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We propose in this paper a method based, on the one hand, on possibility theory to calculate the similarity among the objects of any casebase, taking into account the imperfection and the heterogeneity of data, and based, on the other hand, on the geometric models like the linear and the circular unidimensional scaling and on the graphic models like the ultrametric trees in order to represent and to visualize this similarity in such a way that we can explore and discover the potential structures and patterns that exist in the data. This approach will be applied to an endoscopic casebase in order to recognize the lesions and the pathologies of this base, and several concrete examples will be given along the paper in order to clarify the mathematical concepts of the method.

Introduction

Any mining system whose goal is to analyze or to organize automatically a set of data or knowledge must use, by a way or another, a similarity operator to evaluate the resemblance or the relations that exist in the processed information [START_REF] Bisson | La similarité: une notion symbolique/ numérique. Apprentissage symbolique-numérique[END_REF]. For example, measuring the similarity between objects (patient records for example) enables us to gather them into groups in order to understand the characteristics and the behaviour of each group or to classify or to predict the behaviour of a new object. Similarity may also give more efficient organization and retrieval of information, and can simplify our data into more reasonable relationships by using data mining techniques in order to take an action, a plan or a decision. However, the limitations and the restrictions of the traditional similarity measures discussed in section 2 incite us to construct the similarity matrix between the objects of our casebase by means of other tools like the possibility theory measures illustrated in section 3. Similarity estimation based on these measures is explained in details with several numeric examples in section 4. Then, Similarity visualization based on spatial and the graphic representation models is presented in section 5. Our method will be applied on a digestive database consisting of a large number of pathologies (section 6) and we will show that a strong similarity exists between the patient records belonging to the same class of pathology (section 7) and that our method outperforms the prior works (section 8). Then, our results will be discussed and some interesting perspectives will be proposed in section 9.

Traditional Similarity Measures Limits

Traditional similarity (dissimilarity) measures (Minkowski, Canberra, Hamming, Jaccard, etc.) [START_REF] Bisson | La similarité: une notion symbolique/ numérique. Apprentissage symbolique-numérique[END_REF] suppose generally that the value of each attribute is precise (disregarding the existence of imprecise data), certain (disregarding the existence of uncertain values), and given (disregarding the existence of missing values) while on the contrary, real databases contain a remarkable amount of incomplete, imperfect, and uncertain values. Actually, the uncertainty of data is a delicate widespread problem in many domains. For instance in the medical domain, patients can not describe exactly how they feel or what has happened to them, doctors and nurses can not tell exactly what they observe, laboratories report results only with some degree of errors, physiologists don't precisely understand how the human body works, medical researchers can not precisely characterize how diseases alter the normal functioning of the body, pharmacologists don't fully understand the mechanism accounting for the effectiveness of the drugs, and no one can precisely determine one's prognosis [START_REF] Szolovits | Uncertainty and decision in medical informatics[END_REF]. In addition to their limitations concerning the imperfection of data, the traditional similarity measures have some constraints and conditions that should be considered when dealing with each of them. For instance, division by zero could take place in a considerable amount of these measures, besides we need to know the nature of each variable in the records that contain heterogeneous attributes (quantitative, qualitative, ordinal, etc.) in order to choose a suitable measure. Moreover, the similarity interval should be taken into account during the aggregation and during the interpretation of the resulting value ([0,1] is the most common similarity interval usually proposed, even though some measures like the angular separation similarity belong to [-1,1]). In reality, a value of an attribute can be given in different ways. For example, if we examine the value of the attribute "age", in some patient records "age" could be assigned as {18 yeas, close to 18 years, more than 15 years, young, between 15 and 20, unknown, 18 or 19, it's quite possible to be 18 or 19 and somehow possible to be 17 or 20, defined by a probability distribution, etc.}. Similarity calculation according to the traditional measures can not be easily carried out between two heterogeneous values, for example, between a value given as 25 and another value given as close to 25, or as a probability distribution, whereas these assignments can be modeled easily thanks to possibility theory [START_REF] Dubois | Probability-possibility transformations, triangular fuzzy sets and probabilistic inequalities[END_REF][START_REF] Dubois | On possibility/probability transformations[END_REF]. For these reasons and in order to construct a general approach, we don't recommend the use of the traditional measures overburdened with a lot of conditions and constraints. Instead, we propose to use the possibility theory measures developed by Zadeh, Prade, Dubois, and Rakoto [START_REF] Bouchon-Meunier | La logique floue et ses applications[END_REF][START_REF] Dubois | Possibility theory in constraint satisfaction problems: handling priority, preference and uncertainty[END_REF][START_REF] Dubois | Fuzzy set-based models in case-based reasoning, 2nd International Conference on Case-Based Reasoning[END_REF][START_REF] Rakoto | Integration of experience based decision support in industrial processes[END_REF][START_REF] Rashwan | The Possibilistic Correlation-Dependent Fusion Methods for Optical Detection[END_REF][START_REF] Dubois | Probability-possibility transformations, triangular fuzzy sets and probabilistic inequalities[END_REF][START_REF] Dubois | On possibility/probability transformations[END_REF] in order to build the similarity (dissimilarity) matrix among the objects of our set.

Possibility Theory

Possibility theory provides a method to formalize subjective uncertainties of events, that is to say a means of assessing to what extent the occurrence (the realization) of an event is possible and to what extent we are certain of its occurrence, without having however the possibility to measure the exact probability of this realization because we don't know an analogous event to be referred to, or because the uncertainty is the consequence of observation instrument reliability absence. Let's attribute to each event defined on the universe of discourse  (in other words to each element belonging to     ) a coefficient ranging between 0 and 1 assessing to which degree the occurrence of an event is possible, where the value "1" means that the event is completely possible, while the value "0" means that the event is impossible. To define this coefficient, we introduce the possibility measure  which is a function defined over
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where SUP indicates the supremum of the concerned values.

We can say that the possibility measure is totally defined, if we can attribute a possibility coefficient to all the singletons of  . Consequently, the possibility distribution function  defined on  , whose values are included in   
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Reciprocally,  can be defined form  by:
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Figure 1 shows some examples of possibility calculation using equation 4:

Fig. 1 Possibility calculation of an imprecise event A.

We should also mention here that the characteristic function of a subset from  can be considered as a possibility distribution  defined on  . In this case:
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In fact, the possibility measure is not sufficient to describe the incertitude of the realization of an event, because sometimes the realization of both the event A and its complement C A could be completely possible   C A at the same time). This means that in this particular case it is impossible to take a decision concerning the realization of A depending on the estimated possibility measure (this case is schematized in figure 3). For this reason, another function, defined on 

) ( ) ( 2 1         A A ) ( ) ( ,... 2 , 1 ,.... 2 , 1 i i i i A N INF A N     (10)
where INF stands for infimum.

There are some interesting relations between the possibility measure  and the necessity measure N presented in the following equations:
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) Pr(A stands for the probability of any event ) (   A . Figure 4 gives an example of calculating the necessity degree using equation 11. 

Possibilistic Similarity Estimation

Suppose that we have two objects j O and k O containing "S" attributes:
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Each attribute could take a precise or an imprecise value modeled by its possibility distribution, and this value can be either numerical or nominal. The values of some attributes could be unassigned (missing value). Besides, each attribute is associated with a "tolerance function" defined by an expert as a formula or as a table permitting to describe mathematically to which degree we consider that two values of this attribute are similar. An example of tolerance function is the function that we call "close to". Such a function can be defined as:
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Where  is a variable that influences the slope of the function and consequently the notion of "close to". The value of  depends on the nature of the attribute and on the user himself. For example, concerning the attribute "age", for an expert the value of  might be "2", that means if the difference between two ages is less than "2", they are considered as "similar" with a certain degree of possibility calculated from equation ( 1), whereas the value of  might be "10" for another expert more tolerant. The value of  might depends also on the -The "ad hoc" tolerance functions which are defined by the experts to reflect their point of view about the similarities between the attributes.

In our approach the similarity between the two objects ) and that  is the tolerance function associated to this attribute, the conjoint possibility distribution
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In this case, the local possibility degree of similarity i  can be calculated as:
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The local necessity degree of similarity i N can be calculated as:
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We consider that if the value of an attribute is given in one object and is unassigned in the other (the case of missing values), it is completely possible that these 
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Where S is the number of the attributes.

4-2 Aggregation Using the Fuzzy Region Competition

Given that   V N v v v V ,..., , 2 1 
is the set of all the possible values of local possibility (necessity) degrees of similarity and N V is its cardinality.
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 is an ordered set in which each element represents the frequency of the corresponding element of V which is calculated as follows: For i=1 to N V (for each possible value of the local possibility (necessity) degree of the similarity) 0  i f For j=1 to S (for each local possibility (necessity) degree of the similarity) 
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Then we apply Dubois-Prade transformation [START_REF] Dubois | Probability-possibility transformations, triangular fuzzy sets and probabilistic inequalities[END_REF][START_REF] Dubois | On possibility/probability transformations[END_REF] in order to construct the possibility distribution set
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Where  is a permutation of indexes {1,2,...,K} associated to the order For each fuzzy region we calculate the possibility or the necessity membership (the possibility that the similarity between For j=1 to C (for all the fuzzy regions)
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We must note that the meaning of the membership degree here is different from that which is used in the fuzzy logic. We consider that the similarity between j X and K X belongs to the fuzzy region whose possibility (necessity) membership degree is the maximum. We see here that the decision concerning the similarity can be done in 4 different ways according to 

4-3 Concrete Examples of Possibilistic Similarity Estimation

Suppose that we would like to calculate the similarity between two patient records in a medical database. Each record contains patient's age, sex, weight, symptoms, biological analysis ...etc. The values of these attributes could be imprecise, vague, uncertain, or unassigned. In all the cases, these values can be easily modeled by possibility distributions. Actually, even if the value of an attribute was assigned as a probability distribution, we are able to transform it to a possibility distribution by means of Prade-Dubois transformation rule [START_REF] Dubois | Probability-possibility transformations, triangular fuzzy sets and probabilistic inequalities[END_REF][START_REF] Dubois | On possibility/probability transformations[END_REF]. For each attribute, we calculate the possibility degree and the necessity degree of similarity between its assigned values in the first and in the second record. We call these degrees "local degrees" since they are estimated at the attribute level. The average degree of all the local degrees calculated between all the considered attributes of the record is called the global degree of similarity between the records. Let us make things easier by taking numeric values, for this purpose we will take the attribute "age" in the patient record, and will suppose that we consider that the values of two ages are considered similar if the difference between them doesn't exceed ten years old. In other terms, we take the tolerance function (equation 18) whose 10   (see figure 6). Let us suppose also that the age is assigned in the first record as "is about 40" and in the second record as "is about 50" (see figure 7 in which the value of each age has been modeled by a fuzzy number 10  ). Y represents the second fuzzy proposition concerning the value of the attribute in the second object.

 represents the possibility or the necessity degree. Fig. 7 The two ages modeled by fuzzy numbers.

To estimate the local possibility and necessity degrees of similarity, we apply the steps presented above as follows: the conjoint possibility distribution that represents the intersection between the two modeled values of the attribute "age" is calculated using equation 19 (figure 8). The maximum value of the intersection between the tolerance function and the conjoint distribution represents the possibility degree of similarity  (figures 9 and 10). For the values given in this example we find that 60 . 0   . Then, we use equation 21 to calculate the necessity degree of similarity (figure 11). We find that . Table 1 shows the local possibility and the necessity degrees of similarity of the attribute "age" for other values of  . if the attribute exists in a record and doesn't exist in the other. This can take place in the databases whose records come from different sources (hospitals) because the attributes of the records that come from a hospital can not be exactly the same as those which come from another one even if all the records characterize the same pathology. Suppose that we have two similar records containing ten attributes, whose local possibility degrees of similarity are {0.90, 0.80, 0.75, 0.70, 0.80, 0.80, 0.75, 0.75, 0.80, 0.70}, and that we have three fuzzy regions {dissimilar, somehow similar, similar}. In order to know to which region belong these two records, we calculate their total necessity membership degrees to each region with the help of table 2 and equation 26 as follows:
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Table 2 Concrete example of estimating the similarity using fuzzy region competition aggregation between two similar records

Suppose now that we have two dissimilar records containing ten attributes, whose local possibility degrees of similarity are {0.10, 0.10, 0.15, 0.30, 0.15, 0.30, 0.15, 0.40, 0.15, 0.15}, and that we have three fuzzy regions {dissimilar, somehow similar, similar}. In order to know to which region belong these records, we calculate their total necessity membership degrees to each region with the help of table 3 and equation 26 as follows:
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Table 3 Concrete example of estimating the similarity using fuzzy region competition aggregation between two disimilar records

Similarity Visualization

Visualization is the process of transforming invisible abstract data, information, and knowledge into a visible display in the form of geometric or graphic representations in order to support tasks such as data analysis, information exploration, trend prediction, pattern detection, rhythm discovery and so [START_REF] Zhang | Visualization for Information Retrieval[END_REF].

Actually, these representational models give observed events a meaningful interpretation and allow future or unseen events to be anticipated through the process of generalization [START_REF] Zhang | Visualization for Information Retrieval[END_REF][START_REF] Navarro | Combining dimensions and features in similarity-based representations Advances in Neural Information[END_REF]. In order to represent the similarity, we have chosen well-developed mathematical representational models like the linear and the circular unidimensional scaling (LUS and CUS) [START_REF] Hubert | Linear unidimensional scaling in the L 2 -norm: Basic optimization methods using Matlab[END_REF][START_REF] Everitt | Encyclopedia of statistics in behavioural science[END_REF][START_REF] Ian | Circular Unidimensional Scaling: A New Look at Group Differences in Interest Structure[END_REF][START_REF] Brusco | Optimal least-squares unidimensional scaling: improved branch-and-bound procedures and comparison to dynamic programming[END_REF] for similarity spatial (geometric) visualization, then we have chosen the ultrametric trees [START_REF] Dahabiah | Possibilistic ordination-based analysis of an imperfect database[END_REF][START_REF] Hubert | Iterative projection strategies for the least-squares fitting of tree structures to proximity data[END_REF] for the graph-based visualization.

5-1 Spatial Visualization

The tasks of linear and circular unidimensional scaling can be defined by the attempt to represent the entries in a symmetric proximity matrix through distances between a set of the locations of the objects defined either along a linear continuum or around a closed, circular continuum. These two scaling tasks are approached through a leastsquares optimization strategy based on a combination of combinatorial search and iterative projection techniques [START_REF] Brusco | Optimal least-squares unidimensional scaling: improved branch-and-bound procedures and comparison to dynamic programming[END_REF]. The detailed algorithms that we applied in this paper can be found in the articles [START_REF] Hubert | Linear unidimensional scaling in the L 2 -norm: Basic optimization methods using Matlab[END_REF][START_REF] Everitt | Encyclopedia of statistics in behavioural science[END_REF] and [START_REF] Hubert | Linear and Circular Unidimensional Scaling for Symmetric Proximity Matrices[END_REF][START_REF] Hubert | Iterative Projection Strategies for the Least-Squares Fitting of Tree Structures to Proximity Data[END_REF].

5-2 Graphic Visualization

This algorithm [START_REF] Dahabiah | Possibilistic ordination-based analysis of an imperfect database[END_REF][START_REF] Hubert | Iterative projection strategies for the least-squares fitting of tree structures to proximity data[END_REF] aims to look for an appropriate tree topology with m internal nodes (representing the classes) and n terminal nodes (representing the objects) in such a way that the length between two leaves approximates their distance and that the terminal nodes are all equally distant from the root. This type of trees is called ultrametric trees and is widely used in hierarchical clustering. The algorithm that we adapted in this paper (detailed in [START_REF] Hubert | Iterative projection strategies for the least-squares fitting of tree structures to proximity data[END_REF]) consists of two main phases: In the first step a best-fitting ultrametric to our possibilistic matrix is generated by using the standard regression solution to a collection of linear equality and inequality constraints that any ultrametric matrix in a specific equivalence class must satisfy. In the second step, an anti-Robinson matrix is constructed by reordering the rows and the columns of the matrix fitted in the first phase in such a way that the entries within each row and column are non-decreasing moving away from the main diagonal in either direction. This anti-Robinson matrix can easily be represented by an inverted tree called in classification literature "a dendrogram".

Tested Base

Our digestive endoscope database [START_REF] Guillou | From Endoscopic Imaging and Knowledge to Semantic Formal Images[END_REF][START_REF] Guillou | Upper Digestive Endoscopic Scene Analyze[END_REF][START_REF] Jm. Cauvin | Similarity and diagnosis in digestive endoscopy[END_REF][START_REF] Jm. Cauvin | Computerassisted diagnosis system in digestive endoscopy[END_REF][START_REF] Jm. Cauvin | Diagnostic reasoning by classification in upper digestive tract endoscopy[END_REF][15] consists of images, object information, and scene information concerning the upper gastrointestinal tract (esophagus, stomach, and duodenum). The endoscopic findings (pathologies) constitute the objects to be depicted thanks to an exhaustive description mode. Each object is described by 24 attributes with 145 modalities (even 33 attributes with 206 modalities if a sub-object exists), and to each attribute is associated a set of all the possible choices. Owing to the fact that the sub-object features depend on the "non-homogenous state" of the Type feature, there are some other relationships between modalities and feature (for example an object whose Density is "unique" has not a Spatial Organization feature, an object whose Shape is "ring-tube" has not a Minor Axis feature, and so on…) or between modalities of different features (for example, modalities of Relief and Thickness features or modalities of object sizes and sub-object sizes,…). For the scene information, A scene is depicted by a patient profile (the sex and age prevalence features as well as a predefined whole of clinical contexts denoting antecedents, circumstances and symptoms), by the objects (at least one), by eventual spatial relations between objects and the complementary procedures to be envisaged to confirm the disease diagnosis. The attributes of this base could be qualitative, quantitative, or unevaluated (missing values). In our test, we calculated the necessity (the average necessity of similarity of the local necessity degrees of similarity) between a given profile and the others, and then we represented the similarity matrix using the spatial and graphic models of visualization.

Our base contains the following pathologies: Dilated lumen, Stenosis, Extrinsic compression, Web, Ring, Hiatal hernia, Food, Blood red (liquid), Blood clot, zline, spot, Circular Barrett's, Moniliasis, Simple erosion, Ulcer (edge), and Petchial mucosa.

Experiments and Results

In order to have a simple and a clear representation of our results, we will show in the following as an example a small subset of cases belonging to our global casebase, keeping in mind that this analysis is applicable to any other case because the approach is general and the matrices that we use are submatrices of the general necessity matrix applied upon all the objects of our global casebase. Suppose that   is the set of objects whose pathology class is "Ring-Shape". First of all, we construct the possibility-based proximity matrix of the objects of CB modeled by the global necessity degree of proximity using equations 20 and 21. Using the algorithm of the LUS explained in details in [START_REF] Hubert | Linear unidimensional scaling in the L 2 -norm: Basic optimization methods using Matlab[END_REF][START_REF] Everitt | Encyclopedia of statistics in behavioural science[END_REF][START_REF] Ian | Circular Unidimensional Scaling: A New Look at Group Differences in Interest Structure[END_REF] to represent the similarity along a linear continuum, and the algorithm of CUS clearly illustrated in [START_REF] Ian | Circular Unidimensional Scaling: A New Look at Group Differences in Interest Structure[END_REF] and [START_REF] Hubert | Linear and Circular Unidimensional Scaling for Symmetric Proximity Matrices[END_REF][START_REF] Hubert | Iterative Projection Strategies for the Least-Squares Fitting of Tree Structures to Proximity Data[END_REF] to represent the similarity in a closed circular continuum, we get the results presented in table 4 for the LUS and in table 5 and figure 13 for the CUS. These results show that a strong similarity exists between the objects belonging to the same pathology. In other words, an object belonging to a given pathology is more similar to any other object from the same family than to the other objects belonging to the other pathologies. Thanks to this characteristic, robust retrieval or case diagnostic and reasoning could be achieved here. From the constructed matrix or/and from the obtained categories and coordinates in the table we can study the relationships that exist between the objects belonging to the same class and we can decompose them into other homogeneous groups according to their similarities in order to understand their characteristics or to extract some interesting potential medical rules. Furthermore, we can have an idea about the similarity that exists between the different pathologies. The possibilistic proximity matrix can be also represented as an ultrametric trees using the graph theory techniques (section 5-2), and similar results and conclusion could be obtained (figure 14). Note that the objects belonging to the same pathology are attached to the same internal node. Actually, in our experiments we took all the attributes of each case into consideration with the same importance. However, more interesting and useful results could be obtained by eliminating some useless attributes or by weighting these attributes according to their importance in determining the lesions. In fact, we supposed the unavailability of medical a priori knowledge when we applied our method because we are discussing the general case, nevertheless having some a priori knowledge about the pathologies or about the attributes could lead to more interesting rules and results. 

Comparison with Prior Works

Many attempts and methods that aim to overcome the limits and the drawbacks of the traditional measures of similarity have been proposed in the literature. However, these methods have not been general and they treated very particular cases and databases. The most recent and efficient method among them is the method proposed by Zemirline et al. [START_REF] Zemirline | Définition et fusion de systèmes diagnostic à l'aide d'un processus de fouille de données : Application aux systèmes diagnostics[END_REF][START_REF] Lecornu | Hybrid rule and knowledge based diagnostic system fusion[END_REF][START_REF] Zemirline | Data Mining System applied in Endoscopic Image Base[END_REF][START_REF] Zemirline | Nouvelle méthode d'extraction de règles de classification multi-labels[END_REF][START_REF] Zemirline | A new hybrid fusion method for diagnostic systems[END_REF], presented briefly as follows:

Supposing that  is the set of all the modalities of the attributes of the cases in the casebase and that the class (pathology) of each case in this base is known: For each class and for all the cases belonging to the considered class, the normalized frequency of appearance of each element of  is calculated in order to construct this class membership function represented by the histogram. The membership functions of all the classes of the casebase form the knowledge base, from which we calculate the similarity as follows: Supposing that i A f is the frequency of appearance of the modality i in the set of cases belonging to the class "A", and j e is the set of the modalities that describe the case j .

A  is the membership degree to class "A" calculated as:
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The similarity can be calculated by equation 31 (note that the proposed similarity is asymmetric)
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The major restriction of Zemirline's method is that it supposes that there is a sufficient number of cases that belong to each class in order to build a reliable knowledge base, whereas in reality, sometimes we have only two or three cases of some pathologies in the database, and consequently no reliable membership functions (knowledge base) could be build basing on these objects. Actually, even if we have a considerable number of some cases, nothing can guarantee that these cases represent all the possible models of the considered pathology. Furthermore, this method can not deal with the imperfection of data (imprecision, uncertainty, or the missing values) though this imperfection could change entirely the knowledge base which the authors try to construct. Moreover, this method can not deal with all the types of data that we can find in databases (like the ordinal data for example).

Discussion and Perspectives

The proposed approach is very simple and fast since it is based on possibility theory that get use of simple mathematical operations (max, min, addition, …etc). Applying this approach could be very useful in many applications and particularly in data mining since there is no need to hard data pre-processing steps that deal with the problems of the missing or imprecise values and the heterogeneously-assigned attributes. The simple and the robust way of estimating and visualizing the similarity in all the possible cases could be a strong tool in a large number of data mining techniques like classification, segmentation, clustering, retrieval, etc. and in many other applications that require similarity estimation phase [START_REF] Dahabiah | Possibilistic evidential clustering[END_REF]. For instance, this approach enables us to get use of the achieved information stored in the electronic health records whose number is in permanent increase thanks to the cheap storage support and the fast advances in technology [START_REF] Neves | Electronic Health Records and Decision Support Local and Global Perspectives[END_REF], in order take the appropriate decision or the correct diagnosis. Furthermore, this method can very used in text-based image retrieval. In fact, image retrieval has been mainly studied based on image content using primitives [START_REF] Zhang | Image Retrieval Method Based on Entropy and Fractal Coding[END_REF]: color, shape, detected contours, texture, transformation coefficient, etc. In content-based image retrieval there are not imperfect or missing values in the extracted features, while to our knowledge this is the first study that takes into account the imperfect descriptive features of the medical images characterized directly by the doctors or the experts .This method could easily be personalized by taking the user's viewpoints into account through the tolerance function introduced in section 3. Herein our approach has been applied to a digestive database. In the general case, this method could be applied without any modification to any other medical or non-medical database and valuable potential knowledge about the objects could be discovered. As future work, we will study the relations between the attributes of the objects belonging to the same category by studying and comparing their local possibility and necessity degrees in order to extract the key attributes of each pathology and to discover interesting medical rules in the domain of digestive lesions. Besides, we intend to build computer-based training and diagnosis system in this domain.
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 222 Figure 2 Shows an example of this case:

  is called the necessity measure (denoted N) is defined as follows:

Fig. 3

 3 Fig.3 A c possibility is a good indicator of the occurrence certainty of A.
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 4 Fig.4 Necessity calculation of a fuzzy event A.

  domain of definition of the attribute. For example, for an attribute of  might be 1000, whereas for another attribute whose values belong to the interval value of  might be 0.0001. The tolerance function can be also: -The function of tolerance "True/false": two values of an attribute are similar if they are identical (similarity equals to 1). If the values are different, the similarity is null, this type of functions is used especially when dealing with nominal variables having independent categories. In the case of ordinal variables we must use the function "close to".

jO

  and k O can be estimated by means of two measures: the possibility degree of similarity between j O and k O that tells us to which degree it is possible that these vectors are similar, and the necessity degree of similarity of these vectors that tells us to which degree we are certain of their similarity. The probability of the similarity between j O and k O exists between the necessity degree that represents the lower limit and the possibility degree that represents the upper limit. To calculate the possibility and the necessity degrees of resemblance, we must calculate the local possibility and necessity degrees between their corresponding attributes and aggregate them by taking their average, for example in order to take a decision concerning the total similarity. The local possibility and necessity degrees of similarity between ij x given by its possibility distribution )
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 5 Fig.5 Missing data (total ignorance).
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  in the probability list sorted by ascending order, l represents all the possible ascending order sorting when we have at least two equal-value probabilities. The definition domain of the possibility or the necessity degree denoted as ] C fuzzy regions whose membership functions are chosen by the user. For example, I might be divided into three regions: the first one represents the most dissimilar records, the second stands for the fairly similar records, and the last one represents the most similar records.Supposing thatk R  ~ (or Nk R ~ when dealing with the necessity degrees) is the k-th fuzzy region and that

  Equation 26 represents the necessity degree that the two records belong to the region j R given that V represents all the possible values of their local possibility degrees, whereas Equation 27 represents the necessity degree that the two records belong to the region j R given that V represents all the possible values of their local necessity degrees:For j=1 to C (for all the fuzzy regions)

  Equation 28 represents the possibility degree that the two records belong to the region j R given that V represents all the possible values of their local possibility degrees, whereas Equation 29 represents the possibility degree that the two records belong to the region j R given that V represents all the possible values of their local necessity degrees:
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 6 Fig.6 The tolerance function for 10   . X represents the first fuzzy proposition concerning the value of the attribute in the first object.
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 8 Fig.8The conjoint possibility distribution.
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 9 Fig.9The intersection between the tolerance function and the conjoint possibility distribution.
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 10 Fig.10 Possibility degree estimation.
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 11 Fig.11 Necessity degree estimation.

  we can conclude that the two records are quite similar (as expected). (In this example:

  we can conclude that the two records are dissimilar (as expected). (In this example:
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 1234512 Fig.12The simplified tested database.
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 14 Fig.14The ultrametric tree of the possibilistic similarity matrix of CB (the horizontal axis represents the index of the objects, while the vertical axis represents the similarity degree).

Table 1

 1 Possibility and necessity degrees of similarity of the attribute "age" for different values of 

			N
	20	0.70	0.30
	30	0.80	0.40
	50	0.84	0.60
	99	0.90	0.76

i N

Table 4 .

 4 LUS applied to the dissimilarity matrix of CB

	Objects	Coordinates
		X	Y
	1 O	-0.0301	-0.0335
	2 O	-0.0305	-0.0320
	3 O	-0.0444	-0.0073
	O 4	0.0037	0.0449
	O 5	-0.0313	0.0320
	O 6	-0.0101	0.0439
	O 7	-0.0309	0.0328
	O 8	-0.0301	0.0334
	O 9	0	0.0450
	O 10	-0.0433	0.0124
	O 11	-0.0111	-0.0436
	O 12	-0.0121	-0.0432
	O 13	-0.0111	-0.0436
	O 14	-0.0037	-0.0449
	O 15	0.0448	0.0041
	O 16	0.0371	-0.0256
	O 17	0.0243	-0.0379
	O 18	0.0159	-0.0421

Fig. 13 Circular unidimensional scaling of the possibilistic dissimilarity matrix of CB.

Table 5 .

 5 The coordinates of the points of the CUS applied to CB.