
HAL Id: hal-02075139
https://hal.science/hal-02075139

Submitted on 21 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine learning approach for malware multiclass
classification
Houssem Hosni

To cite this version:
Houssem Hosni. Machine learning approach for malware multiclass classification. BRAINS 2019 -
1st Blockchain, Robotics, AI for Networking Security Conference, Mar 2019, Rio de janeiro, Brazil.
�hal-02075139�

https://hal.science/hal-02075139
https://hal.archives-ouvertes.fr


Machine learning approach for malware multiclass classification

Houssem Hosni
LIP6 - Sorbonne University

houssem.hosni@lip6.fr

Abstract— Categorization of modern malware samples on the
basis of their behavior has become essential for the computer
security community, because they receive huge number of mu-
tated malwares every day, and the signature extraction process
is usually based on malicious parts characterizing malware
families. Microsoft provided the data science and cybersecurity
community with an unprecedented malware dataset of near
0.5 terabytes, containing more than 20K malware samples
to encourage open-source progress on effective techniques
for grouping variants of malware files into their respective
families. In the present paper we develop an effective machine
learning approach where emphasis has been given to the phases
related to data analysis, feature engineering and modeling. The
proposed methodology gave interesting classification results in
terms of adopted performance metrics.
Keywords: Windows Malware, Machine learning, Malware family,
Computer security, Classification, Feature engineering, Accuracy,
Performance metrics, KNN, Xgboost, random forest...

I. INTRODUCTION

In recent years, Well funded and multi-player syndicates
heavily invest in technologies and capabilities built to evade
traditional anti-malwares protection, requiring vendors to
develop counter-mechanisms for detecting, categorizing and
deactivating them. In the meantime, they inflict significant
financial loss to users of computer systems. One of the major
challenges that anti-malware software faces today are the vast
amounts of data which needs to be evaluated for potential
malicious intent. One of the main reasons for these high
volumes of different files is that in order to evade detection,
malware authors introduce mutation to the malicious compo-
nents, namely polymorphism and metamorphism. This means
that malicious files belonging to the same malware family,
with the same forms of malicious behavior, are constantly
modified and/or obfuscated using various tactics, so that
they appear to be different files. A first step in effectively
analyzing and classifying such a large number of files is to
group them and identify their respective families.

II. PROBLEM STATEMENT AND OBJECTIVES

The term malware is a contraction of malicious software.
Put simply, malware is any piece of software that was written
with the intent of doing harm to data, devices or to people.[1]
The major part of protecting a computer system from a
malware attack is to identify whether a given piece of
file/software is a malware and identify its family class.
Malware detection and classification techniques are two
separate tasks which are performed by anti-malware and
cybersecurity companies[2]. Once detected, malware needs
to be categorized into a specific family for further analysis.

The aim behind this process is to improve anti-malware
systems reactivity and performance. As far as a very high
number of malware variants is concerned, the need for the
automation of this process is clear-cut. In this work we
discuss a novel machine learning approach that reaches a
very interesting classification accuracy of nearly 99.5%.To
do so there are some objectives and constraints that we have
to deal with.(1) Converting malware files into simple data
points(featurization).(2) The error of this probabilistic clas-
sification process has to be minimal.(3) Minimizing latency
as malware classification should not take a long time.

III. MACHINE LEARNING PROBLEM

A. Data overview

In this section we try to understand the data that has
been provided. The original data collection was published
by Microsoft on the Kaggle competition website[3]. The
dataset contains 10,868 samples of *.byte files and 10,868
of *.asm files. It consists of roughly 200GB data out of
which 50Gb of data are *.bytes files and 150GB of data are
*.asm files. To each malware corresponds a *.byte file with
hexadecimal representation of binary content and an *.asm
file from assembly view. The real name of each malware
is replaced by a unique 20-character hash value which we
call ID. And the portable executable (PE) header is also
removed to ensure sterility. The PE header describes the rest
of the file. Basic information in PE header of a Windows
PE file includes a DOS header and related data, NT header,
a section table and section data. It provides rich attributes
of the PE file[4]. The malwares mainly belong to nine
different families: Ramnit, Lollipop, Kelihos-ver3, Vundo,
Simda, Tracur, Kelihos-ver1, Obfuscator.ACY, and Gatak.
The data collection provides hex code and disassembled code
formats. Figure 1 and Figure 2 are taken from the same
malware. Figure 1 is from the hexadecimal(binary) view
while Figure 2 is from the assembly view.

Fig. 1. Part of Hex code

Disassembled file is generated from the corresponding
hex code by the Interactive Disassembler (IDA) tool[5]. As
shown in figure 2, disassembled files translate binary ma-
chine code into assembly language which is meaningful for



humans. For example, hex decimal digits 56 is disassembled
as instruction push and the object register esi.

Fig. 2. Part of Disassembled Code

B. Mapping to a machine learning problem

In this section we convert the problem stated above to a
multiclass classification problem.
Performance Metrics: The models are evaluated using
logarithmic loss and confusion matrix(accuracy). For each
file, we generate a set of predicted probabilities (one for
every class) and the logloss of the model is as follows:

logloss = − 1

N

N∑
i=1

M∑
j=1

yij log(pij) (1)

where N is the number of files in the test set, M is the
number of labels, log is the natural logarithm, yij is 1 if
observation i is in class j and 0 otherwise, and pij is the
predicted probability that observation i belongs to class j.
The way we split our dataset will be as follows: 80% for
train and cross-validation(64% - 16%) and 20% for test.

IV. EXPLORATORY DATA ANALYSIS AND FEATURE
ENGINEERING

A. Working on *.byte files

The first task is to separate *.byte files from *.asm files as
we will do all the modeling and the data analysis on those
files separately. To verify if our dataset in balanced it is
important to know the frequency of each class as it is shown
on the following histogram.

Fig. 3. distribution of malware classes across *.byte data

Next task is feature engineering on *.byte files. The first
feature to be considered is the size of the file. One way to
know if the size is a useful feature/variable, is the following
boxplot which displays the variation of file sizes per classes.
As it can be observed, file size has some usefulness that can
help us to detect and differentiate between some classes and
consequently would help us predict malware classes.

Fig. 4. *.byte file size per malware class

The *.byte files consist of hexadecimal numbers (256
decimals from 00 to FF). We consider this as a text problem
and we build our bag of words(unigrams) which represent
the occurrence/frequency of those symbols in each file.
We just add the malware class and its *.byte files size as
additional features/variables. The next step is to normalize
and standardize all the variables. The first five rows of the
resulting dataset are shown on following figure:

Fig. 5. Resulting dataset (*.byte)

B. Working on *.asm files

There are 10868 *.asm files and they make up about 150
Go. And there are almost 6 main components that well define
an *.asm file and they are as follows: Address, Segments,
Opcodes, Registers, function calls, APIs To process all this
amount of data we use multithreading and parallel comput-
ing. We split the 150 Go into 5 folders of 30 Go. With the
help of parallel computing we extract all the features plus
the size of each *.asm file. The 52 features to be considered:
Prefixes:[’Header:’,’.text:’,’.Pav:’,’.idata:’,’.data:’,’.bss:’,
’.rdata:’,’.edata:’,’.rsrc:’,’.tls:’,’.reloc:’,’.BSS:’,’.CODE’],
Opcodes:[’jmp’,’mov’,’retf’,’push’,’pop’,’xor’,’retn’,’nop’,
’sub’,’inc’,’dec’,’add’,’imul’,’xchg’,’or’,’shr’,’cmp’,’call’,
’shl’,’ror’,’rol’,’jnb’,’jz’,’rtn’,’lea’,’movzx’],
Keywords:[’.dll’,’std::’,’:dword’],
Registers:[’edx’,’esi’,’eax’,’ebx’,’ecx’,’edi’,’ebp’,’esp’,’eip’]
The following boxplot shows the variation of *.asm file sizes
depending per malwares classes.

Fig. 6. *.asm file size per malware class



After normalization of data, the resulting dataframe is as
follows:

Fig. 7. Resulting dataset (*.asm)

V. MACHINE LEARNING MODELS

In this section, we focus on the machine learning modeling
part. First, We will briefly present the results obtained by
some models on both *.byte and *.asm then we consider with
more details Xgboost, the model that gave the best results in
terms of performance metrics, namely accuracy and logloss.

A. Different models

A random model has been used to help us know what’s
the worst result that a bad model can give. It gave a
logloss = 2.48(on test data) and misclassification=88%. For
the other machine learning models, we train each one on
train data, optimize and tune it’s hyperparameter using the
cross-validation data and finally we compute it’s logloss and
accuracy using the test data. The next table shows the results
obtained by three different models, namely KNN, logistic
regression and random forest that we have trained and used
to predict malware classes.

Fig. 8. Classification results on *.byte and *.asm separately

B. Xgboost classifier on *.byte files

Xgboost is a great machine learning model[8] that gave
us the best results in terms of accuracy and logloss. The
hyperparameter alpha we tuned for Xgboost using the cross-
validation data was the number of trees. As it’s shown on
figure 9, the best alpha(that gives the least error) is equal to
500.

Fig. 9. Cross-validation error per hyperparameter alpha

Fig. 10. Confusion/Precision/Recall matrices

Next figure shows the three classification performance ma-
trices related to Xgboost model(on *.byte files).
Of all the data points that have been predicted as belong-
ing to class 5, 100% actually belong to class 5(class 5
was the most difficult class to predict using other mod-
els). From the performance and accuracy results shown
above its clear that Xgboost performs the best on *.byte
files(logloss=0.079,accuracy=98.76%)

C. Xgboost classifier on *.asm files

As we have said above, Xgboost has a lot of hyperparam-
eters that can be tuned but we keep tuning the number of
trees: alpha=100 is the best parameter in the case of *.asm
files. Xgboost provided the best results on *.asm files as well
with a logloss=0.049 and accuracy=99.13%.

Fig. 11. Cross-validation error per hyperparameter alpha

Next figure shows the three classification performance ma-
trices related to Xgboost model trained using *.asm data.

Fig. 12. Confusion/Precision/Recall matrices

VI. MODELING *.ASM AND *.BYTE FILES ALTOGETHER

A. Exploratory data analysis

In this section, we will join the two dataframes obtained
using *.asm and *.byte data separately in one global
dataframe. This dataframe contains all the hexadecimal
and assembly features. By doing so we get the following
dataframe(fig 13).



Fig. 13. Resulting dataset (*.byte and *.asm altogether)

Next figure depicts a 2D visualization of our dataframe using
a very powerful dimensionality reduction and visualization
technique called T-SNE[9]. The visualization was obtained
using a perplexity=50.

Fig. 14. T-SNE 2D visualization (*.byte and *.asm altogether)

From the figure above we notice that combin-
ing/concatenating *.byte features and *.asm features
altogether was really a great idea(the clusters of data points
that represent the nine classes can be easily identified) and
this can let our machine learning models perform and learn
much better.

B. Machine learning models

Due to their performance on *.byte *.asm data separately,
in this section we focus on random forest and Xgboost.

1) Random Forest: The best alpha (hyperparameter) for
random forest is alpha=3000 and it gives a logloss=0.0401
and an accuracy= 99.3% (see fig 15).

Fig. 15. Cross-validation error per hyperparameter alpha

2) Xgboost: The next figure depicts the hyperparameter
tuning for Xgboost. alpha=3000 is the best parameter
when mixing *.asm and *.byte files altogether. With a
classification accuracy=99.5% and a logloss=0.032, We
conclude that Xgboost is the winner between all the models
that we tried.

Fig. 16. Cross-validation error per hyperparameter alpha

VII. CONCLUSION AND FUTURE WORK

In this work we presented a malware multiclass clas-
sification process from feature engineering to modeling
and performance metrics(accuracy,logloss) evaluation. Five
learning algorithms were compared statistically for classifi-
cation performance of malicious files. A dataset has been
extracted and normalized from a huge collection of binary
and disassembled files representing the content of malwares
recorded by Microsoft anti-virus systems. During extraction,
256 hexadecimal features and 52 assembly features were
considered. After working on *.byte files and *.asm files
separately, a global dataset combining all *.asm and *.byte
features was constructed and this task was really useful
and brought much more information enabling the machine
learning models to learn better and predict malware class
much more accurately. For the algorithms and measurements
discussed in this work, random forest and XGBoost gave
the best results in terms of accuracy score and logloss
as performance metrics. As future directions, we aim to
extend our approach to consider Bi-grams and Tri-grams and
not only simple bag of words. Besides, we will consider
using some deep learning models to see if any classification
performances improvements can be obtained.

REFERENCES

[1] Malware definition:https://www.avg.com/en/signal/what-is-malware
[2] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto.

”Novel feature extraction, selection and fusion for effective malware
family classification”. In Proceedings of the Sixth ACM Conference
on Data and Application Security and Privacy, CODASPY 16, pages
183194, New York, NY, USA, 2016. ACM.

[3] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, Mi-
crosoft Malware Classification Challenge, CoRR, vol. abs/1802.10135,
2018. [Online]. Available: http://arxiv.org/abs/ 1802.10135

[4] Choi, Yang-seo, Ik-kyun Kim, Jin-tae Oh, and Jae-cheol Ryou. 2008.
”PE File Header Analysis-based Packed PE File Detection Technique
(PHAD).” Computer Science and its Applications, 2008. CSA ’08.
International Symposium on. IEEE. 28-31. doi:10.1109/CSA.2008.28.

[5] Ida : Disassembler and debugger. https://www.hex-
rays.com/products/ida/, 2013.

[6] Lakshmanan Nataraj.”Malware Images: Visualization and Automatic
Classification”. Vision Research Lab University of California, Santa
Barbara. URL:https://vizsec.org/files/2011/Nataraj.pdf

[7] W. Aha, Dennis Kibler, Marc K. Albert.”Instance-Based Learning
Algorithms” (1991).

[8] Xgboost.https://github.com/dmlc/xgboost, 2015.
[9] Laurens van der Maaten, Geoffrey Hinton. ”Visualizing Data using

t-SNE”(2008)


