be
used as constitutive laws for this solid constituent.

Once the behavior of the solid constituent is known,
homogenization techniques allow, at least theoretically, to
simulate the behavior of the skeleton, defined as the
macroscopic description of the porous solid. Finite elasticity
and plasticity for the solid will respectively lead to finite
poroelasticity and poroplasticity for the skeleton.

These extensions to the porous case of theories developed
for the monophasic one require that the role played by the
pore pressure be clarified. We shall examine one particular
aspect of this question, namely the validity of the effective
stress principle which is widely used in the domain of
infinitesimal strains.

1 KINEMATICS

To begin with, we briefly recall some of the mathematical
tools which are used for the description of kinematics at large
strain. Obviously, this description is appropriate for both the
microscopic and the macroscopic scales. The considered
scale (micro or macro) is not yet specified.

Let dΩ0 be an elementary volume in the initial configur-
ation which is transformed into dΩt by the deformation
gradient f. According to the definition of f, the elementary
vector dM0 is transformed into dM = f . dM0. We note that f
is related to the gradient of the displacement field ξ by:

(1)

The relevant strain concept at large strain is the Green-
Lagrange strain tensor δ. Considering two material vectors
dM0 and dM’0 which are respectively transformed into dM
and dM’, δ is defined by:

(2)

Using Equation (1) into Equation (2) yields:

(3)

It is the sum of the symmetrical part of the displacement
gradient, which is the well-known linearized strain tensor,
and of an additional term, which is of the second order with
respect to ∇ξ. In the situation of infinitesimal transformation,
that is | ∇ξ | << 1, it is therefore possible to approximate δ by
ε. However, in the domain of large strains, ε has no physical
relevancy. This can be illustrated on the example of a pure
rotation of angle θ around the z-axis. Given the matrix of the
deformation gradient, one obtains:

(4)

As expected for a rigid body motion, the strain described
by the Green-Lagrange tensor is 0, whereas the components
of ε vary between 0 and  _ 2 as θ increases.

The symmetrical part d of the gradient of the velocity field
v is referred to as Eulerian strain rate. It is related to the
Lagrangian strain rate by:

(5)

For an infinitesimal transformation (f ≈ 1), Equation (5)
yields the approximation d ≈ . However, in the general case,
d is not a time derivative and it will be useful to replace it by
the righthand side of Equation (5).

2 MICROSCOPIC AND MACROSCOPIC
DESCRIPTIONS OF THE TRANSFORMATION

Let us now specify the definitions of the microscopic and
macroscopic scales.

At the macroscopic scale, a representative elementary
volume Ωt (r.e.v.) located at the macroscopic point z is an
infinitesimal part of a larger structure St (Fig. 1). It can be
considered as the superposition of the macroscopic particles
respectively made of fluid and solid, all located at the same
point z. In other words, the different phases are not
distinguished geometrically at this scale. The macroscopic
particle made of solid will be referred to as skeleton particle.
Ω0 denotes the initial configuration of the r.e.v. with respect
to the transformation of the skeleton. From now on, the
physical quantities defined at the macroscopic scale will be
denoted by capital letters. Hence, F, J = det F = Ωt / Ω0,
∆, D and Σ are the macroscopic deformation gradient in the
transformation of the skeleton, its Jacobian, the
corresponding Green-Lagrange strain, the Eulerian strain
rate and the Cauchy stress, respectively. The kinematic
quantities are defined as in Equations (2) and (5).
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Figure 1
R.e.v. Ωt at macroscopic scale.

According to the polar decomposition theorem, F can be
decomposed as the product of a rotation tensor R and of a
symmetrical pure stretch tensor S, the eigen values of which
are the principal stretches:

(6)

At the microscopic scale, the solid and the fluid phases
now occupy geometrically distinct domains and in Ωt

which should be regarded as a structure (Fig. 2).
The position vector is denoted by x in the deformed

configuration Ω0 of the r.e.v. and by X in its initial
configuration Ω0. The microscopic elementary volume in Ω0
and Ωt are denoted by dΩ0 and dΩt respectively. Let x = τ(X)
be the transformation of the solid defined at the microscopic
scale on the solid part of Ω0. The condition = τ( )
expresses the fact that the macroscopic skeleton particles in
Ω0 and Ωt contain the same solid particles at the microscopic
level.

The description of the transformation of the porous
medium at the microscopic scale provided by τ can be related
to the macroscopic deformation gradient F by means of
boundary conditions of the Hashin type (de Buhan et al.,
1998). More precisely, the boundary ∂Ωt of Ωt is defined as
the image of the boundary ∂Ω0 of Ω0 by the homogeneous
transformation x = F.X associated with F. As far as the solid
part of ∂Ω0 is concerned, this prescribes boundary conditions
on the transformation τ:

(7)

The external boundary of the fluid domain in the r.e.v.
Ωt is the image of the external boundary of the fluid domain

in the initial configuration by the homogeneous
transformation F.X. However, as opposed to the case of the
solid, x = F.X is not the actual transformation of the fluid at
the boundary ∂Ω0. Consequently, the fluid masses located
inside the boundaries ∂Ω0 and ∂Ωt respectively, as well as the
corresponding macroscopic particles, are a priori different.
As a matter of fact, we shall see (Section 3.3) that the
transformation of the fluid at the microscopic scale is not

Figure 2
R.e.v. at microscopic scale: initial and deformed configurations.

necessary for the determination of the overall behavior of the
macroscopic skeleton particle.

We call Lagrangian porosity the ratio φ between the pore
volume in the current configuration  and the initial total
volume of the r.e.v.:

(8)

When one follows the transformation of the skeleton, the
Lagrangian porosity φ is proportional to the pore volume. It
will prove to be a convenient state variable in the formulation
of the macroscopic behavior of the skeleton.

The physical quantities defined at the microscopic scale
will be denoted by small letters. f, j = det (f), δ, d and σ
denote the microscopic deformation gradient, its Jacobian,
the Green-Lagrange strain, the Eulerian strain rate and the
Cauchy stress, respectively:

(9)

The descriptions of the kinematics at the microscopic and
macroscopic scales are related by Equation (7). As regards
stresses, the internal forces are represented at the
macroscopic level by the stress tensor Σ(z), and by the tensor
field σ(x) at the microscopic one. These two concepts are
related according to an average rule:

(10)

3 FINITE ELASTICITY AND POROELASTICITY

Considering the microscopic scale first, the constitutive law
of the solid constituent is formulated in the framework of
finite elasticity (Sections 3.1 and 3.2). Then, moving to the
macroscopic scale (Section 3.3), the overall behavior of the
skeleton at large strain is shown to be poroelastic.

3.1 Eulerian and Lagrangian Stress Tensors

The formulation of the constitutive law requires to clarify
which stress concept should be related to the strain. A simple
example is proposed in order to show that, unlike the case of

∑ =< > = ∫σ σ( )
 

  ( )x x dVΩ ΩΩt

t t

1

f f ft= ∇ = ⋅ −X τ δ ;  ( )
1

2
1

φ =
 

 

Ω
Ω

t
f

0

Ωt
f

Ω0
Ωt

Xj

Xi

x = F.X

x = τ(X)

Ω0
f

Ωt
f

on  ( ) : ( )∂ τΩ0
s X F X= ⋅

Ω0
sΩt

sΩ0
s

Ωt
fΩt

s

F     = ⋅ = +R S Swith 2 1 2∆

zj

zi

St

Ωt(z)

r.e.v. Ωt
at macroscopic point z

775



Oil & Gas Science and Technology – Rev. IFP, Vol. 54 (1999), No. 6

infinitesimal transformation, the usual Cauchy stress tensor σ
is not a function of the strain alone. Let us consider the
following experiment performed on a cylindrical sample of
the solid (Fig. 3). It is first loaded by two opposite forces 
+ Ft, where t denotes a unit vector on the cylinder axis. This
loaded configuration, denoted by κ0, is taken as initial
configuration. The Cauchy stress tensor σ0 in κ0 is of the
form σt ⊗ t. Both the loading and the sample are then
subjected to the same rotation r (configuration κ). During this
second stage of the loading, both strain rates d and are
obviously equal to 0 whereas the Cauchy stress is given by:

(11)

Figure 3
Evolution of the Cauchy stress during rotation.

which shows that the Cauchy stress σ varies during the
rotation, whereas d = = 0. Hence, the constitutive law can
obviously not be put in the form σ = £(δ). In other words, the
Cauchy stress is not related to the strain alone.

In order to overcome this difficulty, we now introduce the
Piola-Kirchhoff stress tensor π wihch is defined on the initial
configuration. For a given local deformation gradient f, an
elementary material surface dS0 in the initial configuration
and its image dS are related by dS = j t f -1. dS0. We define π
by the following condition: the Cauchy stress vector σ.dS is
obtained by applying the deformation gradient f to the Piola-
Kirchhoff stress vector π . dS0:

(12)

If we again consider the experiment described above in
which the deformation gradient f is a rotation f = r, Equation
(12) shows that π is a constant, equal to the Cauchy stress σ0

in the initial configuration κ0. This suggests that π could be a
relevant candidate for the formulation of the constitutive law
under large strains.

3.2 Finite Elasticity Applied to the Solid Constituent

This is confirmed by the energy approach which can be
performed in the case of an elastic solid. Let us consider an
elementary volume dΩ0 in the initial configuration which is
transformed into dΩt. The work developed by the internal
forces in dΩt is Pint = σ : d dΩt. The combination of
Equations (5) and (12) provides an alternative Lagrangian
expression of Pint wich involves the Lagragian stress and
strain π and δ:

(13)

For an elastic solid, there is no dissipation. Hence, under
isothermal evolution, the work of internal forces is entirely
stored in the free energy of the solid. This thermodynamic
function depends on a single state variable, namely the strain
tensor δ. It can be characterized by a Lagrangian density

s(δ) wich represents the mechanical energy required to
impose the strain δ to the unit volume of solid in the initial
configuration. In term of rates, we thus have:

(14)

The state equation of the elastic solid at large strain is
immediatly derived from Equation (14):

(15)

Introducing the relationship (12) between σ and π into
Equation (15) yields an equivalent formulation of the
constitutive law with respect to σ:

(16)

As expected, Equation (16) shows that σ is a function of
the strain δ and of an additional parameter which is the
rotation part r of the deformation gradient decomposed as in
Equation (6).

3.3 Finite Poroelasticity

We now move to the formulation of the constitutive law of
the skeleton of a porous medium at the macroscopic scale.
The skeleton particle of the r.e.v Ωt is made of an elastic
solid constituent, the state equation of which is given by
Equation (15) at the microscopic level. The porous space is
filled by a fluid at the uniform pressure u.

In the sequel, the constitutive law of the skeleton is
derived from a homogenization technique. The method
consists in defining a mechanical boundary value problem at
the microscopic scale on the solid part of the r.e.v., the
loading parameters being the macroscopic deformation
gradient F and the pore pressure u. The solid/fluid interface
in Ωt is denoted by Isf.
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The solid domain appears to be subjected to mixed
boundary conditions, the displacement (Equation (7)) and the
stresses being specified on (∂Ω0)

s and  Isf respectively:

(17)

The transformation τ of the solid is the solution of the
problem defined by Equation (17) together with Equations
(12) and (15). It depends on the loading parameters F and u.
Once τ is determined, the displacement of the solid/fluid
interface I f s which is the internal boundary of the fluid
domain is known. In addition, its external boundary has been
defined by F. Consequently, the pore volume is known and
the Lagrangian porosity can be considered as a function of F
and u. We assume that the relation φ(F, u) can be solved with
respect to u in the form u = u(F, φ). From now on, we shall
consider that the couples of loading parameters (F, u) and 
(F, φ) are equivalent.

This allows to consider f = ∇Xτ as function of X, F and φ.
As for the strain field δ, it is readily seen that it is not
affected by the rotation part R of F introduced in Equation
(6). δ and the microscopic Lagrangian density s in
therefore appear as function of X, ∆ and φ. By integration of

s over we obtain the macroscopic free energy
density of the skeleton:

(18)

Through Equation (18), it appears that ∆ and φ control the
value of the macroscopic free energy of the skeleton and can
be therefore considered as macroscopic state variables.

The solid matrix being elastic, the work of the external
forces applied to the solid part of the r.e.v. Pext is equal to the
rate Ω0 of free energy. Using Equations (13) and (14),
one obtains:

(19)

Rearranging the last integral in Equation (19) with
Equations (8) and (10) yields:

(20)

where D is the macroscopic Eulerian strain rate. According to
the definition (8), the term u Ω0  in Equation (20) can be
interpreted as the work of the pore pressure in the pore
volume change. D appears as the macroscopic Eulerian strain
rate in the transformation of the skeleton. Hence, Σ : D Ωt 
represents the work of the macroscopic Cauchy stress Σ in
Ωt. In order to introduce a time derivative in this quantity,
it is convenient to define a macroscopic Piola-Kirchhoff 

stress tensor Π, related to Σ as in Equation (12). Besides,
Equation (5) allows to replace D by the Lagrangian strain
rate :

(21)

A combination of Equations (19), (20) and (21) provides a
Lagrangian expression of :

(22)

from which we finally derive the macroscopic state equations
of poroelasticity at large strain:

(23)

(24)

Equation (23) can be interpreted as the macroscopic
extension of Equation (15). In addition to the strain ∆, the
macroscopic state equations require a second state variable,
namely the Lagrangian porosity φ, which is necessary for the
determination of both the Lagrangian stress tensor Π and the
pore pressure u.

However, special care is needed if the solid is
incompressible. In this particular case, the Jacobian J of the
macroscopic deformation gradient F is related to the
Lagrangian porosity:

(25)

which expresses that the volume change of the skeleton
particle is equal to the pore volume change. (25) thus implies
that the state variables ∆ and φ are not independent, so that the
macroscopic free energy now appears as a function of ∆ alone.
More precisely, it can be shown from Equation (25) that:

(26)

Replacing φ in Equation (22) by the above expression
yields the single macroscopic state equation in the case of an
incompressible solid:

(27)

Equation (27) introduces the Lagrangian effective stress 
Π + uJF-1.tF-1 which controls the value of the macroscopic
strain ∆. The combination of Equations (21) and (27) proves
that the corresponding Eulerian effective stress is the usual
Terzaghi’s one:

(28)
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Equation (28) constitutes an effective stress formulation of
large strain poroelasticity: the deformation gradient F is
controlled by the value of the effective stress Σ'. However, as
opposed to the case of infinitesimal transformation, it should
be noted that Σ' does not completely determine the strain of
the skeleton if the rotation R in Equation (6) is not given.

The above reasoning provides a generalization to large
strains of Terzaghi’s effective stress principle, however
restricted to the case of an incompressible solid. It is likely
that this assumption also constitutes a necessary condition as
regards the possibility of formulating the macroscopic
behavior in terms of Terzaghi’s effective stress (de Buhan et
al., 1998).

3.4 An Example of Micro-Macro Approach

To finish with, let us present a very simple example in which
the homogenization process can be carried out analytically.
The external boundary of the porous r.e.v. Ω0 is a vertical
cylinder of axis OZ, external radius R2 and height H0. The
porous space is a cylinder of same axis, of radius
R1 < R2. As before, u denotes the pore pressure of the fluid
filling the porous space. The constitutive solid is an
incompressible neo-hookean material, for which the
(microscopic) state equation writes:

(29)

η is a nondetermined parameter which represents the
Lagrange multiplier associated with the condition of
incompressibility j = 1, whereas µ is a material constant
which generalizes the shear modulus of the standard Hooke’s
law. Indeed, the linearized form of Equation (29), which is:

(30)

is the standard isotropic constitutive law for an incompres-
sible linear elastic solid.

We consider the response of this r.e.v. to vertical
compaction under the condition of an oedometer test: there is
no lateral displacement at the boundary R = R2 whereas the
top of the cylinder (Z = H0) is subjected to a downwards-
oriented vertical displacement d = α H0. In other words, the
macroscopic deformation gradient of the r.e.v. is:

(31)

However, for the sake of simplicity, the condition (7) in
the planes Z = 0  and  Z = H0 is replaced by:

(32)

The solid being incompressible, the generalized effective
stress principle holds. According to Equation (28), it states
that the vertical effective stress = + u is controlled

by α. This is confirmed by the analytical resolution of the
boundary value problem (de Buhan, 1998), which provides
an expression of the force Q(α, u) applied on the top (z =
Ho (1 _ α)) of the r.e.v.:

(33)

As expected, it can be shown that the linearization of
given by Equation (33) for α <<      φ0 is equal to the solution of
the linearized problem in which the constitutive law (29) has
been replaced by Equation (30):

(34)

(resp. ) represents the macroscopic response of the
r.e.v., as predicted by a nonlinear (resp. linear)
homogenization process. As opposed to the linear analysis,
the nonlinear one incorporates both the nonlinearity of the
constitutive law (Eq. (29)) and the nonlinearity associated
with geometry change. and are plotted together
against α = d/H0 at Figure 4 for an initial porosity φ0 = 0.2.

Figure 4

Macroscopic behavior: linear and non-linear micro-macro
approaches.

Even if the macroscopic strain applied to the r.e.v. remains
reasonably small, we observe that the discrepancy between
the fully nonlinear and the linear analyses can be very
significant, with a ratio / of the order of 2 for 
α ≈ 0.1. This is due to the fact that the existence of a cavity in
the r.e.v. introduces high heterogeneities in the microscopic
strain field δ, with a high strain level in the vicinity of the
cavity. This effect increases as the porosity decreases. Hence,
even if the r.e.v. is subjected to an infinitesimal transformation
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at the macroscopic scale, the microscopic transformation can
be noninfinitesimal. In this case, the simulation of the
macroscopic behavior by means of a micro-macro approach
must obviously be performed within the framework of large
strains.

4 FINITE PLASTICITY AND POROPLASTICITY

We now move to the elastoplastic behavior. Section 4.1
addresses the case of the solid at the microscopic scale.
Section 4.2 examines the formulation of the skeleton
constitutive law (macroscopic scale) in the light of a micro-
macro reasoning. Section 4.3 considers the same question
within a purely macroscopic thermodynamic framework.

4.1 Finite Plasticity Applied to the Solid Constituent

4.1.1 Elastoplasticity in Infinitesimal Transformation

In the case of infinitesimal deformations, the linearized strain
tensor ε of an elastoplastic material is usually written as the
sum of an elastic part εe and a plastic part εp :

(35)

The same decomposition holds for the strain rates d ≈ :

(36)

The strain which is observed when the load applied to the
elementary volume is removed, is equal to _ εe. Hence εp can
be interpreted as the residual strain in the unloaded
configuration (Fig. 5).

Figure 5

Decomposition of the transformation into elastic and plastic parts.

The state equation relates the Cauchy stress σ and the
elastic strain εe:

(37)

where denotes as before the density of free energy in 
the solid. For linear elastic properties defined by the tensor A
of elastic moduli, Equation (37) simply takes the form:

(38)

In order to complete the formulation of the elastoplastic
constitutive law, the flow rule must be specified. It
determines the value of the plastic strain rate dp by means of
the concept of plastic potential denoted here by g(σ):

(39)

where is the plastic multiplier. For linear elastic properties,
the combination of the state equation (38) and the flow rule
(39) provides a simple relationship between the stress and
strain rates:

(40)

4.1.2 Decomposition of the Transformation - State Equation

In the case of large strains, we want to keep the idea that the
deformation gradient f has a plastic and an elastic
components, the plastic part being defined as the residual
deformation gradient which remains when the load applied to
the elementary volume is removed. Following Lee (1969),
we therefore introduce the concept of unstressed
configuration, denoted by dΩU, which is obtained by
unloading from the deformed configuration dΩt. We assume
that unloading and reloading between dΩt and dΩU are
reversible. The elastic part e of  f is defined as the
deformation gradient which transforms dΩU into dΩt. The
plastic part p is the deformation gradient which transforms
dΩ0 into dΩU.  Hence, the generalization of Equation (35) to
large strains writes:

(41)

We assume that the solid is plastically incompressible,
which implies that det p = 1. In addition, we assume that the
elastic strain δe is infinitesimal. In other words, large strains
are of irreversible (plastic) nature only. This means that the
elastic deformation gradient e defines a reversible
infinitesimal transformation:

(42)

Let je = dΩt / dΩU  be the elastic jacobian and π =
jee-1. σ . te-1 be the Piola-Kirchhoff stress tensor defined on the
unstressed configuration associated with the Eulerian stress σ
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applied to dΩt. If the free energy density of the solid in the
unstressed configuration were a function (δe) of the elastic
strain δe, we could expect that the generalized form of
Equation (37) writes:

(43)

But, in the general case, this assumption = (δe) is not
correct (Mandel, 1971). The origin of the difficulty lies in the
fact that the unstressed configuration is not defined in a
unique way.

As a matter of fact, the previous decomposition of the
deformation gradient f does not completely determine its
elastic and plastic parts because the unloading process from
dΩt does not prescribe the orientation of the unstressed con-
figuration. More precisely, given an arbitrary rotation tensor
v and a particular decomposition (e*, p*) of  f associated with
the unstressed configuration , the couple (e = e*. t v,
p = v.p*) is another possible decomposition. The
corresponding unstressed configuration dΩU is deduced from

by the rotation r. The elastic Green-Lagrange strain
tensors δe

* and δe are related by δe = v . δ*
e  . tv.

The free energy of the solid in dΩt can be characterized by
a density defined with respect to the unstressed configuration.
The numerical value of the density is obviously independent
of the choice of the unstressed configuration whereas the
state variables do depend on it. For instance, let us assume
that the free energy density associated with the unstressed
configuration is a function δe

* of the elastic strain δe
* .

This implies that the free energy density associated with
the unstressed configuration depends on both the elastic
strain δe and the orientation of with respect to
defined by r. Eventually, the state equation (43) is valid only
for the choice in the form 

In order to avoid this difficulty, we shall now assume that
the elastic properties of the solid are isotropic. In this case,
the elastic free energy depends only on the eigen values of
the elastic strain. Hence, if the assumption = ( ) is
valid for a particular orientation of the unstressed
configuration, it is also valid for any other possible choice.
For any orientation, the state equation (43) is now correct.
From now on, we choose the particular unstressed
configuration for which e is a symmetrical tensor, which
determines its orientation in a unique way. This consists in
putting the rotation component of the deformation gradient f
into the plastic part.

Equation (43) can be simplified with the assumption (42)
of small elastic strain:

(44)

For instance, for linear elastic (isotropic) properties,
Equation (44) takes the same form as in Equation (38):

(45)

However, there are two important differences between
Equations (38) and (45).

First, as opposed to the elastic strain εe which appears in
Equation (38), the strain εe = e – 1 in Equation (45) is not
defined on the initial configuration but on a configuration
deduced from the initial one by p which is a priori a 
noninfinitesimal transformation. For instance, let us again
consider the experiment described in Section 3.1, with the
assumption that the constitutive behavior is linear elastic. In
this example, p is equal to the rotation r whereas εe is the
infinitesimal elastic strain tensor induced by the couple of
forces + Fr .t applied to the inclined sample after it has been
subjected to the rotation:

(46)

The second difference is related to the characterization of
the elastic evolutions. Within the infinitesimal framework, a
possible definition of such an evolution is ε = εe whereas the
condition δ = εe is meaningless, the tensors δ and εe being not
defined on the same configuration. In fact, the characteristic
property of an elastic evolution is that the unstressed
configuration is subjected to a pure rotation which means that
no plastic strain takes place. This can be expressed by the
fact that the strain rate associated with the plastic component
is 0:

(47)

where (X)s (resp.(X)a) denotes the symmetrical (resp.
antisymmetrical) component of tensor X.

4.1.3 Flow Rule

We now address the question of the flow rule at large strain.
First, a decomposition of the strain rate tensor d is derived
from Equation (41):

(48)

The two terms of the righthand side of Equation (48)
depend on and respectively. For this reason, they are
sometimes referred to as elastic and plastic strain rates. But
this terminology can be misleading in so far as it suggests to
write the flow rule on the second term, namely .
If it were true, this tensor should be equal to 0 in an elastic
evolution of the elementary volume. However, such an
evolution is characterized by Equation (47) which does not,
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A natural way to overcome this difficulty consists in
writing the flow rule directly on the symmetrical part of the
plastic strain rate:

(49)

Equation (49) appears as a simple extension of Equation
(39) to large strains, and obviously complies with the
requirement that the plastic multiplier should be equal to 0
in an elastic evolution. The plastic incompressibility can be
expressed through the fact that the plastic potential g in
Equation (49) only depends on the deviatoric part of the
Cauchy stress σ so that ∂g/∂σ is a deviatoric tensor:

(50)

Accordingly, Equation (49) implies that the plastic
transformation induces no volume change at the microscopic
level.

4.1.4 Relationship between Stress and Strain Rates

Due to the fact that εe is not defined on a fixed configuration,
the state equation (45) is not very convenient. For practical
purposes, it is useful to extend to large strain the relationship
between stress and strain rates given in Equation (40) for
infinitesimal elastoplastic evolutions. In the case of a pure
rotation, the righthand side in Equation (40) is equal to 0,
whereas (Section 3.1). We thus expect that the
generalized form of Equation (40) introduces a correcting
term taking the effect of large rotation into account.

Introducing the assumption of small elastic strain (42) and
the state equation (45) into Equation (48), the following
expression of the Cauchy stress rate is derived:

(51)

Using the state equation (45) again, as well as the flow
rule (49) in Equation (51) yields the following relationship:

(52)

where Ω is the plastic rate of rotation ( .p-1)a .Within the
framework of small elastic strain, it is readily seen that Ω can
be approximated by the total rate of rotation ( .f -1)a.

The corresponding expression of Dσ/Dt is the so-called
Jaumann derivative. It can be interpreted as the time
derivative of the Cauchy stress tensor σ with respect to a
rotating frame, having a rate of rotation Ω. For instance, it is
possible to characterize the evolution of the Cauchy stress in
a pure rotation by Dσ /Dt = 0 and not by , as we know
from Section 3.1. As opposed to the conventional time
derivative , it is therefore possible to relate the

Jaumann derivative of the Cauchy stress to the total and
plastic strain rates.

We note that the extension of the state equation (40) to
large strain only requires to add the correcting term σ.Ω−Ω.σ
in order to take into account the effects of noninfinitesimal
rotation (on this very debated question, see also for instance
Dienes (1979) and Gilormini (1994)).

4.2 Micro-Macro Approach for an Elastoplastic Solid

4.2.1 Validity of the Effective Stress Principle

We now try to determine some aspects of the macroscopic
constitutive law of the skeleton, the solid constituent at the
microscopic scale being of the type described at section 4.1.
As in 3.3, the macroscopic response is determined through
the resolution of a mechanical problem defined on the solid
part . The boundary conditions are of the same type as in
Equation (17).

As before, the solid is plastically incompressible. In
addition, in order to justify Terzaghi’s effective stress
principle (at the macroscopic scale), we assume that it is
elastically incompressible. It is readily seen that the elastic
incompressibility introduces an additional non determined
term in the state Equation (52), the origin of which is the
same as in Equation (29):

(53)

Let σ0 (t) and (t) respectively be the Cauchy stress and
displacement fields in the solid domain which satisfies the
boundary conditions (17) and the state Equation (53) in the
particular case u = 0, for a given evolution t → F(t) of the
macroscopic deformation gradient, denoted by F.(F, u = 0)
will be referred to as the drained loading. d0 and Ω0 denote
the Eulerian strain rate and rotation rate associated with 

(t). and are the plastic and Lagrange multipliers in
drained conditions. The macroscopic Cauchy stress tensor Σ0

in a drained evolution is related to the stress field σ0

according to Equation (10). As opposed to the elastic case
(see Section 3.3), Σ0(t) depends (through σ0(t)) not only on
the current value F(t) of the macroscopic deformation
gradient at time t, but on the whole history F of the loading:

(54)

We now superpose an arbitrary evolution t → u(t) of the
pore pressure, denoted by u, on the evolution F of the defor-
mation gradient. We introduce the stress field σ(t) = σ0(t) −
u(t)1 on the solid domain. Using the property stated in
Equation (50), its Jaumann derivative writes:

(55)
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Equation (55) proves that σ(t) and (t) satisfy the state
equation whereas they obviously comply with the boundary
conditions (17) associated with (F, u). Hence, they are
solutions of the corresponding mechanical problem on the
solid domain.

We observe that the displacement is the same as in the
drained case, so that the geometry of the r.e.v. Ωt is not
affected by the pore pressure. With respect to the drained
case, the Cauchy stresses in the solid (and the fluid) are
modified by addition of a uniform hydrostatic stress − u1.
According to Equation (10), this property of the local stress
fields at the microscopic level is also valid at the
macroscopic scale: the macroscopic Cauchy stress Σ
associated with the evolution (F, u) is very simply related to
Σ0 by:

(56)

Equation (56) states that the macroscopic effective stress
Σ + u1 only depends on the deformation gradient history F
and not on the pore pressure. This result proves that
Terzaghi’s effective stress principle remains valid when the
solid constituent is subjected to finite elastoplastic transfor-
mations, provided that it is incompressible.

4.2.2 A Numerical Example

As in Section 3.4, the geometry at the microscopic level is
now specified in order to simulate the overall behavior of a
porous structure. The porous space is a horizontal cylindrical
cavity which crosses the sample. The macroscopic
deformation gradient is the same as in Equation (31). For the
sake of simplicity, the boundary conditions slightly differ
from Equation (7). On the vertical lateral boundary, it is
assumed that there are no shear stress and no normal
displacement. At the top and bottom of the r.e.v., the
boundary conditions are the same as in Equation (32). The
pore pressure u is applied on the solid/fluid interface.

The solid constituent is perfectly elastoplastic and in-
compressible, of the type described in Section 4.2.1.
Therefore, Terzaghi’s effective stress principle holds. The
yield criterion is the von Mises’ one. Due to the in-
compressibility of the solid, the volume of the porous space
will decrease as compaction proceeds according to:

(57)

We therefore expect that becomes infinite
when φ tends towards 0. Three different numerical
simulations of the macroscopic compaction curve are
presented in Figure 6.

For a given level of macroscopic compaction character-
ized by α, the highest estimate of the macroscopic vertical
effective stress is obtained in the fully nonlinear 

Figure 6

Simulations of the macroscopic compaction curve for an
elastoplastic solid.

analysis which is based on state equation (53) and takes into
account the change of geometry in the r.e.v. induced by the
compaction. If  the correcting term σ.Ω − Ω.σ in Equation
(53) is neglected but the change of geometry is taken into
account according to an updated Lagrangian procedure, the
estimate of is slightly smaller than the fully nonlinear
one. This small discrepancy suggests that the effects of local
large rotations within the r.e.v. are not of primary importance,
at least within the range of macroscopic compaction covered
by Figure 6. As expected, these simulations of the
macroscopic compaction curve both show a  strong increase
of for increasing values of α. A completely different
pattern is obtained in the framework of small strain plasticity,
according to which reaches an asymptote. Such a result
is obviously not compatible with the incompressibility of the
solid.

The comparison of the three simulations points out that
geometry changes at the microscopic level control the
macroscopic response. As a matter of fact, for a perfectly
elastoplastic solid, we can interpret the vertical effective
stress corresponding to the current compaction level as the
limit load in the sense defined in limit analysis. For a given
value of α, this limit load depends on the shape of the cavity
and can be determined by the usual methods of limit analysis.
Excellent agreement between a kinematic estimate of the
limit load and the fully nonlinear compaction curve presented
in Figure 6 has been obtained by de Buhan et al. (1997). This
interpretation of the compaction curve emphasizes the
relationship between the geometry of the r.e.v. and the value
of . It explains the increase of observed as the
compaction proceeds by the progressive closure of the cavity.
Hence, if the geometry change at the microscopic level is
neglected, the limit load is found to be constant and the
compaction curve reaches an asymptote, as in the small strain
plasticity simulation.
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It can be concluded that the comment formulated at
Section 3.4 is valid also in this example: even for an
infinitesimal macroscopic compaction, the micro-macro
simulation of the macroscopic behavior must be performed
within the framework of large strain analysis.

4.3 Finite Poroplasticity: a Thermodynamic Approach

To finish with, we summarize the main results of a
thermodynamic approach of the skeleton constitutive law
(Bourgeois et al., 1997). From now on, all physical quantities
are defined at the macroscopic scale.

First, we extend the concept of unstressed configuration to
porous media. It is assumed that the total stress and the pore
pressure applied to the r.e.v. Ωt can be set to zero in a
reversible evolution. An unstressed configuration ΩU is thus
obtained. The deformation gradient F of the skeleton is split
into a plastic part P which transforms Ω0 into ΩU, and an
elastic part E which transforms ΩU into Ωt (Fig. 7). The
orientation of the unstressed configuration is fixed by the
condition that E be a symmetrical tensor. Besides, it is
assumed that the elastic deformation gradient E defines an
infinitesimal (reversible) transformation:

(58)

As in the theory of poroelasticity, an additional state
variable is necessary in order to describe the volume change
of the porous space. It is convenient to introduce the
irreversible volume change φ p Ω0  and the reversible
volume change φe ΩU  which respectively occur during the
plastic and elastic components of the transformation:

(59)

Figure 7

Decomposition of the skeleton transformation.

We now look for the state equations of poroplasticity at
large strains. As opposed to the case of an elastic solid
constituent, the work Pext of the external forces provided to
the skeleton particle is partly dissipated. The dissipated
energy is denoted by D Ω0 . The nondissipated energy is
stored in the free energy of the skeleton particle. The
expression of Pext being the same as in Equation (20), the
Clausius-Duhem inequality writes:

(60)

Using the decomposition (59) of F, the Eulerian strain rate
D can be split as in Equation (48). The corresponding
expression of the dissipation is:

(61)

We first consider a particular elastic evolution in which
= 0. As there is no dissipation, Equation (61) takes the

form:

(62)

in which the assumption of small elastic strain (58) has been
used in order to justify the approximations J ≈ Jp and

. For the same reason as in Section 4.1.2, we now
assume that the elastic properties of the skeleton are
isotropic. This allows to consider the free-energy density
as a function of εe, φe and, if required, of a hardening
parameter which is represented in the sequel by the plastic
strain ∆p. With this assumption, the state equations of
poroplasticity at large strains are immediately derived from
Equation (62):

(63)

In the particular case of linear elastic (isotropic) properties
in which (εe, φe , ∆p) is a quadratic function of the elastic
state variables, Equation (63) can be put in the following
form:

(64)

where C0 is the tensor of macroscopic elastic moduli in
drained conditions, be and M being scalar coefficients. These
elastic parameters may a priori depend on ∆p. We note that
Equation (64) introduces an effective stress Jp (Σ + be u1)
which only depends on the value of the elastic strain εe. In
the case of an incompressible solid, in which Jp = be = 1, this
result is consistent with the conclusions of Section 4.2.1.
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We now consider an arbitrary elastoplastic evolution in
which and ≠ 0. The (isotropic) state equations (63) allow
to simplify the general expression (61) of the dissipation:

(65)

This expression is similar to the corresponding one in
infinitesimal poroplasticity (Coussy, 1997), the classical
plastic strain rate being here replaced by . It
identifies the pore pressure and the Cauchy stress as the
thermodynamic forces respectively associated with the
plastic porosity change and the plastic strain. This leads to
write the flow rule, as in infinitesimal poroplasticity, with the
help of a plastic potential G(Σ, u, ∆p):

(66)

If the plastic potential G depends on Σ and u through
Terzaghi’s effective stress Σ + u1, Equation (66) show that:

(67)

The left- and righthand sides in Equation (67) respectively
represent the volume change of the r.e.v. and the pore
volume change during the plastic transformation. At the
microscopic scale, Equation (67) thus implies that there is no
volume change of the solid domain. Hence, the relevancy of
Terzaghi’s effective stress as regards the plastic potential and
the flow rule is associated with the fact that the solid is
plastically incompressible. Hence, the state equations (see
Eq. (64)) and the flow rule a priori refer to two different
effective stress concepts.

CONCLUSION

The constitutive law of a solid subjected to large strains
cannot be formulated in terms of a relationship between the
Cauchy stress (or stress rate) and the strain (or strain rate). In
the elastic case, the Piola-Kirchhoff stress is related to the
Green-Lagrange strain. In the elastoplastic case, under some
assumptions, the state equation relates the Jaumann
derivative of the Cauchy stress to the difference between the
total strain rate and the plastic strain rate.

Some aspects of the skeleton constitutive law at large
strain can be clarified with the help of micro-macro
techniques. In particular, the validity of Terzaghi’s effective
stress principle proves to be associated with solid
incompressibility.

Even if the macroscopic strain applied to a r.e.v. is
infinitesimal, the corresponding strain field at the
microscopic level may be noninfinitesimal. Accordingly, in
this case, the determination of the macroscopic behavior with
the help of a micro-macro simulation should be performed
within the framework of large strains.

In addition to the skeleton Green-Lagrange strain, the
formulation of the skeleton constitutive law requires a second
state variable, for instance the Lagrangian porosity, in order
to take the volume change of the porous space into account.
The pore pressure is the corresponding thermodynamic force.
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