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Optimisation probabiliste des marges vis-à-vis du risque d'instabilité plastique dans les diagnostics de tenue mécanique des conduites forcées Probabilistic optimization of margins for plastic collapse in the mechanical integrity diagnoses of penstocks

Pour justifier l'intégrité des conduites forcées en exploitation amincies par la corrosion, EDF réalise des diagnostics comportant le calcul d'un facteur de marge déterministe relatif à l'instabilité plastique. Ce facteur comporte notamment, pour représenter les variables incertaines, des valeurs de calcul pénalisantes situées conventionnellement à γ=2 écarts-types de la valeur moyenne. Cet article présente la mise en oeuvre d'une approche semi-probabiliste pour optimiser ce conservatisme forfaitaire. Pour chaque cas de calcul, le multiplicateur d'écarttype γ est optimisé de façon à atteindre un niveau de fiabilité cible. Dans 92% des cas, le multiplicateur γ peut être réduit significativement et pris égal (ou inférieur) à 1. L'information donnée, le cas échéant, par le succès de l'épreuve hydraulique initiale de la CF est également prise en compte et permet, dans certains cas, de réduire le facteur de marge.

Summary

Diagnoses are carried out by EDF for justifying the integrity of in-service penstock pipes thinned by corrosion. For this purpose, a deterministic margin factor regarding plastic collapse is calculated by taking into account quantiles on input variables affected by dispersions and/or uncertainties. This paper presents an optimization of these quantiles by a semi-probabilistic approach. For each calculation case, an individual standard deviation multiplier γ corresponding to a quantile is computed to comply with an annual failure probability target value. For 92% configuration cases it is possible to reduce the γ multiplier value to 1. Moreover, in most cases old penstocks experienced a successful initial hydrostatic test. This information is considered and sometimes enables to reduce the margin factor.

Introduction

The French electricity and energy company EDF operates more than 450 hydropower plants. Penstocks are used to convey the water under pressure to the turbine. They represent a cumulative length of more than 250 km. These pipes may be submitted to thinning due to corrosion which may increase the risk of failure due to plastic collapse. To control this risk, the fitness for service of the operated pipe, i.e. its mechanical integrity, has to be justified. This justification of fitness-for service is based on a complete diagnosis. Firstly, it consists in visual examinations, thickness measurements and material characterization (hardness measurements may be completed by tensile tests on samples). These measurements lead to estimate statistical distributions of loss of thickness ∆e and ultimate tensile strength R m . Finally, a Margin Factor is calculated, by using a traditional deterministic approach. The calculation of the Margin Factor takes into account deterministic "calculation values" for the loss of thickness ∆e d and the ultimate tensile strength R m d . For both ∆e and R m , the calculation values are taken equal to the mean value of the variable minus a standard deviation multiplier γ multiplied by the standard deviation. The purpose of the study presented in this paper is to optimize these standard deviation multipliers γ by using a semiprobabilistic approach. In this optimization, the format of the mechanical integrity analysis remains deterministic, but the parameters of the deterministic analysis are optimized through an estimation of the failure probability that has to comply with a target reliability. This kind of approach has been extensively used in many industrial branches (Ardillon et al., 2003) and countries, as in the Eurocodes (Eurocodes Structuraux, 2003).

The paper presents the mechanical model of the structural behavior to plastic instability, as well as the probabilistic model. The model has been applied for various assumptions regarding the deterministic mechanical parameters (e.g. nominal thickness e design , mean and standard deviation of the ultimate tensile strength R m , standard deviation of the thickness σ ∆e …), leading to a large number of cases. For these calculations, an envelope value of annual loss of thickness should be taken. For each case, an annual failure probability is evaluated. It can be interpreted in our case as a difference of two consecutive cumulated failure probabilities because the limit state function G decreases with time. As potentially numerous cases have to be considered, it was important to implement optimized numerical methods. Firstly, it is shown that the computation of two successive failure probabilities can be avoided due to the fact that the G-function decreases with time. It is therefore possible to improve the computational performance. Secondly, the use of the importance sampling method based on the FORM approximation (FORM design point) is justified. This classical probability evaluation method allows a good compromise between accuracy and performance. Finally, for a given target failure probability, it was possible to propose optimized values of the standard deviation multipliers γ Rm and γ ∆e involved in the definition of the calculation values R m d and ∆e d which are used for the evaluation of the Margin Factor. The results of this optimization are presented for steel grades between 320 MPa and 750 MPa for a target annual failure probability comprised between 10 -6 and 10 -7 for an elementary pipe. A preliminary study has been previously performed and presented (Ardillon et al., 2017). This paper presents the updated model (failure criterion) and some results. Allowable stress For normal in-service conditions, the allowable stress f depends on the quality of information concerning the material:

-When measurements are available for checking the material properties, f is defined as: ;

𝑓𝑓 1 (𝑅𝑅 𝑒𝑒 𝑑𝑑 ; 𝑅𝑅 𝑚𝑚 𝑑𝑑 ) = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑅𝑅 𝑚𝑚 𝑑𝑑 2,7 � {1.b} 1.2
Failure criterion The failure mechanism considered is plastic collapse. The brittle rupture mode is not considered. Under these conditions, the failure criterion, expressed as the exceeding of the limit of the flow stress σ f by the circumferential stress σ C , can be written as follows (see nomenclature):

Failure  σ C > σ f {2.a}
To get an expression of the problem independent from the pressure the pipe diameter and the in-service pressure, this criterion may be written as follows:

𝜎𝜎 𝑓𝑓 - 𝑓𝑓•�𝑒𝑒 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +△𝑒𝑒 𝑑𝑑 � 𝑀𝑀𝑀𝑀⋅�𝑒𝑒 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +△𝒆𝒆� < 0

{2.b}

According to (BS 7910, 2015), we consider a flow stress 𝜎𝜎 𝑓𝑓 , which covers the resistance of parent metal and welds. For this purpose, we choose the following envelope flow stress:

𝜎𝜎 𝑓𝑓 = 𝑅𝑅 𝑒𝑒 ′ + 𝑅𝑅 𝑚𝑚 2

{3}

With:

𝑅𝑅 𝑒𝑒 ′ = min (𝐴𝐴 • 𝑅𝑅 𝑚𝑚 -𝐵𝐵 + 𝜀𝜀; 0,93 • 𝑅𝑅 𝑚𝑚 ; 555) {4}
These equations {3} and {4} replace the earlier version of the failure criterion presented in (Ardillon et al., 2017) to comply with the scope of validity of appendix G of (BS 7910, 2015).

Evaluation of the deterministic Margin Factor MF

In a diagnosis, the mechanical integrity of a pipe section (consisting in a shell) is characterized by the Margin Factor, MF, defined as the ratio between the allowable stress f and the circumferential membrane stress:

𝑀𝑀𝑀𝑀 = 𝑓𝑓 𝜎𝜎 𝐶𝐶 {5} 1.4
Limit state function The expression of the G-function is given, for each case, by Equation {2} in conjunction with either Equation {1.a} or Equation {1.b}. In the following, we only develop the case {1.a}, with measurements available on the material and with the flow stress given by {3}. Then, Equation {2} can be written as follows:

𝐺𝐺(𝑋𝑋) = 𝜎𝜎 𝑓𝑓 - 𝑓𝑓•�𝑒𝑒 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +△𝑒𝑒 𝑑𝑑 � 𝑀𝑀𝑀𝑀⋅�𝑒𝑒 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +△e� < 0 {6.a}
Then the two expressions of G at the beginning of year N and of year N+1 can be derived: For material properties, a linear regression has been issued on a sample of penstock grade steels to estimate the distribution of R e . Figure 1 illustrates the general correlation between µ Re and µ Rm , with A = 0,834 and B = 64 MPa:

𝐺𝐺(𝑋𝑋 𝑁𝑁 , 𝑝𝑝) = 𝜎𝜎 𝑓𝑓 -
µ 𝑅𝑅𝑒𝑒 𝑟𝑟𝑒𝑒𝑟𝑟 = 𝐴𝐴 • µ 𝑅𝑅𝑚𝑚 -𝐵𝐵 {7} 
We notice that for some special steel grades, the general regression can overestimate or underestimate µ Re . The standard deviation on the estimation of µ Re by the linear regression is equal to 30 MPa. better estimation of µ Re , more specific to the considered steel grade. Since the different pipes constituting the whole penstock are of the same grade, it is possible to put the following hypotheses:

-For a considered grade of steel, R m should follow a normal distribution whose coefficient of variation is generally below 5%; -

The coefficient of variation of R e is correlated to cv Rm and generally greater. For example, (BS 7910, 2015) mentions a coefficient of variation up to 7% for R e .

These hypotheses lead us to write the following modelling:

= 𝐴𝐴 • 𝑅𝑅 𝑚𝑚 -𝐵𝐵 + 𝜀𝜀 {8.a}
Where ε is a normal variable: µ(ε) corresponds to the gap between µ(𝑅𝑅 𝑒𝑒 ) and its estimation by the general regression µ 𝑅𝑅𝑒𝑒 𝑟𝑟𝑒𝑒𝑟𝑟 = 𝐴𝐴 • µ 𝑅𝑅𝑚𝑚 -𝐵𝐵 for the considered grade of steel. Therefore:

µ 𝑅𝑅𝑒𝑒 = 𝐴𝐴 • µ 𝑅𝑅𝑚𝑚 -𝐵𝐵 + µ(𝜀𝜀)
{8.b} -For a considered penstock, its standard deviation σ(ε) characterizes the dispersion of R e around the mean value 𝜇𝜇(𝑅𝑅 𝑒𝑒 ) = 𝐴𝐴 • 𝑅𝑅 𝑚𝑚 -𝐵𝐵 + µ(𝜀𝜀) knowing the value of R m . Based on observations made on samples of different steel grades, we consider that the envelope standard deviation of µ ε is proportional to µ 𝑅𝑅𝑒𝑒 :

𝜎𝜎 𝜀𝜀 = 𝜔𝜔 • µ 𝑅𝑅𝑒𝑒 {8.c}
The The analysis of 16 penstock diagnoses (with moderate to very severe corrosion thinning), with more hundreds thickness measurement zones on each penstock has shown that the standard deviation of ∆e = ∆e extra -∆e corr generally ranges between 0,25 and 0,5 mm and never exceeds 1 mm. Therefore, we chose: σ ∆e ∈ [0,25 mm ; 1 mm].

2.4

Annual probability Failure during year N corresponds to the following intersection of events:

(𝐺𝐺(𝑋𝑋 𝑁𝑁+1 , 𝑝𝑝) < 0)∩ (𝐺𝐺(𝑋𝑋 𝑁𝑁 , 𝑝𝑝)≥0)

{10}

where X N denotes the input variables vector at the beginning of year N. Then, one gets:

𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑁𝑁) = 𝑃𝑃�(𝐺𝐺(𝑋𝑋 𝑁𝑁+1 , 𝑝𝑝) < 0)∩ (𝐺𝐺(𝑋𝑋 𝑁𝑁 , 𝑝𝑝)≥0)�

{11}

In our case, the corrosion phenomenon results in a wall thinning and consequently, the G-function trajectories decrease with time. Therefore, one gets the inclusion:

(𝐺𝐺(𝑋𝑋 𝑁𝑁 , 𝑝𝑝) < 0) ⊂ (𝐺𝐺(𝑋𝑋 𝑁𝑁+1 , 𝑝𝑝) < 0)

{12}

And it comes:

𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑁𝑁) = 𝑃𝑃(𝐺𝐺(𝑋𝑋 𝑁𝑁+1 , 𝑝𝑝) < 0) -𝑃𝑃(𝐺𝐺(𝑋𝑋 𝑁𝑁 , 𝑝𝑝) < 0 {13}
However, this expression is not interesting in terms of practical numerical evaluation, since it involves the evaluation of two probabilities instead of one, leading to a higher computational cost for a given precision. It is preferable to notice that due to inclusion {12}, the intersection (𝐺𝐺(𝑋𝑋 𝑁𝑁+1 , 𝑝𝑝) < 0)∩ (𝐺𝐺(𝑋𝑋 𝑁𝑁 , 𝑝𝑝)≥0) is equivalent to the event {𝐺𝐺(𝑋𝑋 𝑁𝑁+1 , 𝑝𝑝). 𝐺𝐺(𝑋𝑋 𝑁𝑁 , 𝑝𝑝) < 0}. Therefore:

𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑁𝑁) = 𝑃𝑃(𝐺𝐺(𝑋𝑋 𝑁𝑁+1 , 𝑝𝑝). 𝐺𝐺(𝑋𝑋 𝑁𝑁 , 𝑝𝑝) < 0) {14}
This expression can be useful since it reduces to a single event.

2.5

Numerical methods for estimating the failure probability Since the target reliability levels are relatively high, Crude Monte Carlo is not appropriate for evaluating {13} or {14}. Classical variance reduction techniques would be preferable; a common possibility would be to require to importance sampling. One difficulty of importance sampling is to select a relevant new instrumental distribution; as explained in (Lemaire, 2009), a common practice is to choose for this new density a normal density centered at the design point u* derived from a preliminary FORM evaluation. This is due to the fact that the weight of the failure probability is generally concentrated in the vicinity of the FORM design point u*. This option is available in the uncertainty treatment software OpenTURNS used at EDF and PHIMECA Engineering and jointly developed by EDF, PHIMECA Engineering, Airbus Group and IMACS, which proposes a variety of uncertainty propagation methods (OpenTURNS Reference Guide). Note that due to inclusion {12}, the design point of the event will be the design point of the event {𝐺𝐺(𝑋𝑋 𝑁𝑁+1 , 𝑝𝑝) < 0 }. OpenTURNS offers the possibility to vary the standard deviation of this density: in some cases a significant correction of the FORM approximation may be necessary if some contributions far from the design point have been missed. An alternative possibility is to use the FORM-System method coupled with importance sampling: in this approach the event is considered here as the intersection of two events and two sampling densities are used, centered at each design point. This method proves to be robust and has been finally selected in this study. Complementary calculations were also done with SYSREL ® software with FORM and SORM algorithms and led to the same results. (ISO 13822, 2018), (Trbojevic, 2009)). All these references consider various classes of failure consequences, and are related to the failure of an entire structural system. Depending on the environment of the penstock, the consequence range of a penstock failure can be considered from "severe" to "very severe" without any redundancy. Therefore an annual failure probability from 7 x 10 -5 to 10 -5 has to be considered for an entire penstock (see (NF-EN, 2003) and (BS 7910, 2015)). This target probability may seem low by comparison with the failure rates generally observed on penstocks in the world. The mean annual failure rate of penstocks is indeed between one and two order of magnitude higher than this target probability. However, an in-depth analysis shows that these failures are frequently due to other phenomena such as rock falls, landslides or accidental overpressures. It is justified to aim such a low probability for normal in-service conditions.

As the whole penstock is generally composed by some tens to some hundreds of elementary pipes, we propose to choose a target annual probability equal to 10 -7 to 10 -6 for an elementary pipe, depending on the length of the penstock concerned by the diagnosis.

Applied methodology for quantile evaluation

The calculation cases are characterized by some distribution and deterministic parameters. For most of the mechanical integrity analyses, it is possible to get the value of each of these definition parameters. Consequently, for one given calculation case it is possible to find couples (γ Rm , γ ∆e ) for which the failure probability is exactly equal to the target probability value, except if in the considered range of couples (γ Rm , γ ∆e ) (i.e. [0 ; 2,5] 2 ) no solution is available (too high or too low probability values). It can be shown that the probability of failure P f is a decreasing function of γ ∆e , and also a decreasing function of γ Rm . Therefore, P f is also a decreasing function of γ such that (γ Rm , γ ∆e ) = γ . (1 ; 1). The maximum value of P f is obtained for (0 ; 0) and the minimum for (2,5 ; 2,5). Consequently, unless no solution (γ Rm , γ ∆e ) in [0 ; 2,5] 2 exists, there is a unique solution γ . (1 ; 1) such that P f (γ) = P f target . The methodology is described on the flow diagram presented in Figure 2 below. Note that this is not an optimization problem looking for an optimal solution for some classes of calculation cases: for each case, the unique solution (if any) is calculated. The optimization has been performed with the "Brent" algorithm from NLOPT python library. It can be shown that the γ coefficient is a monotonic function of some parameters. More precisely, it clearly appears, for some parameters, that the envelope case (i.e. the highest value of γ) corresponds to the lowest value of µ Rm , the lowest value of µ ε , the lowest value of e design and the highest value of σ ε .

Results

Annual failure probability for γ=2

A first calculation of the failure probability has been done for the usual value γ = 2 which is generally the default value taken in diagnoses. The analysis was limited to conservative assumptions: for example, only cv Rm = 10% and σ ∆e = 0,5 to 1 mm were considered, leading to 72 configurations : see Figure 3. 66 configurations (91,7%) give annual probabilities lower than 10 -7 or 10 -6 . The six other configurations (8,3%) give probabilities higher than 10 -6 . They correspond to the following conditions: {e design = 5 mm; σ ∆e = 1 mm; µ Rm ≤ 500 MPa}. The first two assumptions correspond to a very severe and scattered corrosion occurring on a very thin shell. The maximum failure probability is equal to 3,6 10 -5 . The aforementioned results correspond to the Margin Factor equal to 1. A complementary study has been performed for Margin Factor comprised between 0,95 and 0,9. It was found that the ratio r = 𝑃𝑃 𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 (𝑀𝑀𝑀𝑀(𝑁𝑁)=0.9)

𝑃𝑃 𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 (𝑀𝑀𝑀𝑀(𝑁𝑁)=1)
, evaluated for the 72 configurations, ranges between 1,5 and 10,9 (see Figure 4). In other words, decreasing the MF from 1 to 0,9 increases the annual failure probability by less than one decade. The lowest values of r (r < 2) correspond to e design = 5 mm and σ ∆e = 1 mm. The highest values of r (r > 8) mostly correspond to the following conditions: {e design ≥ 10; µ Rm ≥ 420 MPa; µ eps = 0}. 6. Optimization of the γ opt multiplier (P f T = 10 -7 ) As it can be supposed from the previous results (probabilities significantly lower than the target values for γ = 2), a large number of the γ opt values are equal to zero. One gets the following distribution of γ opt .

γ opt Number (%) 0 339 (63%) 0 < γ opt < 1 157 (29%) 1 < γ opt < 1,33 17 (3%) 2,5 27 (5%)
Table 1. Distribution of the γ opt values

In 95% configurations, it is possible to reduce significantly the γ multipliers. In order to understand the role played by the input parameters and uncertainties, two types of analyses have been performed:

-Analysis of the dependency of γ opt with respect to input parameters, -Analysis of the upper bounds of γ opt for special groups of penstocks.

Potential relation of γ opt ranges with configuration description parameters

No simple relation was found for the first three classes considered in the previous table. However, it was noticed that all configurations leading to γ opt = 2,50 are included in the set : {e design = 5 mm; σ ∆e = 1 mm; µ Rm ≤ 500 MPa}, as for the configurations with probability higher than 10 -6 with γ = 2 (cf. §5). The first two assumptions correspond to very severe and scattered corrosion occurring on a very thin shell. However, this situation only occurs in very specific cases corresponding to thin designed penstocks exposed to a very severe and scattered corrosion.

6.2

Identification of upper bounds of γ opt (γ opt sup ) for special groups of penstocks Various parameter descriptions have been investigated, discovered to be influential on γ opt sup .

By µ Rm :

-For µ Rm = 600 MPa, the upper bound of γ opt (γ opt sup ) is equal to 1,28; -For µ Rm = 750 MPa, the upper bound of γ opt (γ opt sup ) is equal to 1,10. As it can be concluded from §6.1, for lower values of µ Rm , γ opt sup is equal to 2,5.

By cv Rm :

All values of cv Rm lead to γ opt sup = 2,5. cv Rm alone is not an influential parameter. If one excludes all configurations with σ ∆e = 1 mm (rare situation corresponding to a very severe and scattered corrosion), one gets γ opt sup = 1,32. 

Effect of an initial hydrostatic pressure test

On the oldest penstocks, an initial hydrostatic test has been performed on every elementary pipe before their on-site The hydrostatic pressure for this test was generally taken between 1.5 and 2 times the maximum in-service pressure.

We decided to study the effect of the additional information "at t=0, all the pipes withstood P test = k x P (with k = 1.5 to 2)" on failure probability estimation. The goal of this study was to justify an increased allowable stress leading to the same risk level.

For this purpose, the following failure probability has been estimated:

𝑷𝑷 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎-𝑐𝑐𝑐𝑐𝑎𝑎𝑑𝑑 = 𝑷𝑷 � {G(∆e extra -∆e corr , R m , ε) ≥ 0} ∩ {G(∆e extra -∆e corr -∆e annual , R m , ε) < 0} | {G(∆e , R m , ε) ≥ 0} � {15}
This conditional probability can be evaluated by FORM combined with importance sampling, by using the following formulation:

𝑷𝑷 Depending on the input data, these calculations led to 3 situations:

-Case n°1: The hydrostatic test is informative and moves the curve P annual = f(MF) to the left. This case typically occurs if the dispersion of in-service loss of thickness σ(∆e corr ) remains low to moderate. The Figure 6.a below illustrates such a situation. In this example, the conditional probability remains under the target failure probability even for MF=0.86. In this case, the initial hydrostatic is very informative: it makes possible to multiply the allowable stress by 1.16 while keeping annual failure probability under the target failure probability.

-Case n°2: The conditional failure probability remains equal to the non-conditional failure probability. This case can occur if the dispersion of in-service loss of thickness σ(∆e corr ) is very large. An example is given on Figure 6.b below, with µ(∆e corr ) = 3 mm and σ(∆e corr ) = 1 mm. In this case, the initial hydrostatic test is non-informative with regard to conditional risk level.

-Case n°3: The conditional failure probability is found to be zero. This last case can occur if in-service loss of thickness is very low, with very low dispersion. In this case, the calculation of the probability of intersection can be problematic, due to the fact that the limit state functions tend to become parallel. Therefore, the intersection point is rejected far away from the origin. At this stage of the study, it is difficult to draw a change in the allowable stress. 

Conclusion

In mechanical diagnoses of existing penstocks subjected to corrosion thinning, the calculation of Margin Factor requires deterministic values for ultimate tensile strength R m d and thinning ∆e d , corresponding to quantiles of R m and ∆e. They are usually taken at two standard deviations (γ = 2), considering uncertainties and natural dispersion on these variables.

In order to optimize standard deviation multipliers γ for guaranteeing a given target reliability with regard to the risk of plastic collapse, a semi-probabilistic approach has been developed. This approach led to implement a structural reliability model for the evaluation of the annual failure probability of a thinned penstock. A specific formulation has been carried out for the limit state function. This formulation is independent from the diameter and the in-service pressure. It simplifies the parametric study by limiting the variable parameters. In these conditions, it was possible to cover most of penstock configurations. Because the limit state function is decreasing with time, it was also possible to calculate directly the annual failure probability P f by considering a single event. This scheme allowed more accurate estimations.

Finally, this study has shown that for most grades of steels (320 MPa to 750 MPa) and for usual design thickness range (10 mm to 30 mm), it is possible to reduce significantly the default standard deviation multiplier γ=2 usually applied to the standard deviation of the ultimate tensile strength σ Rm and thinning σ ∆e . For 95% of the tested configurations the optimal γ is inferior to 1,33, and for 62,8% it is equal to 0. Only 5% of tested configurations lead to increased γ opt , γ opt =2,5. They are included in {e design = 5 mm; σ ∆e = 1 mm; µ Rm ≤ 500 MPa}; the first two assumptions correspond to specific combination of a very severe and scattered corrosion with a thin shell. These results are less conservative than in the previous study (Ardillon et al., 2017), due to a less pessimistic failure criterion. Upper bounds of γ opt (γ opt sup ) have been identified for various populations of penstocks corresponding to subsets of input parameters (µ Rm , cv Rm , e design , σ ∆e ). Then, it becomes possible to identify partial relationships between γ opt sup values and parameter combinations. These results can be useful for the industrial application of the proposed γ multipliers in the diagnoses.

A complementary study has shown that, under certain conditions, it was possible to take into account the initial hydrostatic test in the calculation. In some cases (low to moderate dispersion of the in-service loss of thickness), this information enables an increase of the allowable stress while maintaining the target failure probability of the penstock. However, as difficulties can occur for the calculation of the conditional probability in some configurations, additional investigations are still necessary in this field. 
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 1 Figure 1. Linear regression between µ Re and µ Rm for several steel grades Data on an existing penstock before its diagnosis generally contain information on the grade of steel. However, measurements of characteristics (tensile tests or hardness measurements) are only available by sampling. The mean value of the yield strength µ Re reg can be obtained from the mean value of ultimate tensile strength µ Rm by applying the general regression {7} and the available tensile tests allow to reset a

Figure 2 .

 2 Figure 2. Definition of thickness deviation to design thickness Therefore, we consider that the residual thickness of a pipe at the beginning of year N is: e res (Ν) = e design + ∆e extra -∆e corr (N) {9.a} At the beginning of the year N+1, it becomes: e res (Ν+1) = e design + ∆e extra -∆e corr (N) -∆e annual {9.b}

  7 e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ21 Reims 16-18 octobre 2018 2.6 Target reliability Various references related to the definition of reliability target values have been reviewed (see for example (Holicky et al., 2014),

Figure 2 .

 2 Figure 2. Flow diagram of the optimization process 4. Calculation cases The calculation cases presented in this paper relate to the allowable stress f 1 (cf. Eq. (1.a)). The standard deviation multiplier γ has been optimized for 540 combinations of the input parameters. The parameters are in the following intervals: -Allowable stress : f = f 1 ; -Mean value of the ultimate tensile strength: µ Rm ∈ [320 MPa ; 750 MPa]; -Coefficient of variation of the ultimate tensile strength: cv Rm ∈ [2% ; 10%]. ω ∈ [2% ; 5%]; -Design thickness: e design ∈ [5 mm ; 30 mm];

Figure 3 .1

 3 Figure 3. Estimated annual failure probabilities for γ = 2

Figure 4 .

 4 Figure 4. Estimated ratio r for FM N < 1 (γ = 2)

  Values of γ opt sup sorted by σ ∆e and other criteria Although cv Rm is not influential alone, it has a cumulative effect with σ ∆e .It is therefore possible to reduce significantly the γ multipliers when these conditions are fulfilled.Moreover, based on the results presented in this paragraph, it becomes possible to identify partial relationships between γ opt sup intervals and parameter combinations. With the allowable stress f 1 , the Figure5below defines three domains for the optimal γ multipliers, significantly related to conditions fulfilled by e design and σ ∆e :-Domain 1: γ opt ≤ 1.00 ; -Domain 2: γ opt ≤ 1.33 ; -Domain 3: γ opt ≥ 2,50.

Figure 5 .

 5 Figure 5. Estimated ratio r for MF N < 1 (γ = 2)

  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎-𝑐𝑐𝑐𝑐𝑎𝑎𝑑𝑑 = 𝑷𝑷 � {G(∆e extra -∆e corr , R m , ε) ≥ 0} ∩ {G(∆e extra -∆e corr -∆e annual , R m , ε) < 0} ∩ {G(∆e extra , R m , ε) ≥ 0} � 𝟏𝟏 -𝑷𝑷(G(∆e extra , R m , ε) < 0) 7 e Congrès de Maîtrise des Risques et Sûreté de Fonctionnement λµ21 Reims 16-18 octobre 2018 Calculations of P annual have been performed for k = 2. For γ = 2, it has been obtained as a function of the Margin Factor MF.

Figure 6 .

 6 Figure 6.a. Hydrostatic test is informative

  tensile strength of the material of the shell considered (MPa) ∆e Difference from the design thickness (mm) ∆e extra Difference from the design thickness after construction (mm) m ) = 500 MPa CV(R m ) = 10% e nom = 10 mm ω = 5% γ = 2 k épreuve = 2 µ(∆e appro ) = 1 mm σ(∆e appro ) = 0,5 mm µ(∆e corr ) = 3 mm σ(∆e corr ) = 0m ) = 500 MPa CV(R m ) = 10% e nom = 10 mm ω = 5% γ = 2 k épreuve = 2 µ(∆e appro ) = 1 mm σ(∆e appro ) = 0,5 mm µ(∆e corr ) = 3 mm σ(∆e corr )

Table 2 .

 2 Values of γ opt sup sorted by e design and other criteria By σ ∆e :
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