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Abstract

An RNA sequence is a word over an alphabet on four elements {A,C,G,U} called bases.
RNA sequences fold into secondary structures where some bases match one another while others
remain unpaired. Pseudoknot-free secondary structures can be represented as well-parenthesized
expressions with additional dots, where pairs of matching parentheses symbolize paired bases
and dots, unpaired bases. The two fundamental problems in RNA algorithmic are to predict
how sequences fold within some model of energy and to design sequences of bases which will
fold into targeted secondary structures. Predicting how a given RNA sequence folds into a
pseudoknot-free secondary structure is known to be solvable in cubic time since the eighties and
in truly subcubic time by a recent result of Bringmann et al. (FOCS 2016), whereas Lyngsø
has shown it is NP-complete if pseudoknots are allowed (ICALP 2004). As a stark contrast, it
is unknown whether or not designing a given RNA secondary structure is a tractable task; this
has been raised as a challenging open question by Anne Condon (ICALP 2003). Because of its
crucial importance in a number of fields such as pharmaceutical research and biochemistry, there
are dozens of heuristics and software libraries dedicated to RNA secondary structure design.
It is therefore rather surprising that the computational complexity of this central problem in
bioinformatics has been unsettled for decades.

In this paper we show that, in the simplest model of energy which is the Watson-Crick
model the design of secondary structures is NP-complete if one adds natural constraints of
the form: index i of the sequence has to be labeled by base b. This negative result suggests
that the same lower bound holds for more realistic models of energy. It is noteworthy that the
additional constraints are by no means artificial: they are provided by all the RNA design pieces
of software and they do correspond to the actual practice (see for example the instances of the
EteRNA project). Our reduction from a variant of 3-Sat has as main ingredients: arches of
parentheses of different widths, a linear order interleaving variables and clauses, and an intended
rematching strategy which increases the number of pairs iff the three literals of a same clause
are not satisfied. The correctness of the construction is also quite intricate; it relies on the
polynomial algorithm for the design of saturated structures – secondary structures without dots
– by Haleš et al. (Algorithmica 2016), counting arguments, and a concise case analysis.

1 Introduction

Ribonucleic acid (RNA) is a molecule playing an important role between deoxyribonucleic acid
(DNA) and proteins. RNA is a chain of nucleotides (or bases) and can be represented as a sequence
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on a 4-letter alphabet: A,U,C,G; denoting the first letter of the corresponding nucleotide. Unlike
DNA, RNA is single stranded, and folds into itself: some of the bases are linked to each other (they
are paired or matched) to form a stable and compact structure. This pairing forms the secondary
structure of the RNA molecule; the primary structure is the sequence of nucleotides and the tertiary
structure is the 3D shape. Predicting how an RNA molecule folds is vital to understand its biological
function.

Experiments reveal that the secondary structure of an RNA strand tends to follow the laws of
thermodynamics. Given a model associating a free-energy value to secondary structures, it is widely
accepted, since the pioneer work of the chemistry Nobel laureate Christian B. Anfinsen [5], that
the secondary structure of a sequence can be predicted as the one with the minimum free-energy
(MFE), i.e., the one ensuring the greatest stability. The most simple energy model is the Watson-
Crick model, allowing A to pair with U and C to pair with G. In this model, the MFE is simply
realized by a structure with the greatest number of pairs.

RNA folding. A stem-loop or hairpin loop is a building block of RNA secondary structures. It
consists of a series of consecutive base pairs (called double-helix or stackings) ending in a loop of
unpaired nucleotides. A pseudoknot occurs when some nucleotides of this loop pair somewhere else
in the RNA strand. Pseudoknot-free secondary structures correspond to well nested structures.
They can be represented as a well-parenthesized expression where matching parentheses symbolize
base pairs, with additional dots to symbolize unpaired nucleotides.

Given a sequence of nucleotides, the RNA Folding problem consists of finding the pseudoknot-
free secondary structure with the minimum free-energy. RNA Folding can be solved by a simple
dynamic programming in time O(n3) where n is the size of the sequence [24, 32]. Since this
result in the early 1980s, a lot of work has been devoted to propose new methods for secondary
structure prediction. Recently, the first truly subcubic algorithm for RNA Folding was proposed
by Bringmann et al. [8] and runs in deterministic time O(n2.861) or randomized time O(n2.825).
Some faster polynomial-time approximation algorithms were later obtained [27].

When pseudoknots are allowed, the computational complexity of predicting how RNA folds gets
a bit blurry. The short answer would be to say that the folding prediction becomes NP-complete
[2, 18, 23]. Observing that none of those three hardness constructions are ideal, the first one
because the value of the free-energy is not fixed but specified as part of the input, and the other
two, because they assume that only planar pseudoknots are legal, Lyngsø gives two additional NP-
hardness proofs [22]. They work in seemingly very close models; both not too distant from Watson-
Crick. However, the NP-hardness in one model crucially needs that the alphabet size is unbounded
(which is rather unsatisfactory), while the NP-hardness in the other model carries over to a binary
alphabet. When only restricted types of pseudoknots are allowed, dynamic programming still works
and yields polynomial-time algorithms with worst running times than in the pseudoknot-free case
[2, 10, 23, 25]. Under the hypothesis that the pseudoknots may only form after the pseudoknot-free
pairs, the O(n3)-time complexity can be attained again [19]. In a simpler model, an approach based
on maximum weighted matchings makes the folding prediction tractable for general pseudoknots
[29].

RNA design. In the inverse folding problem called RNA Design, one is given a secondary
structure and has to find a sequence of bases which uniquely folds into this structure; or report that
such a sequence does not exist. The sequence must fold into this structure preferentially to any
other structure. In particular, in the Watson-Crick model, any other structure the sequence can
fold into must have strictly less pairs. If such a sequence exists, we call it a design for the secondary
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structure.
This problem was introduced in the early 1990s in a paper which, to date, has over 2000 cita-

tions [17]. Surprisingly, the complexity of RNA Design is still unknown despite two decades of
works and was explicitly stated as a major open problem [4, 12, 13, 16, 21]. This is exceptional for
a central problem in computational biology [16]. Schnall-Levin et al. gave a NP-hardness proof for
a more general problem [28]. However, to be applicable to RNA Design, the energy model would
have to depend on the 3-Sat instance in the reduction (hence, would be different for each instance)
which is clearly not realistic (see the discussions in [16, Section 5] or in [21]).

Solving RNA Design finds applications in multiple fields such as pharmaceutical research and
biochemistry [16] as well as synthetic biology and RNA nanostructures [11]; the two latter areas
aim at creating enhanced RNA with desirable properties. It is also a major step towards functional
RNA molecular design. Therefore, there are many algorithms and software products1 solving the
RNA inverse folding problem [1, 4, 9, 14]. Churkin et al. compare the main freewares solving RNA
Design such as RNAInverse, antaRNA, and RNAiFold [11]. All of them are either heuristics, or use
meta-heuristics, or have an exponential running time. Let us also mention the EteRNA project, an
online game where (more than 100.000) players have to find a correct sequence given a structure [20].
In 2016, some expert players have solved hard instances that known algorithms could not solve [3].

Recently, Haleš et al. gave some sufficient conditions under which one can answer to the problem
in polynomial time [16]. Their main result is to show that if the structure is saturated, i.e., does
not contain any unpaired letter, then a design –if it exists– can be found in linear time by a
greedy procedure. In the case of saturated structures, the existence of a design is solely based on
the maximum degree of a tree representing the structure. The authors also show that on smaller
alphabets and general secondary structures, RNA Design is tractable.

Following the name of the precoloring extension problem in graphs [6], let the extension version
(RNA Design Extension) of the inverse folding problem be the same as RNA Design with the
additional constraint that some indices of the RNA sequence should contain a specified base. Lyngsø
observes that this assumption is biologically coherent: “Most recent methods do allow for position
specific constraints, where in addition to folding into the target structure the designed sequence is also
required in certain positions to have a particular nucleotide” [21]. Indeed, in addition to the target
structure, one has to force some bases at key positions to ensure that the RNA molecule possesses
a given function. Zhou et al. also propose a method to solve RNA Design where some positions
within the sequence are constrained to certain bases [31]. Rodrigo et al. impose the presence of a
certain sequence at a specific position in the structure [26]. Borujeni et al. enforce the presence
of a given subsequence (called the Shine-Dalgarno sequence) paired to a “start codon” to start the
translation of RNA to proteins [7]. Furthermore, software libraries solving RNA Design allow
those additional unary constraints and the instances of the EteRNA project contain immutable
nucleotides. Thus it appears that the design of RNA secondary structures is better captured by
RNA Design Extension than its restriction RNA Design.

In this paper, we resolve the long-standing open question of the computational complexity of
designing RNA secondary structures by showing that RNA Design Extension is NP-hard in the
Watson-Crick model of energy.

Ideas of the reduction. The main reason the complexity of designing RNA secondary structures
has been open for about twenty years is that it is difficult to create challenging structures for which
the intended sequence will not fold into an undesired better structure; let alone to actually prove

1The following wikipedia page already references more than a dozen https://en.wikipedia.org/wiki/List_of_
RNA_structure_prediction_software#Inverse_folding.2C_RNA_design
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it. It is considerably easier to exhibit an alternative better structure for a bad sequence. Indeed,
in the former case, one needs to argue over all the structures compatible with the sequence, while
in the latter, one just needs to find one particular structure. With that in mind, YES-instances of
the starting NP-hard problem will be much more problematic to deal with than the NO-instances.

Our reduction is from E3-SAT (where all the clauses have exactly three literals). Each clause
gadget contains some unpaired bases and is surrounded by an arch of nested parentheses. The
number of unpaired bases and the width of this arch are set so that if the three literals of the clause
are unsatisfied, one can obtain a better structure by deleting the arch and matching the previously
unpaired bases with other previously unpaired bases in the corresponding variable gadgets. And if
only at most two literals of the clause are unsatisfied this rematching strategy ends up with a worst
structure.

To combat any improving rematching strategy for the sequences we want to interpret as satisfying
assignments, we use arches of increasing widths to represent the variables. This allows a simple
counting argument to significantly prune the set of undesired rematchings. Another key technical
ingredient is to display the variable and clause gadgets interleaved in a carefully chosen order.
Interestingly, we also make use of the fact that saturated structures can be efficiently designed [16]
in the correctness of our reduction.

Robustness of the reduction. As established in the Watson-Crick energy model, our hardness
result enjoys the following healthy properties. We only need a 4-letter alphabet for the sequences,
which naturally corresponds to the four nucleotides A,U,C,G. This is optimal in light of the paper
by Haleš et al. [16] where the authors show the tractability of designing RNA secondary structures
on an alphabet of size at most 3. The way free-energy is computed is fixed (it can be thought as −1
for each base pair); hence, it is not part of the input and cannot be used to artificially encode a hard
task. We do not need pseudoknots –which make the folding prediction intractable– to obtain the
hardness. Watson-Crick being the simplest model, our result strongly suggests that RNA secondary
structure design is hard in more authoritative models.

Let also note that the structures produced by our reduction are reasonably realistic. They
contain as building blocks nested parentheses surrounding some dots. Interestingly, this structure
is, as we mentioned, known as a stem-loop which is itself a building block of RNA structures. Finally,
we believe that the ideas developed in the reduction can be adapted to fit other energy models and
will prove useful to show NP-hardness even when no element of the sequence is constrained to be a
specified nucleotide.

Organization. The rest of the paper is organized as follows. In Section 2, we formally introduce
all the required notions and define the problem RNA Design (Extension). In Section 3, we show
our main contribution: even in the very simple Watson-Crick model, designing RNA secondary
structures is NP-hard if the input structure comes with imposed bases at some specific positions.
In short, RNA Design Extension is NP-hard. In Section 4, we give simple algorithms with a
complexity better than the brute-force for RNA Design (Extension).

2 Preliminaries

For a positive integer n, we denote by [n] the set {1, 2, . . . , n} of positive integers no greater than
n. Given a word w of length n over an alphabet Σ, w[i] ∈ Σ denotes the i-th letter of w (for any
i ∈ [n]).
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Sequences and extensions. An RNA sequence is a word over the set of bases {A,C,G,U}. A
sequence is a word over {1, 2, 3, 4}, where 1 represents A, 4 represents U , 2 represents C, and 3
represents G. This way, two letters can be paired if they sum up to 5. We call base an element of
{1, 2, 3, 4}. A partial sequence is a word over {1, 2, 3, 4, ?}. An extension of a partial sequence w is
a sequence w′ of the same length n such that ∀i ∈ [n], if w[i] 6= ? then w[i] = w′[i], and if w[i] = ?
then w′[i] ∈ {1, 2, 3, 4}.

Secondary structures. A pseudoknot-free secondary structure (or structure for short) is any
word over the alphabet {(, ), .} such that if one removes all the ., the remaining word is a well
parenthesized expression. In what follows, we will always omit the adjective pseudoknot-free. A
well-parenthesized expression (or member of the Dyck language) is a word with the same number
of ( and ), and such that no prefix of the word have more ) than (. We call letter an element of
{(, ), .}. We refer to . as an unpaired letter, or an unmatched letter, or simply a dot, as opposed to (
and ), which are paired. A structure is saturated if it does not contain any unpaired letter.

Designs. In a well-parenthesized expression E, an opening parenthesis at index i is said to be
matched to a closing parenthesis at index j if j is the smallest index to satisfy j > i and that the
multiset {E[i+ 1], E[i+ 2], . . . , E[j− 2], E[j− 1]} contains the same number of opening and closing
parentheses. We extend this definition to structures by ignoring the unpaired letters. A structure S
is compatible with a sequence w, if they have the same length and for any indices i < j ∈ [n] such that
S[i] = ( is matched to S[j] = ), then w[i] and w[j] can be paired (i.e., {w[i], w[j]} ∈ {{1, 4}, {2, 3}}).
A sequence w is a design for a structure S if S is compatible with w and every other structure S′

compatible with w has strictly more unpaired letters. A partial sequence w can be extended to a
design of S if there is an extension w′ of w which is a design for S. We also say that a (partial)
sequence w labels an index i (or, by a slight abuse of language, a letter l := S[i]) of a structure S
of the same size with (or by) a base b ∈ {1, 2, 3, 4, ?} if w[i] = b.

In RNA Design Extension, one is given a structure S and a partial sequence w of the same
length. The goal is to decide if w can be extended to a design for S. The RNA Design problem can
be seen as the special case when the partial sequence w only contains ? symbols. In words, no index
of the structure S is constrained to be labeled by a specific base of {1, 2, 3, 4}. In the introduction, we
argued that RNA Design Extension is perhaps more natural than its restriction RNA Design.

Example 1. w = 214??1?1343 is a partial sequence. w′ = 21423121343 is an extension of w.
S = (()()((.))) is a structure (since (()()(())) is a well-parenthesized expression). S is compatible
with w′. However, w′ is not a design for S since S′ = (((())(.))) is also compatible with w′ and
has the same number of unpaired letter (only one). Actually, w cannot be extended to a design of S
since, none of {21414121343, 21441121343, 21432121343} is a design for S. Observe that, in order
to be compatible with S, the two first ? in w has to get bases that can be paired while the third ?
should be a 2 to be paired with the following 3. The sequence 11423312424 is a design for S.

Tree representation of a structure. A structure S can be seen as a rooted tree T , whose
nodes are either pairs of matching parentheses (we call such nodes paired), or unmatched letters (we
call them unpaired). The parent-child relation is defined by nestedness of parentheses/unmatched
letters. Following Haleš et al. [16], for convenience we also add a special node which is a virtual
root of T . Its role is to simplify working with structures which are not surrounded by parentheses.
Note that the children of each node are ordered and an unpaired node is always a leaf.

Every substructure of S, defined by a subtree of T is itself called a subtree. Observe that not
every subword of S is a subtree. The degree of a node in T is the number of its neighbors, excluding
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the unpaired ones (note that we count the parent of a node as a neighbor). Finally, by the degree
of a structure we mean the maximum degree of a node in its tree.

3 Hardness of RNA Design Extension

The following lemma is intuitive and straightforward to prove. We will use it repeatedly in order to
prove our main theorem. It says that a design induces designs in all the subtrees of the structure.

Lemma 2. A design w for a structure S labels every subtree of S with a design.

Proof. Assume that there is a subtree T of S which is labeled by w′ and w′ is not a design. Let
T ′ be a second structure compatible with w′, having at least as many paired letters as T . The
structure S′ obtained by replacing in S the subtree T by T ′ is another structure compatible with w
and having at least as many paired letters as S; a contradiction.

We show the main result of the paper. A first glimpse of the construction may consist of reading
the dedicated paragraph in the introduction and going through Figure 1 to 5.

Theorem 3. RNA Design Extension is NP-complete.

Proof. RNA Design Extension is in NP because the dynamic programming to solve RNA Fold-
ing in the papers [24, 32] can be slightly adapted to test the uniqueness of the maximally matched
structure. Therefore, one can guess (certificate of polynomial size) an extension of the partial
sequence into a design (if such an extension exists) and checks it with the tuned dynamic program-
ming.

We reduce from the NP-hard problem E3-Sat where the instances have only clauses on exactly
three distinct literals. This problem remains NP-hard when each variable appears at most four
times [30]. Let I = (X = {x1, · · · , xn}, C = {C1, · · · , Cm}) be such an instance with n variables
and thus m = Θ(n) 3-clauses. We will build an equivalent instance J = (S,w) of RNA Design
Extension with a structure S and a partial sequence w both of length N = Θ(n6).

Let t := n2 and y := (n + 3m)t. In the structure S, we will introduce t consecutive unpaired
letters within each gadget representing a variable or a literal. There will not be any other unpaired
letter in S. Hence y = (n + 3m)t represents the overall number of unpaired letters. It might be
useful to keep in mind that n + m = Θ(n) � t = Θ(n2) � y = Θ(n3). For all the inequalities in
the proof to hold, we assume that n,m are greater that some large constant, say 1000.

Variable gadget. The gadget encoding xi is defined as

V 〈xi〉 := ((((((((((((((((︸ ︷︷ ︸
length i(m+1)y

.........︸ ︷︷ ︸
length t

))))))))))))))))︸ ︷︷ ︸
length i(m+1)y

where the opening parentheses are labeled by 1, the closing parentheses are labeled by 4 (see
Figure 1a). We may refer to those parentheses as the arch of xi. The following lemma indicates
how the dots can be labeled in the variable gadgets.

A potential solution is an extension of w whose restriction to the subtree corresponding to one
variable gadget is a design. By Lemma 2, we know that a solution to the RNA Design Extension
instance (S,w) has to be a potential solution.

Lemma 4. In a potential solution, the dots in V 〈xi〉 should all receive label 2, or all receive label 3.
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1 41 41 41 41 41 41 41 4... ...
. . . . . . . .

ti(m + 1)y i(m + 1)y
????????

(a) The variable gadget V 〈xi〉.

1 41 41 41 41 41 41 41 4... ...
. . . . . . . .

ti(m + 1)y i(m + 1)y

22222222

(b) The literal gadget L〈xi〉.

1 41 41 41 41 41 41 41 4... ...
. . . . . . . .

ti(m + 1)y i(m + 1)y

33333333

(c) The literal gadget L〈¬xi〉.

Figure 1: The variable and literal gadgets for xi. If the ? in V 〈xi〉 are labeled by 2 (resp. 3) –setting
xi to true (resp. false)–, then V 〈xi〉 can be entirely rematched to L〈¬xi〉 (resp. L〈xi〉).

Proof. Indeed, if one dot is labeled by 1 (resp. 4), then there would be a distinct structure, with
the same number of pairs, that matches this dot to the first closing parenthesis (resp. to the last
opening parenthesis). Consider now the case where one dot is labeled by 2 and another dot is
labeled by 3. Then those two dots can be matched2 together, yielding a structure with strictly more
pairs.

We interpret labeling all the dots of V 〈xi〉 by 2 to setting xi to true, and labeling all the dots
by 3 to setting xi to false. The dots in the variable gadgets will be the only letters of the structure
S which are not originally labeled by w.

Clause gadget. Let q := 3t− 10(n + m). In the clause gadgets, the structure is entirely labeled
by w.

A 3-clause Cj = `a ∨ `b ∨ `c with a < b < c and `i ∈ {xi,¬xi} (for i ∈ {a, b, c}) is encoded by

S〈Cj〉 := (((((((((︸ ︷︷ ︸
length jy

((((︸︷︷︸
length q

((L〈`b〉)( (((((((((︸ ︷︷ ︸
length jy

(L〈`a〉) )))))))))︸ ︷︷ ︸
length jy

))((L〈`c〉)) ))))︸︷︷︸
length q

)))))))))︸ ︷︷ ︸
length jy

and L〈`i〉 is V 〈xi〉 where all the opening parentheses are labeled by 1, all the closing parentheses,
by 4, and the dots are labeled by 2 if the literal is positive and by 3 if it is negative (see Figure 1b
and Figure 1c).

In L〈`b〉 and L〈`c〉 we remove jy pairs of parentheses in the surrounding arch; so their number
is only ((m + 1)b − j)y and ((m + 1)c − j)y. The outermost jy opening parentheses of S〈Cj〉
are labeled by 1, forcing the corresponding jy closing parentheses to be labeled by 4. The next
q opening parentheses are labeled by 2, and their matching parentheses are labeled by 3. The jy
opening parentheses surrounding L〈`a〉 are labeled by 4, and their matching parentheses, by 1. The
label of the few remaining parentheses is specified in Figure 2. It should be observed that the exact
composition of a literal gadget L〈`i〉 depends on the clause gadget it is in and the position of `i in
the clause. Although, to avoid making the notation cumbersome, we choose this implicit notation
and we keep in mind that the different occurrences of L〈`i〉 slightly vary within the structure S.

We will refer to the jy + q outermost pairs of parentheses as the arch of Cj . We also call the
first jy pairs, the first layer of the arch, and the next q pairs, the second layer. Let A(q)j denote
the set of indices of the second layer in the clause gadget S〈Cj〉. Let A(q)2j ⊆ A(q)j be the indices
of the opening parentheses (labeled by 2) and A(q)3j := A(q)j \ A(q)2j be the indices of the closing
parentheses (labeled by 3). Let A(q) :=

⋃
j∈[m]A(q)j .

2By that slight abuse of language, we mean that the letters labeling those dots in one structure can be matched
together to form a new structure (with more pairs). Let us also recall that we use the words matched and paired
interchangeably.
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1 41 41 41 41 41 42 32 32 32 3
L〈`b〉 L〈`a〉 L〈`c〉

12 334...42 31...12422 33

jy jyq qjy jy

Figure 2: A 3-clause gadget S〈Cj〉: `a ∨ `b ∨ `c with a < b < c.

Overall construction. We join all the gadgets in a binary tree of Θ(n + m) = Θ(n) pairs of
parentheses and height Θ(log n) labeled such as illustrated in Figure 3. The only requirement on
this labeling is that there is no other way of fully matching the binary tree onto itself. We say
that a pair of matched parentheses is labeled by i-j (with i + j = 5) if the opening parenthesis is
labeled by i (implying that the closing parenthesis has to be labeled by j = 5 − i). A possibility3

for labeling the binary tree is to use 1-4 for the outermost pair of parentheses and recursively use
2-3 and 3-2 for the two children of parentheses labeled by 1-4 or 4-1, and use 1-4 and 4-1 for the
two children of parentheses labeled by 2-3 or 3-2. We denote by T the set of indices of the letters in
this binary tree. At the “leaves” of the binary tree, we place the n+m variable and clause gadgets.
The gadgets V 〈x1〉, V 〈x2〉, up to V 〈xn〉 are placed from left to right. For i ∈ [n − 1], we reserve
some room in between V 〈xi〉 and V 〈xi+1〉 for some clause gadgets, according to the following rule.
For each clause Cj on variables xa, xb, xc, with a < b < c, we insert the gadget S〈Cj〉 somewhere
between V 〈xb〉 and V 〈xc〉; in other words, to the right of V 〈xb〉 and to the left of V 〈xc〉. Obviously,
such an ordering of the variable and clause gadgets can be found in polynomial time. The order of
the clause gadgets that are between the same two consecutive variable gadgets V 〈xi〉 and V 〈xi+1〉
is not important and can be chosen arbitrarily. As n+m need not be a power of 2, there might be,
as in Figure 3, some empty “leaves” without a variable gadget nor a clause gadget. We will show
that the partial sequence w can be extended into a design for the structure S if and only if I is
satisfiable.

The whole construction can be seen as simulating the following game, equivalent to 3-Sat, where
your opponent has the more interesting role. There are boxes with 3 literals written on top of each
box. At the beginning of the game, an opponent, who does not want you to get rich, chooses a truth
assignment of the variables appearing on the boxes. Opening a box costs 2.99¤ of your favorite
currency ¤. Once you open a box, you find inside one object per literal. You can turn this object
into 1¤ if the literal is unsatisfied, and the object is worthless otherwise. You will decide to open
a box only if its three literals are unsatisfied (and win 0.01¤). If you open a box with at least one
satisfied literal, then you lose at least 0.99¤. If your opponent is computationally almighty, you will
win nothing if and only if the formula is satisfiable.

In our case, opening a box by paying 2.99¤ corresponds to destroying, in a clause gadget, the q
pairs of innermost parentheses surrounding the three literal gadgets (together with some Θ(log n)
pairs of parentheses in T and an additional constant number within the clause gadget); and turning
an object, found inside the box, associated to an unsatisfied literal `i into 1¤ corresponds to fully
pair the subtree V 〈xi〉 to a subtree L〈xi〉 or L〈¬xi〉.

3Theorem 1 in [15] shows that there are exponentially many possible labelings for the tree. For more details, see
the proof of Lemma 5 in the present paper.
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V 〈x1〉 V 〈x2〉 S〈C1〉 S〈C2〉 V 〈x3〉 S〈C3〉 V 〈x4〉
1212 33 2442 33 213312 33 2442 33 2124

Figure 3: The overall picture with 4 variables and 3 clauses.

I unsatisfiable implies J has no design extension. Assume that instance I is not satisfiable.
By Lemma 4, we already observed that every potential solution corresponds to a truth assignment
(via the interpretation: dots to 2 ≡ true, dots to 3 ≡ false). For any potential solution w′, let A
be the corresponding variable assignment. By assumption, there is a clause which is not satisfied
by A; suppose it is the clause Cj = `a ∨ `b ∨ `c. We exhibit a structure S′ compatible with w′ and
with more paired letters than S (see Figure 4). The jy opening parentheses of the first layer of the
arch of Cj are rematched to the last jy closing parentheses of the arch of xb, while the jy closing
parentheses of the first layer of the arch of Cj are rematched to the first jy opening parentheses of
the arch of xc. The letters whose indices are in A(q)j (second layer) become unpaired. We fully
rematch V 〈xb〉, V 〈xa〉, and V 〈xc〉, to L〈`b〉, L〈`a〉, and L〈`c〉, respectively. It is only possible since
all those three literals are unsatisfied by A; which means that, for any i ∈ {a, b, c}, if the dots in
V 〈xi〉 are labeled by 2 (resp. 3), then the dots in L〈`i〉 are labeled by 3 (resp. 2). So, those dots can
be matched with each other. Observe that the extra arch above L〈`a〉 absorbs the jy first opening
parentheses of V 〈xb〉 and the last jy closing parentheses of V 〈xc〉.

Rematching those six sets of t consecutive dots incurs a win of 3t pairs. Let us now count the
number of pairs in S that we lose. We have to break at most 6dlog(n + m)e pairs in T (indices in
the binary tree), so that the six gadgets V 〈xa〉, V 〈xb〉, V 〈xc〉, and L〈`a〉, L〈`b〉, L〈`c〉 in S〈Cj〉 can
be rematched with each other. Those pairs that we break are all the parentheses in T in the paths
going from those six gadgets to the root of the binary tree. Actually removing all the parentheses
of T would still work. We also broke the q = 3t−10(n+m) pairs of indices in A(q), plus the 6 pairs
of parentheses in S〈Cj〉 which are not part of an arch. The rest of S′ is matched as in S. This new
structure has at least 3t−(3t−10(n+m)+6)−6dlog(n+m)e = 10(n+m)−6(dlog(n+m)e+1) > 0
more pairs. Hence, S partially labeled by w cannot be extended into a design.

I satisfiable implies J has a design extension. Let A be a satisfiable assignment and let
w′ be the extension of w corresponding to A. We show that w′ is a design for S. For the sake of
contradiction, assume that there is a structure S′ 6= S compatible with w′, having at least as many
pairs as S. Let us take S′ maximally matched.

Lemma 5. S′ has to match at least one letter which is unpaired in S.

Proof. Assume that S′ does not match any unpaired letters in S. As S′ has at least the same number
of paired letters as S, it implies that S′ matches exactly the same letters (meaning the same indices)
as S. Let R′ (resp. R) be the structure obtained by restricting S′ (resp. S) to the paired letters
of S. Let ŵ be w′ restricted to those paired letters. By construction, R′ and R are two distinct
saturated structures both compatible with ŵ. In the proof of Theorem 1 in [15], the authors show
that every saturated structure with degree at most 4 has a design (in fact, many designs); and that
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41 41 41 41 1 41 41 41 41 41 41 41 41 4 1 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 42 32 32 32 32 32 3
L〈`b〉 L〈`a〉

L〈`c〉
12 334442 31112422 33

V 〈xa〉

...

V 〈xb〉

...

V 〈xc〉

...

S〈Cj〉

Figure 4: Suppose a clause Cj on variables xa, xb, and xc, with a < b < c, is not satisfied by the
extension w′. In red (light gray) is how we build a structure S′ with more pairs than S (in black).

this design can be found (in linear time) by a greedy labeling. The greedy labeling is any labeling
which does not assign labels i-j to a child of paired parentheses labeled by j-i and avoids to label
two siblings with the same (oriented) pair i-j. Observe that R has degree at most 4 and that ŵ,
which we fully specified in the above construction, respects those two rules. Thus, ŵ is a design for
R; a contradiction to the existence of R′.

The following lemma is straightforward and proves useful to argue about the quality of a struc-
ture reachable from a partially built structure. It is based on a simple counting argument. For any
i ∈ [4], we denote by #(i, w) the number of occurrences of i in the word w.

Lemma 6. If a structure contains (R) as a subtree (that is, the opening and closing parentheses
around R match) and the labeling ŵ of R is complete, then, for any i ∈ [4] and integer x, |#(i, ŵ)−
#(5− i, ŵ)| > x implies that more than x letters will remain unpaired.

Proof. Let Î be the set of (consecutive) indices of letters labeled by ŵ. Because of the surrounding
parentheses, a base with index in Î has to be matched with a base with index also in Î. If, in ŵ,
the number of i exceeds the number of 5− i by more than x, then more than x bases i will not find
a pairing 5− i.

Let Di be the set of the dots contained in V 〈xi〉 and in all the occurrences of L〈`i〉 (with
`i ∈ {xi,¬xi}).

Lemma 7. In S′, a base labeling a dot of Di can only be matched to a base labeling a dot of Di.

Proof. What is illustrated in Figure 5 is in fact more general, and extends from the variable gadgets
to the variable plus the literal gadgets. Suppose a base labeling a dot of Di is matched to a base
labeling a dot of Di′ with i 6= i′. Then, such a pair would surround a subsequence ŵ in w′ with
|#(1, ŵ) −#(4, ŵ)| > |i − i′|(m + 1)y > (m + 1)y = u > y, provided the two bases do not appear
within the same clause gadget. If it is indeed the case, the inequality holds for the three subcases:
variable-variable, variable-clause, and clause-clause (where X-Y says that the first base appears in
an X gadget and the second base appears in a distinct Y gadget), and no matter which literal of
the clause (first, second, or third) contains the base.
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V 〈x1〉
1 4

V 〈x2〉
1 41 4

V 〈x3〉
1 41 41 4

V 〈x4〉
1 41 41 41 4

2

3?3?

0u

1u

2u

3u

position of the 3 paired to the 2 in V 〈x3〉

Figure 5: Why pairing a letter in V 〈xi〉, not paired in S, to a letter in V 〈xi′〉 with i 6= i′ cannot give
a sufficiently paired structure. A single blue edge represents an arch of thickness u := (m+1)y. The
y-axis corresponds to a lower bound of the imbalance |#(1, ŵ)−#(4, ŵ)| where ŵ is the subsequence
surrounded by the new pair depicted by the red dashed edge. The gray areas mark positions where
a 3 can actually be present. In those regions, |#(1, ŵ)−#(4, ŵ)| is greater than u, so this pairing
necessarily yields a worse structure than S.

Now, if a base labeling a dot of Di in a literal gadget is matched to a base labeling a dot of Di′

in the same clause gadget S〈Cj〉 (but a different literal gadget), then such a pair would surround a
subsequence ŵ in w′ with |#(1, ŵ)−#(4, ŵ)| > (|i− i′|(m + 1)− j)y > |m + 1− j|y > y.

Finally, if a base labeling a dot of Di is matched to a base which is not labeling a dot of a Di′ ,
then the imbalance |#(1, ŵ)−#(4, ŵ)|, in the word ŵ surrounded by this pair, is larger, for some
j ∈ [m], than (i(m + 1)− j)y > (m + 1−m)y > y.

Recall that S has only y unpaired letters. By Lemma 6, in all those cases, S′ would have at
least y + 1 unpaired letters; a contradiction.

We will apply Lemma 6 again to argue that the second layer of the clause arches cannot be
significantly rematched. Let T ′ be T augmented with the constant number per clause gadget of
indices corresponding to parentheses not in any arch.

Lemma 8. In S′, a letter with index in A(q)2j (resp. A(q)3j) can only be matched to a letter of
T ′ ∪ A(q)3j (resp. T ′ ∪ A(q)2j).

Proof. First, in S′, A(q)2j cannot be rematched to A(q)3j′ with j 6= j′. Such a match would indeed
surround a subsequence ŵ in w′ with |#(1, ŵ)−#(4, ŵ)| > |j− j′|y. By Lemma 6 that would imply
that S′ has strictly less pairs than S. Second, matching a letter with index in A(q)2j to a 3 outside
of T ′ ∪

⋃
j′ A(q)3j′ would mean to match it to a 3 labeling a dot in S. For this case, we can conclude

similarly to the proof of Lemma 7.

Let i ∈ [n] be such that a dot of Di labeled by 2 is matched in S′ to a dot of Di labeled by 3.
By Lemma 5 and Lemma 7, this index exists. Since Di contains several literal gadgets but only one
variable gadget V 〈xi〉, at least one endpoint of this pair is in a clause gadget. Let j ∈ [m] be the
index of this clause. None of the pairs of parentheses of A(q)j can be present in S′; otherwise the
matching would cross. As |T ′| = Θ(n) and q = Θ(t) = Θ(n2), Lemma 8 implies that most of those
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q pairs in S, have to be unpaired in S′; only a negligible O(n) of the corresponding letters could be
rematched in T ′.

Of the three literals of Cj , at most two are not satisfied by A. Let k ∈ [n] be the index of
a satisfied literal in Cj . The number of destroyed pairs of parentheses compared to S is at least
3t − O(n). At best, 2t new pairs are formed in S′ by linking literal gadgets in S〈Cj〉 to the
corresponding variable gadgets. This still incurs a deficit of t−O(n) pairs. The dots in the literal
gadget of xk in S〈Cj〉 have to be rematched. Otherwise, this contradicts the maximality of S′:
reversing locally S′ to S would provide a structure with strictly more pairs and would not create a
crossing.

By Lemma 7, the dots in the literal gadget of xk in S〈Cj〉 can only be rematched to another
clause gadget S〈Cj′〉 containing the opposite literal of xk. By the same argument as for S〈Cj〉, this
rematching costs at least 3t−O(n) parentheses in A(q)j′ (so 6t−O(n) in total). And only 5t new
pairs can be obtained; this is the case if the four literals in the clauses Cj and Cj′ which are not on
the variable xk are unsatisfied and rematched to the corresponding variable gadgets4. The deficit
of this rematching is 6t− 5t−O(n) = t−O(n) > 0 (since we assumed that n,m are large enough).
Thus reversing S′ to S locally would provide a structure with more pairs than S′, contradicting its
maximality.

4 Algorithmic results

In this section we show that the trivial O∗(4n)-time algorithm for the RNA Design problem can
be significantly improved by analyzing the tree representation of the input sequence.

Consider a structure S and its tree representation T . Let us define two families of subtrees that
can be found in T (we follow the notation used by Haleš et al. [16]). By m5 we denote a node of
degree more than 4. By m3◦ we denote a node with at least one unpaired child, and degree greater
than 2. We will use the following result by Haleš et al. [16] (note that both m5 and m3◦ do not
denote a specific subtree, but rather infinite families of subtrees).

Theorem 9 (Haleš et al. [16]). If S is designable, then it contains neither m5 nor m3◦.

Theorem 10. RNA Design Extension can be solved in time:

(i)
√

3
n · nO(1), where n is the length of the input structure,

(ii) 2s · nO(1), where s is the number of unlabeled elements in the input structure,

using polynomial space.

Proof. Let S be the input structure of length n and with s unlabeled elements. Let T be the tree
representation of S and let r be the virtual root of T . By Theorem 9 we know that r has at most 4
children, each being either a matching pair of parentheses, or an unpaired letter. In the first step,
we branch into all possible labelings of the unlabeled children of r. If there are no more unlabeled
nodes, we check in polynomial time if the obtained labeling is a design of S, and if it extends the
predefined partial labeling.

Consider a non-leaf node v of T , which is labeled, but all its children are unlabeled. Note that
since v is not a leaf, it corresponds to a pair of matching parentheses.

We now want to branch into all possible labelings of children of r. However, in some cases we
can prune the search tree, if we know that the current partial solution is not extendable to a design.

4Observe that this case is not even possible, since otherwise the clause Cj′ would not be satisfied by A, so the
actual deficit of this rematching strategy is even 2t−O(n). Although, a deficit of t−O(n) was good enough.
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By Theorem 9, we know that there are only very few possibilities of how the children of v look like.
Either all of them are paired and then v has at most 3 children (otherwise we obtain m5), or v has
some unpaired children and at most one paired child (otherwise we obtain m3◦). Without loss of
generality assume that v is labeled with 1-4 (all other cases are symmetric).

1 41 42 32 3 1 42 34 1 3 2 ◦ ◦· · · ◦ ◦· · ·
1 44 1

◦...◦...◦
1 41

◦ ◦ ◦ ◦
1 42 3

Figure 6: Some labelings which cannot be extended to a design, because they can be folded into
some other structure with at least as many paired letters as in S (the first two pictures correspond
to Case I, the third one to Case II, and the last two to Case III).

Case I. First, consider the case that v has d 6 3 children and all of them are paired. It is easy to
verify that the only possible labelings of the children of v are: 1-4, 2-3, 3-2 (in any ordering, each
of them may appear only once, see Figure 6 for some examples). This gives the recursion

F (n) 6
3!

(3− d)!
F (n− 2d),

where F (n) denotes the complexity of the discussed algorithm for the input structure of length n.
The worst-case is achieved for d = 1 and has complexity F (n) = O∗(

√
3
n
) = O(1.7321n).

Case II. Now consider the case that v has one paired child and d > 1 unpaired ones. We observe
that the paired child of v can be labeled with 1-4 only, while the unpaired children can get either 2
or 3, but all of them must receive the same label (again, see Figure 6). This gives the recursion

F (n) 6 2F (n− 2− d).

The worst case is achieved for d = 1 and has complexity F (n) = O∗( 3
√

2
n
) = O(1.2600n).

Case III. Finally, consider the case that v has d > 1 unpaired children and no paired ones. Let us
call such a node bad. We observe that all children of v must receive the same label, either 2 or 3
(again, see Figure 6), thus the recursion for this case is

F (n) 6 2F (n− d),

which gives the complexity bound F (n) = O∗(2n) (achieved for d = 1).
However, we can show that this case cannot happen too often. We say that a node of T ,

which has at least two paired children, is good. Let T ′ be a tree constructed from T by removing
all unpaired nodes, and contracting all induced paths into single edges (thus we remove nodes of
degree 2). Moreover, if the virtual root r of T has degree 1, we remove it and assume that T ′ is
rooted at the only child of r. It is easy to observe that T ′ has the following properties:

(a) every node of T ′ is also a node of T ,

(b) the root of T ′ has at most 4 children,

(c) every inner node of T ′ has 2 or 3 children,

(d) every good vertex of T is an inner node of T ′,

13



(e) every bad vertex of T is a leaf of T ′.

Let z be the number of leaves in T ′, clearly the number of bad vertices in T is at most z. Since
every inner node of T ′ has at most 3 children, we observe that the number of inner nodes in T ′ is at
least (z − 4)/2, so this gives us a lower bound for the number of good nodes in T . Thus, for every
two bad nodes (up to a constant number exceptional ones), there exists a good node (which is not
shared with any other pair of bad nodes). More formally speaking, we can partition the set of all
but a constant number of bad nodes into a family A of two-elements sets, and define an injective
mapping from A to the set of good nodes of T . So, if we consider labeling children of two bad nodes
(with d1 and d2 unpaired children, respectively) and d > 2 children of a good node at the same
time, we obtain the recursion

F (n) 6 22 · 6 · F (n− d1 − d2 − 2d).

The worst case-complexity for this case is achieved for d1 = d2 = 1 and d = 2, which gives us
F (n) 6 24F (n− 1− 1− 4) = 24F (n− 6), so F (n) = O∗( 6

√
24

n
) = O(1.6984n). Since there is only

a constant number of bad nodes which are not paired with good nodes, the blow-up in complexity
is also a constant and can be ignored in O(·)-notation.

The correctness of the described procedure is clear and follows from the fact that we only discard
labeling which cannot appear in any design. The running time of the procedure is determined by
the complexity of the worst-case branching, which appears in Case I for d = 1, and thus the running
time can be bounded by F (n) = O∗(

√
3
n
) = O(1.7321n).

Note that the above recursive procedure is completely oblivious to the initial partial labeling of
S. The only place where we make use of it is the final checking. In our second approach we will
only construct partial labelings which extend the pre-labeling.

First, observe that if S has a matching pair and one of its elements is already labeled, the label
of the other element is also uniquely determined. Thus we can assume that each node of T is either
labeled (i.e., if it is a paired node, then both parentheses are already labeled), or unlabeled.

The cases we consider are the same as in the first algorithm, but now the size of the problem is
s, the number of unlabeled elements in the input structure.
Case I. Let d be the number of paired children of v, p of which are unlabeled. We have 1 6 p 6 d 6
3. Considering all cases, we observe that the worst case is achieved for d = p = 1. It is described
by the recursion

F ′(s) 6 3F ′(s− 2),

and its complexity is F ′(s) =
√

3
s · nO(1), where F ′(s) is the complexity of the discussed algorithm

for an input structure with s unlabeled elements.
Case II. Recall that the labeling of the paired child of v must be the same as the labeling of v.
Thus, without loss of generality, we can assume that the paired child of v is labeled. Also, if at
least one of unpaired children is labeled, we can extend the labeling to all other unlabeled children.
Suppose that v has d > 1 unpaired children We obtain the recursion

F ′(s) 6 2F ′(s− d).

Its worst-case is achieved for d = 1, and the complexity is F ′(s) = 2s · nO(1).
Case III. This case is analogous to the previous one – all d unpaired children of v get the same
label. The recursion for this case is

F ′(s) 6 2F ′(s− d),

with the worst case achieved for d = 1 and the complexity bound F ′(s) = 2s · nO(1).
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The correctness is straightforward and the complexity bound for the whole procedure is F ′(s) =
2s · nO(1).

Finally, let us remark that Haleš et al. [16] give a complete characterization of saturated struc-
tures (i.e., ones without unpaired elements), which have a design. This characterization implies a
polynomial-time algorithm for the RNA design problem on such structures. Using bottom-up dy-
namic programming on the tree representation on the input structure, we can adapt this procedure
to the more general RNA Design Extension problem.

Observation 11. RNA Design Extension is tractable on saturated structures.
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