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Abstract: We propose in this paper a method based, on the one hand, on possibility theory to calculate the similarity 

among the objects of any casebase, taking into account the imperfection and the heterogeneity of data, and based, on 

the other hand, on the geometric models like the linear and the circular unidimensional scaling and on the graphic 

models like the ultrametric trees in order to represent and to visualize this similarity in such a way that we can explore 

and discover the potential structures and patterns that exist in the data. This approach will be applied to an endoscopic 

casebase in order to recognize the lesions and the pathologies of this base, and several concrete examples will be given 

along the paper in order to clarify the mathematical concepts of the method.  
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1 Introduction 
Any mining system whose goal is to analyze or to 

organize automatically a set of data or knowledge must 

use, by a way or another, a similarity operator to 

evaluate the resemblance or the relations that exist in the 

processed information [1]. For example, measuring the 

similarity between objects (patient records for example) 

enables us to gather them into groups in order to 

understand the characteristics and the behaviour of each 

group or to classify or to predict the behaviour of a new 

object. Similarity may also give more efficient 

organization and retrieval of information, and can 

simplify our data into more reasonable relationships by 

using data mining techniques in order to take an action, a 

plan or a decision. However, the limitations and the 

restrictions of the traditional similarity measures 

discussed in section 2 incite us to construct the similarity 

matrix between the objects of our casebase by means of 

other tools like the possibility theory measures illustrated 

in section 3. Similarity estimation based on these 

measures is explained in details with several numeric 

examples in section 4. Then, Similarity visualization 

based on spatial and the graphic representation models is 

presented in section 5. Our method will be applied on a 

digestive database consisting of a large number of 

pathologies (section 6) and we will show that a strong 

similarity exists between the patient records belonging to 

the same class of pathology (section 7) and that our 

method outperforms the prior works (section 8). Then, 

our results will be discussed and some interesting 

perspectives will be proposed in section 9.       

2   Traditional Similarity Measures 

Limits  
Traditional similarity (dissimilarity) measures 

(Minkowski, Canberra, Hamming, Jaccard, etc.) [1] 

suppose generally that the value of each attribute is 

precise (disregarding the existence of imprecise data), 

certain (disregarding the existence of uncertain values), 

and given (disregarding the existence of missing values) 

while on the contrary, real databases contain a 

remarkable amount of incomplete, imperfect, and 

uncertain values. Actually, the uncertainty of data is a 

delicate widespread problem in many domains. For 

instance in the medical domain, patients can not describe 

exactly how they feel or what has happened to them, 

doctors and nurses can not tell exactly what they 

observe, laboratories report results only with some 

degree of errors, physiologists don’t precisely 

understand how the human body works, medical 

researchers can not precisely characterize how diseases 

alter the normal functioning of the body, 

pharmacologists don’t fully understand the mechanism 

accounting for the effectiveness of the drugs, and no one 

can precisely determine one’s prognosis [9].  In addition 

to their limitations concerning the imperfection of data, 

the traditional similarity measures have some constraints 

and conditions that should be considered when dealing 

with each of them. For instance, division by zero could 

take place in a considerable amount of these measures, 

besides we need to know the nature of each variable in 

the records that contain heterogeneous attributes 

(quantitative, qualitative, ordinal, etc.) in order to choose 
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a suitable measure. Moreover, the similarity interval 

should be taken into account during the aggregation and 

during the interpretation of the resulting value ([0,1] is 

the most common similarity interval usually proposed, 

even though some measures like the angular separation 

similarity belong to [-1,1]). In reality, a value of an 

attribute can be given in different ways. For example, if 

we examine the value of the attribute “age”, in some 

patient records “age” could be assigned as {18 yeas, 

close to 18 years, more than 15 years, young, between 15 

and 20, unknown, 18 or 19, it’s quite possible to be 18 or 

19 and somehow possible to be 17 or 20, defined by a 

probability distribution, etc.}. Similarity calculation 

according to the traditional measures can not be easily 

carried out between two heterogeneous values, for 

example, between a value given as 25 and another value 

given as close to 25, or as a probability distribution, 

whereas these assignments can be modeled easily thanks 

to possibility theory [7-8]. For these reasons and in order 

to construct a general approach, we don’t recommend 

the use of the traditional measures overburdened with a 

lot of conditions and constraints. Instead, we propose to 

use the possibility theory measures developed by Zadeh, 

Prade, Dubois, and Rakoto [2-8] in order to build the 

similarity (dissimilarity) matrix among the objects of our 

set.  

 

3   Possibility Theory 
Possibility theory provides a method to formalize 

subjective uncertainties of events, that is to say a means 

of assessing to what extent the occurrence (the 

realization) of an event is possible and to what extent we 

are certain of its occurrence, without having however the 

possibility to measure the exact probability of this 

realization because we don’t know an analogous event to 

be referred to, or because the uncertainty is the 

consequence of observation instrument reliability 

absence. Let’s attribute to each event defined on the 

universe of discourse   (in other words to each element 

belonging to   ) a coefficient ranging between 0 and 

1 assessing to which degree the occurrence of an event is 

possible, where the value “1” means that the event is 

completely possible, while the value “0” means that the 

event is impossible. To define this coefficient, we 

introduce the possibility measure   which is a function 

defined over )( , taking values in  1,0 , such that: 

 

Axiom 1:   0               (1) 

Axiom 2:   1                                                       (2) 

Axiom3: )(,..., 21  AA  

)()( ,...2,1,..2,1 iiii ASUPA                                    (3) 

where SUP indicates the supremum of the concerned 

values. 

 

We can say that the possibility measure is totally 

defined, if we can attribute a possibility coefficient to all 

the singletons of  . Consequently, the possibility 

distribution function   defined on  , whose values are 

included in  1,0 , such that 1)(sup  xx   must be 

defined. As a result the function   can be defined form 

the function   by: 

 

  A  )(sup)( xA Ax                        (4) 

 

Reciprocally,   can be defined form   by: 

 

x   )()( xx                           (5) 

 

Figure 1 shows some examples of possibility calculation 

using equation 4: 

 

 
   Fig.1 Possibility calculation of an imprecise event A. 

 

We should also mention here that the characteristic 

function of a subset from   can be considered as a 

possibility distribution   defined on  . In this case: 

 

))](),([min(sup)( xxA A
x




                                  (6) 

 

Figure 2 Shows an example of this case: 

 

 
   Fig.2 Possibility calculation of a fuzzy event A. 

 

To calculate the possibility degree of the couple ),( yx  

given that 1x  and 2y  where ,1 2  are two 

non-interactive universes of discourse, the conjoint 

possibility distribution defined on the Cartesian product 

21  should be calculated from:  

 

1x 2y  ))(),(min(),( yxyx          (7) 

 



In fact, the possibility measure is not sufficient to 

describe the incertitude of the realization of an event, 

because sometimes the realization of both the event A 

and its complement 
CA could be completely possible 

simultaneously ( 1)(  A  and 1)(  CA  at the same 

time). This means that in this particular case it is 

impossible to take a decision concerning the realization 

of A depending on the estimated possibility measure 

(this case is schematized in figure 3). For this reason, 

another function, defined on )( , whose values are 

included in  1,0  and which is called the necessity 

measure (denoted N) is defined as follows: 

 

Axiom 1: 0)( N              (8) 

Axiom 2: 1)( N              (9) 

Axiom 3: )()( 21   AA  

)()( ,...2,1,....2,1 iiii ANINFAN            (10) 

where INF stands for infimum. 

 

There are some interesting relations between the 

possibility measure   and the necessity measure N  

presented in the following equations: 

 

)( A )(1)( CAAN                                (11) 

)( A ))(1()( xINFAN Ax                      (12) 

)()( ANA 
                                                           (13) 

1))(1),((  ANaMax                                          (14) 

If 0)( AN  then 1)(  A                                      (15) 

If 1)(  A  then 0)( AN                                      (16) 

)()Pr()( AAAN                                               (17) 

Where )Pr(A  stands for the probability of any event 

)(A .  

Figure 4 gives an example of calculating the necessity 

degree using equation 11. 

 

 
   Fig.3 A

c
 possibility is a good indicator of the 

occurrence certainty of A.  

 
Fig.4 Necessity calculation of a fuzzy event A. 

 

4. Possibilistic Similarity Estimation  
Suppose that we have two objects 

jO  and kO  containing 

“S” attributes: 

 

]....[ 21 Sjijjjj xxxxO   

]....[ 21 Skikkkk xxxxO  .  

 

Each attribute could take a precise or an imprecise value 

modeled by its possibility distribution, and this value can 

be either numerical or nominal. The values of some 

attributes could be unassigned (missing value). Besides, 

each attribute is associated with a “tolerance function” 

defined by an expert as a formula or as a table permitting 

to describe mathematically to which degree we consider 

that two values of this attribute are similar. An example 

of tolerance function is the function that we call “close 

to”. Such a function can be defined as: 

 






yx

yxa

aa
aa 1),(  if   yx aa                   (18) 

0),( yxa aa  Otherwise 

 

Where   is a variable that influences the slope of the 

function and consequently the notion of “close to”. The 

value of   depends on the nature of the attribute and on 

the user himself. For example, concerning the attribute 

“age”, for an expert the value of   might be “2”, that 

means if the difference between two ages is less than 

“2”, they are considered as “similar” with a certain 

degree of possibility calculated from equation (1), 

whereas the value of   might be “10” for another expert 

more tolerant. The value of   might depends also on the 

domain of definition of the attribute. For example, for an 

attribute whose definition domain is 

 2000000,1000000I , the value of   might be 

1000, whereas for another attribute whose values belong 

to the interval  3.0,2.0I , the value of   might be 

0.0001.  The tolerance function can be also:   

- The function of tolerance "True/false": two values of 

an attribute are similar if they are identical (similarity 



equals to 1). If the values are different, the similarity is 

null, this type of functions is used especially when 

dealing with nominal variables having independent 

categories. In the case of ordinal variables we must use 

the function “close to”. 

- The "ad hoc" tolerance functions which are defined by 

the experts to reflect their point of view about the 

similarities between the attributes. 

In our approach the similarity between the two objects 

jO  and kO  can be estimated by means of two measures: 

the possibility degree of similarity between jO  and kO  

that tells us to which degree it is possible that these 

vectors are similar, and the necessity degree of similarity 

of these vectors that tells us to which degree we are 

certain of their similarity. The probability of the 

similarity between jO  and kO  exists between the 

necessity degree that represents the lower limit and the 

possibility degree that represents the upper limit. To 

calculate the possibility and the necessity degrees of 

resemblance, we must calculate the local possibility and 

necessity degrees between their corresponding attributes 

and aggregate them by taking their average, for example 

in order to take a decision concerning the total similarity. 

The local possibility and necessity degrees of similarity 

between ijx  given by its possibility distribution 

),(
,

yxij
xX ijj

  and ikx  given by its possibility distribution 

),(
,

ik
xX

xx
ikk

  for all  Si ,...,2,1  are calculated 

according to the following relations: 

Supposing that D  is the definition domain of the 

considered attribute ix  ( DDU  ) and that   is the 

tolerance function associated to this attribute, the 

conjoint possibility distribution D  is calculated as: 

 

))(),(min(),( ,, yxxx
ikkijj xXxXikijD                       (19) 

 

In this case, the local possibility degree of similarity i  

can be calculated as: 

 

))](),([min(),( uuSUPxx DUuikiji            (20) 

 

The local necessity degree of similarity iN  can be 

calculated as: 

 

))](1),([max(),( uuINFxxN DUuikiji             (21) 

 

We consider that if the value of an attribute is given in 

one object and is unassigned in the other (the case of 

missing values), it is completely possible that these 

values are similar 1i  but we are entirely uncertain 

0iN  (see figure 5).  

 

 
Fig.5 Missing data (total ignorance). 

 

Now that the local possibility and necessity degrees of 

similarity are calculated, the global possibility and 

necessity degrees of similarity between jX  and kX  

must be determined. In the following we propose 

different models to aggregate these local degrees: 

 

4-1 Aggregation Using the Average Value 
We can take into account all the local degrees of 

similarity by calculating the average possibility jk  or 

to the average necessity jkN  as: 

S
S

i

ijk 



1

                                (22) 

SNN
S

i

ijk 



1

                                   (23)  

  

Where S is the number of the attributes. 

 

4-2 Aggregation Using the Fuzzy Region 

Competition 

Given that  
VNvvvV ,...,, 21  is the set of all the 

possible values of local possibility (necessity) degrees of 

similarity and NV  is its cardinality.  
VNf fffV ,...,, 21  

is an ordered set in which each element represents the 

frequency of the corresponding element of V which is 

calculated as follows: 

For i=1 to NV (for each possible value of the local 

possibility (necessity) degree of the similarity) 

0if  

For j=1 to S (for each local possibility (necessity) degree 

of the similarity) 

If j  is equal to iv  then 1 ii ff   

Now that we built the set fV , we create the ordered 

normalized frequency set  
VNPPPP ,...,, 21  of fV , 

where iP  is calculated from: 





VN

i

iii ffP
1

                                                            (24) 



 

Then we apply Dubois-Prade transformation [7-8] in 

order to construct the possibility distribution set 

 
VN ,...,, 21   where i  is calculated from: 

 

 


 



)()(/

,1 11

max
ijj

j
ll

i

ll

p


  i                                        (25) 

 

Where   is a permutation of indexes {1,2,...,K} 

associated to the order )()2()1( ... Kppp   , 
1  

is the rank of ip  in the probability list sorted by 

ascending order, l   represents all the possible ascending 

order sorting when we have at least two equal-value 

probabilities. The definition domain of the possibility or 

the necessity degree denoted as ]1,0[I  is divided into 

C fuzzy regions whose membership functions are chosen 

by the user. For example, I  might be divided into three 

regions: the first one represents the most dissimilar 

records, the second stands for the fairly similar records, 

and the last one represents the most similar records. 

Supposing that kR

~
 (or NkR

~
 when dealing with the 

necessity degrees) is the k-th fuzzy region and that 
kR

 ~  

(or 
NkR

~  for the necessity) is its membership function 

(  1,0:~ I
kR

 ). We calculate the membership degrees 

of each element (value) iv   VNi ,...,2,1  of the set 

V to each fuzzy region jR

~
 (or to NjR

~
)  Cj ,...,2,1 , 

denoted as )(~ iR
v

j
  ( or as )(~ iR

v
Nj

  for the necessity). 

For each fuzzy region we calculate the possibility or the 

necessity membership (the possibility that the similarity 

between jX  and kX  belongs to the considered region) 

as follows: 

 

4-2-1 Necessity membership degree ( N ): 

Equation 26 represents the necessity degree that the two 

records belong to the region jR  given that V represents 

all the possible values of their local possibility degrees, 

whereas Equation 27 represents the necessity degree that 

the two records belong to the region jR  given that V 

represents all the possible values of their local necessity 

degrees: 

 

For j=1 to C (for all the fuzzy regions) 

 
















 V

jjJR

toNi

iiiRN vvINF

1

~ ))(1),(max(


                    (26) 
















 V

NjNjJR

toNi

iiiRN vvINF

1

~ ))(1),(max(                      (27) 

 

4-2-2 Possibility membership degree ( P ): 

Equation 28 represents the possibility degree that the 

two records belong to the region jR  given that V 

represents all the possible values of their local possibility 

degrees, whereas Equation 29 represents the possibility 

degree that the two records belong to the region jR  

given that V represents all the possible values of their 

local necessity degrees: 

 

For j=1 to C (for all the fuzzy regions) 

 
















 V

jjJR

toNi

iiiRP vvINF

1

~ ))(1),(max(


                       (28) 
















 V

NjNjJR

toNi

iiiRP vvINF

1

~ ))(1),(max(                       (29) 

 

We must note that the meaning of the membership 

degree here is different from that which is used in the 

fuzzy logic. We consider that the similarity between jX  

and KX  belongs to the fuzzy region whose possibility 

(necessity) membership degree is the maximum. We see 

here that the decision concerning the similarity can be 

done in 4 different ways according to 
jJRN


 , 
NjJRN , 

jJRP


 , 
NjJRP . 

 

4-3 Concrete Examples of Possibilistic Similarity 

Estimation 
Suppose that we would like to calculate the similarity 

between two patient records in a medical database. Each 

record contains patient’s age, sex, weight, symptoms, 

biological analysis ...etc. The values of these attributes 

could be imprecise, vague, uncertain, or unassigned. In 

all the cases, these values can be easily modeled by 

possibility distributions. Actually, even if the value of an 

attribute was assigned as a probability distribution, we 

are able to transform it to a possibility distribution by 

means of Prade-Dubois transformation rule [7-8]. For 

each attribute, we calculate the possibility degree and the 

necessity degree of similarity between its assigned 

values in the first and in the second record. We call these 

degrees “local degrees” since they are estimated at the 

attribute level. The average degree of all the local 

degrees calculated between all the considered attributes 

of the record is called the global degree of similarity 



between the records. Let us make things easier by taking 

numeric values, for this purpose we will take the 

attribute “age” in the patient record, and will suppose 

that we consider that the values of two ages are 

considered similar if the difference between them 

doesn’t exceed ten years old. In other terms, we take the 

tolerance function (equation 18) whose 10  (see 

figure 6). Let us suppose also that the age is assigned in 

the first record as “is about 40” and in the second record 

as “is about 50” (see figure 7 in which the value of each 

age has been modeled by a fuzzy number 10 ). 

 

 
   Fig.6 The tolerance function for 10 . 

  X  represents the first fuzzy proposition concerning the 

value of the attribute in the first object. 

   Y  represents the second fuzzy proposition concerning the 

value of the attribute in the second object. 

     represents the possibility or the necessity degree. 

 

 

 
   Fig.7 The two ages modeled by fuzzy numbers. 

 

To estimate the local possibility and necessity degrees of 

similarity, we apply the steps presented above as 

follows: the conjoint possibility distribution that 

represents the intersection between the two modeled 

values of the attribute “age” is calculated using equation 

19 (figure 8). The maximum value of the intersection 

between the tolerance function and the conjoint 

distribution represents the possibility degree of similarity 

  (figures 9 and 10). For the values given in this 

example we find that 60.0 . Then, we use equation 

21 to calculate the necessity degree of similarity (figure 

11). We find that 
161022.2 N . Table 1 shows the 

local possibility and the necessity degrees of similarity 

of the attribute “age” for other values of  . 

 
   Fig.8 The conjoint possibility distribution. 

 

 
Fig.9 The intersection between the tolerance function 

and the conjoint possibility distribution. 

 

 
Fig.10 Possibility degree estimation. 

 

 

 
   Fig.11 Necessity degree estimation. 

 

    N  

20 0.70 0.30 

30 0.80 0.40 

50 0.84 0.60 

99 0.90 0.76 

Table 1 Possibility and necessity degrees of similarity of 

the attribute “age” for different values of   

 



We apply the same steps to all the other attributes of the 

records taking into account that 1i  and 0iN  if 

the value of an attribute is assigned in a record and is a 

missing value in the other record, and that 0i  and 

0iN  if the attribute exists in a record and doesn’t 

exist in the other. This can take place in the databases 

whose records come from different sources (hospitals) 

because the attributes of the records that come from a 

hospital can not be exactly the same as those which 

come from another one even if all the records 

characterize the same pathology.  

Suppose that we have two similar records containing ten 

attributes, whose local possibility degrees of similarity 

are {0.90, 0.80, 0.75, 0.70, 0.80, 0.80, 0.75, 0.75, 0.80, 

0.70}, and that we have three fuzzy regions {dissimilar, 

somehow similar, similar}. In order to know to which 

region belong these two records, we calculate their total 

necessity membership degrees to each region with the 

help of table 2 and equation 26 as follows: 

 










 101

))(1),(max(
toi

iiiDissimilarN vvINF
Dissimilar


 

0)90.0,0,70.0,70.0(  Min
DissimilarN  










 101

))(1),(max(
toi

iiiilarSomehowSimN vvINF
ilarSomehowSim



 
20.0)90.0,20.0,40.0,70.0(  Min

ilarSomehowSimN
 










 101

))(1),(max(
toi

iiiSimilarN vvINF
Similar


 

70.0)90.0,80.0,75.0,70.0(  Min
SimilarN  

As we can see, SomehowSimilar NN  
and 

DissimilarSimilar NN  
. Consequently, we can conclude that 

the two records are quite similar (as expected). 

(In this example: 411 pp  , 4122 ppp  , 

41233 pppp  , 44 p ). 

 

 
Table 2 Concrete example of estimating the similarity 

using fuzzy region competition aggregation between two 

similar records 

 

Suppose now that we have two dissimilar records 

containing ten attributes, whose local possibility degrees 

of similarity are {0.10, 0.10, 0.15, 0.30, 0.15, 0.30, 0.15, 

0.40, 0.15, 0.15}, and that we have three fuzzy regions 

{dissimilar, somehow similar, similar}. In order to know 

to which region belong these records, we calculate their 

total necessity membership degrees to each region with 

the help of table 3 and equation 26 as follows: 
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15.0)90.0,50.0,15.0,50.0(  Min
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0)90.0,50.0,0,50.0(  Min
SimilarN  

As we can see, SomehowDissimilar NN  
and 

SimilarDissimilar NN  
. Consequently, we can conclude that 

the two records are dissimilar (as expected). 

(In this example: ),max( 134141 ppppp  , 

23142 pppp  ,

),max( 343143 ppppp  , 44 p ). 

 

 
Table 3 Concrete example of estimating the similarity 

using fuzzy region competition aggregation between two 

disimilar records 

 

5 Similarity Visualization 
Visualization is the process of transforming invisible 

abstract data, information, and knowledge into a visible 

display in the form of geometric or graphic 

representations in order to support tasks such as data 

analysis, information exploration, trend prediction, 

pattern detection, rhythm discovery and so [16]. 

Actually, these representational models give observed 

events a meaningful interpretation and allow future or 

unseen events to be anticipated through the process of 

generalization [16-17]. In order to represent the 

similarity, we have chosen well-developed mathematical 



representational models like the linear and the circular 

unidimensional scaling (LUS and CUS) [18-21] for 

similarity spatial (geometric) visualization, then we have 

chosen the ultrametric trees [22-23] for the graph-based 

visualization. 

 

5-1 Spatial Visualization 
The tasks of linear and circular unidimensional scaling 

can be defined by the attempt to represent the entries in a 

symmetric proximity matrix through distances between a 

set of the locations of the objects defined either along a 

linear continuum or around a closed, circular continuum. 

These two scaling tasks are approached through a least-

squares optimization strategy based on a combination of 

combinatorial search and iterative projection techniques 

[21]. The detailed algorithms that we applied in this 

paper can be found in the articles [18-19] and [24-25].  

 

5-2 Graphic Visualization 
This algorithm [22-23] aims to look for an appropriate 

tree topology with m internal nodes (representing the 

classes) and n  terminal nodes (representing the objects) 

in such a way that the length between two leaves 

approximates their distance and that the terminal nodes 

are all equally distant from the root. This type of trees is 

called ultrametric trees and is widely used in hierarchical 

clustering. The algorithm that we adapted in this paper 

(detailed in [23]) consists of two main phases: In the first 

step a best-fitting ultrametric to our possibilistic matrix 

is generated by using the standard regression solution to 

a collection of linear equality and inequality constraints 

that any ultrametric matrix in a specific equivalence 

class must satisfy. In the second step, an anti-Robinson 

matrix is constructed by reordering the rows and the 

columns of the matrix fitted in the first phase in such a 

way that the entries within each row and column are 

non-decreasing moving away from the main diagonal in 

either direction. This anti-Robinson matrix can easily be 

represented by an inverted tree called in classification 

literature “a dendrogram”. 

 

6 Tested Base 
Our digestive endoscope database [10-15] consists of 

images, object information, and scene information 

concerning the upper gastrointestinal tract (esophagus, 

stomach, and duodenum). The endoscopic findings 

(pathologies) constitute the objects to be depicted thanks 

to an exhaustive description mode. Each object is 

described by 24 attributes with 145 modalities (even 33 

attributes with 206 modalities if a sub-object exists), and 

to each attribute is associated a set of all the possible 

choices. Owing to the fact that the sub-object features 

depend on the “non-homogenous state” of the Type 

feature, there are some other relationships between 

modalities and feature (for example an object whose 

Density is “unique” has not a Spatial Organization 

feature, an object whose Shape is “ring-tube” has not a 

Minor Axis feature, and so on…) or between modalities 

of different features (for example, modalities of Relief 

and Thickness features or modalities of object sizes and 

sub-object sizes,…). For the scene information, A scene 

is depicted by a patient profile (the sex and age 

prevalence features as well as a predefined whole of 

clinical contexts denoting antecedents, circumstances 

and symptoms), by the objects (at least one), by eventual 

spatial relations between objects and the complementary 

procedures to be envisaged to confirm the disease 

diagnosis. The attributes of this base could be 

qualitative, quantitative, or unevaluated (missing 

values). In our test, we calculated the necessity (the 

average necessity of similarity of the local necessity 

degrees of similarity) between a given profile and the 

others, and then we represented the similarity matrix 

using the spatial and graphic models of visualization. 

Our base contains the following pathologies: Dilated 

lumen, Stenosis, Extrinsic compression, Web, Ring, 

Hiatal hernia, Food, Blood red (liquid), Blood clot, z-

line, spot, Circular Barrett’s, Moniliasis, Simple erosion, 

Ulcer (edge), and Petchial mucosa. 

 

7 Experiments and Results 
In order to have a simple and a clear representation of 

our results, we will show in the following as an example 

a small subset of cases belonging to our global casebase, 

keeping in mind that this analysis is applicable to any 

other case because the approach is general and the 

matrices that we use are submatrices of the general 

necessity matrix applied upon all the objects of our 

global casebase. 

Suppose that  1821 ....,,, OOOCB   is a casebase 

consisting of 18 objects (figure 12) where  211 ,OOP   

is the set of the objects whose pathology class is 

“Dilated Lumen”,  1098765432 ,,,,,,, OOOOOOOOP   

is the set of the objects whose pathology class is 

“Stenosis (esophagus)”,  141312113 ,,, OOOOP   is the 

set of the objects whose pathology class is “Extrinsic 

Compression”,  154 OP   is the set of the objects whose 

pathology class is “Web-Shape”, and 

 1817165 ,, OOOP   is the set of objects whose 

pathology class is “Ring-Shape”.  

First of all, we construct the possibility-based proximity 

matrix of the objects of CB modeled by the global 

necessity degree of proximity using equations 20 and 21. 

Using the algorithm of the LUS explained in details in 

[18-20] to represent the similarity along a linear 

continuum, and the algorithm of CUS clearly illustrated 



in [20] and [24-25] to represent the similarity in a closed 

circular continuum, we get the results presented in table 

4 for the LUS and in table 5 and figure 13 for the CUS. 
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   Fig.12 The simplified tested database. 

 

These results show that a strong similarity exists 

between the objects belonging to the same pathology. In 

other words, an object belonging to a given pathology is 

more similar to any other object from the same family 

than to the other objects belonging to the other 

pathologies. Thanks to this characteristic, robust 

retrieval or case diagnostic and reasoning could be 

achieved here. From the constructed matrix or/and from 

the obtained categories and coordinates in the table we 

can study the relationships that exist between the objects 

belonging to the same class and we can decompose them 

into other homogeneous groups according to their 

similarities in order to understand their characteristics or 

to extract some interesting potential medical rules. 

Furthermore, we can have an idea about the similarity 

that exists between the different pathologies. The 

possibilistic proximity matrix can be also represented as 

an ultrametric trees using the graph theory techniques 

(section 5-2), and similar results and conclusion could be 

obtained (figure 14). Note that the objects belonging to 

the same pathology are attached to the same internal 

node. Actually, in our experiments we took all the 

attributes of each case into consideration with the same 

importance. However, more interesting and useful 

results could be obtained by eliminating some useless 

attributes or by weighting these attributes according to 

their importance in determining the lesions. In fact, we 

supposed the unavailability of medical a priori 

knowledge when we applied our method because we are 

discussing the general case, nevertheless having some a 

priori knowledge about the pathologies or about the 

attributes could lead to more interesting rules and results. 

 
Objects coordinates Pathology 

15O  -0.7123 
4P  

17O  -0.6185  

5P  

 
16O  -0.5382 
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1O  -0.3733  

1P  
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14O  -0.2012  

 

3P  12O  -0.1228 
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3O  0.1259  

 

 

 

 

2P  

10O  0.2156 

7O  0.3041 

8O  0.3758 

5O  0.4511 

9O  0.5389 

6O  0.6255 

4O  0.7285 

Table 4. LUS applied to the dissimilarity matrix of CB   
 

 
Fig. 13 Circular unidimensional scaling of the 

possibilistic dissimilarity matrix of CB. 



Objects     Coordinates 

    X              Y 

1O  -0.0301 -0.0335 

2O  -0.0305 -0.0320 

3O  -0.0444 -0.0073 

4O  0.0037 0.0449 

5O  -0.0313 0.0320 

6O  -0.0101 0.0439 

7O  -0.0309 0.0328 

8O  -0.0301 0.0334 

9O  0 0.0450 

10O  -0.0433 0.0124 

11O  -0.0111 -0.0436 

12O  -0.0121 -0.0432 

13O  -0.0111 -0.0436 

14O  -0.0037 -0.0449 

15O  0.0448 0.0041 

16O  0.0371 -0.0256 

17O  0.0243 -0.0379 

18O  0.0159 -0.0421 

 

Table 5. The coordinates of the points of the CUS  

applied to CB. 
 

 
Fig. 14 The ultrametric tree of the possibilistic similarity 

matrix of CB (the horizontal axis represents the index of 

the objects, while the vertical axis represents the 

similarity degree). 

 

8 Comparison with Prior Works 
Many attempts and methods that aim to overcome the 

limits and the drawbacks of the traditional measures of 

similarity have been proposed in the literature. However, 

these methods have not been general and they treated 

very particular cases and databases. The most recent and 

efficient method among them is the method proposed by 

Zemirline et al. [26-30], presented briefly as follows: 

Supposing that   is the set of all the modalities of the 

attributes of the cases in the casebase and that the class 

(pathology) of each case in this base is known: 

For each class and for all the cases belonging to the 

considered class, the normalized frequency of 

appearance of each element of   is calculated in order 

to construct this class membership function represented 

by the histogram. The membership functions of all the 

classes of the casebase form the knowledge base, from 

which we calculate the similarity as follows: 

Supposing that 
iAf  is the frequency of appearance of the 

modality i  in the set of cases belonging to the class “A”, 

and je  is the set of the modalities that describe the case 

j . A  is the membership degree to class “A” calculated 

as: 
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The similarity can be calculated by equation 31 (note 

that the proposed similarity is asymmetric) 
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 The major restriction of Zemirline’s method is that it 

supposes that there is a sufficient number of cases that 

belong to each class in order to build a reliable 

knowledge base, whereas in reality, sometimes we have 

only two or three cases of some pathologies in the 

database, and consequently no reliable membership 

functions (knowledge base) could be build basing on 

these objects. Actually, even if we have a considerable 

number of some cases, nothing can guarantee that these 

cases represent all the possible models of the considered 

pathology. Furthermore, this method can not deal with 

the imperfection of data (imprecision, uncertainty, or the 

missing values) though this imperfection could change 

entirely the knowledge base which the authors try to 

construct. Moreover, this method can not deal with all 

the types of data that we can find in databases (like the 

ordinal data for example). 

 

9 Discussion and Perspectives 
The proposed approach is very simple and fast since it is 

based on possibility theory that get use of simple 

mathematical operations (max, min, addition, …etc). 

Applying this approach could be very useful in many 

applications and particularly in data mining since there is 

no need to hard data pre-processing steps that deal with 



the problems of the missing or imprecise values and the 

heterogeneously-assigned attributes. The simple and the 

robust way of estimating and visualizing the similarity in 

all the possible cases could be a strong tool in a large 

number of data mining techniques like classification, 

segmentation, clustering, retrieval, etc. and in many 

other applications that require similarity estimation 

phase [33]. For instance, this approach enables us to get 

use of the achieved information stored in the electronic 

health records whose number is in permanent increase 

thanks to the cheap storage support and the fast advances 

in technology [31], in order take the appropriate decision 

or the correct diagnosis.  Furthermore, this method can 

very used in text-based image retrieval. In fact, image 

retrieval has been mainly studied based on image content 

using primitives [32]: color, shape, detected contours, 

texture, transformation coefficient, etc. In content-based 

image retrieval there are not imperfect or missing values 

in the extracted features, while to our knowledge this is 

the first study that takes into account the imperfect 

descriptive features of the medical images characterized 

directly by the doctors or the experts .This method could 

easily be personalized by taking the user’s viewpoints 

into account through the tolerance function introduced in 

section 3. Herein our approach has been applied to a 

digestive database. In the general case, this method 

could be applied without any modification to any other 

medical or non-medical database and valuable potential 

knowledge about the objects could be discovered. As 

future work, we will study the relations between the 

attributes of the objects belonging to the same category 

by studying and comparing their local possibility and 

necessity degrees in order to extract the key attributes of 

each pathology and to discover interesting medical rules 

in the domain of digestive lesions. Besides, we intend to 

build computer-based training and diagnosis system in 

this domain.  
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