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3Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43, blvd.
du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

ghfkeji@126.com, jwguo@hytc.edu.cn, zeng@math.univ-lyon1.fr

Abstract. We show that certain terminating 6φ5 series can be factorized into a product
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1. Introduction

Clausen’s formula

{

2F1

[

a, b
a+ b+ 1/2

; z

]}2

= 3F2

[

2a, 2b, a+ b
a+ b+ 1/2, 2a+ 2b

; z

]

plays a central role in Ramanujan’s derivation for various series for 1/π. See [1, 3] for
some recent developments of this formula. More general formulas connecting products of
two hypergeometric series as a single series were obtained by Orr in 1899 (see [15, p. 75]).
This paper was motivated by a recent paper of the second author [7], where he proved
some congruences of sums involving even powers of Delannoy numbers and raised some
problems of finding the q-analogues. Recall that the Delannoy numbers count lattice
paths from (0, 0) to (n,m) consisting of horizontal (1,0), vertical (0,1), and diagonal (1,1)
steps, and have the following explicit formulas in terms of binomial coefficients:

D(m,n) :=
n
∑

k=0

(

n

k

)(

n+m− k

n

)

=
n
∑

k=0

(

n

k

)(

m

k

)

2k. (1.1)

*Corresponding author.
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The reader is referred to Dziemiańczuk [4] and the references therein for how to generalize
Delannoy numbers via counting weighted lattice paths. Recall that the basic hypergeo-

metric series rφs is defined as

rφs

[

a1, a2, . . . , ar
b1, . . . , bs

; q, z

]

=

∞
∑

k=0

(a1; q)k(a2; q)k · · · (ar; q)k
(q; q)k(b1; q)k · · · (bs; q)k

(

(−1)kq(
k

2)
)1+s−r

zk,

where (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for n = 1, 2, . . . , and (a; q)0 = 1. Aiming
to answer the q-problems in [7], we are led to prove the following q-Clausen-Orr type
formula.

Theorem 1.1. Let n be a non-negative integer. Then

3φ2

[

q−n, a, x
c, 0

; q, q

]

3φ2

[

q−n, a, c/x
c, 0

; q, q

]

= an6φ5

[

q−n, cqn, a, c/a, x, c/x
c,
√
c,−√

c,
√
cq,−√

cq
; q, q

]

.

(1.2)

It is interesting to compare (1.2) with Jackson’s q-analogue of Clausen’s formula [9,10]:

2φ1

[

a, b

abq
1

2

; q, z

]

2φ1

[

a, b

abq
1

2

; q, zq
1

2

]

= 4φ3

[

a, b, a
1

2 b
1

2 ,−a
1

2 b
1

2

ab, a
1

2 b
1

2 q
1

4 ,−a
1

2 b
1

2 q
1

4

; q
1

2 , z

]

, |z| < 1,

and the following q-analogue of Clausen’s formula [5, Appendix (III.22)]:

{

4φ3

[

a, b, abz, ab/z

abq
1

2 ,−abq
1

2 ,−ab
; q, q

]}2

= 5φ4

[

a2, b2, ab, abz, ab/z

abq
1

2 ,−abq
1

2 ,−ab, a2b2
; q, q

]

, (1.3)

where both series are supposed to be terminated. Indeed, letting c = x2, the identity
(1.2) reduces to the following formula, which seems to be new.

Corollary 1.2. Let n be a non-negative integer. Then

{

3φ2

[

q−n, a, x
x2, 0

; q, q

]}2

= an5φ4

[

q−n, x2qn, a, x2/a, x

x2,−x, xq
1

2 ,−xq
1

2

; q, q

]

. (1.4)

In particular, the right-hand side of (1.4) is non-negative for real a, x, and q. Further-
more, if n is even, then by (1.3), the right-hand side of (1.4) may be written as

an
{

4φ3

[

q−
n
2 , xq

n
2 , a, x2/a

xq
1

2 ,−xq
1

2 ,−x
; q, q

]}2

.

Writing n = 2m in (1.4) and taking the square root we obtain an identity between two
polynomials in a of degree 2m, where the sign is determined by comparing the coefficients
of a2m. We record the resulting formula as the second corollary.
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Corollary 1.3. Let m be a non-negative integer. Then

3φ2

[

q−2m, a, x
x2, 0

; q, q

]

= am4φ3

[

q−m, xqm, a, x2/a

xq
1

2 ,−xq
1

2 ,−x
; q, q

]

.

For some other q-Clausen type formulas, the reader is referred to Gasper and Rah-
man [5, Exercise 8.17] and Schlosser [13]. On the other hand, in their study of some
q-supercongruences for certain truncated basic hypergeometric series related to [16, 17],
Guo and Zeng [8] stumbled on the following q-Clausen-Orr type formula:

(

n
∑

k=s

(q−2n; q2)k(x; q)kq
k

(q; q)k−s(q; q)k+s

)(

n
∑

k=s

(q−2n; q2)k(q/x; q)kq
k

(q; q)k−s(q; q)k+s

)

=
(−1)n(q2; q2)2nq

−n2

(q2; q2)n−s(q2; q2)n+s

n
∑

k=s

(−1)k(q2; q2)n+k(x; q)k(q/x; q)kq
k2−2nk

(q2; q2)n−k(q; q)k−s(q; q)k+s(q; q)2k
. (1.5)

Noticing that (c; q)2k = (
√
c; q)k(−

√
c; q)k(

√
cq; q)k(−

√
cq; q)k, we can rewrite (1.2) as

(

n
∑

k=0

(q−n; q)k(a; q)k(x; q)kq
k

(q; q)k(c; q)k

)(

n
∑

k=0

(q−n; q)k(a; q)k(c/x; q)kq
k

(q; q)k(c; q)k

)

= an
n
∑

k=0

(q−n; q)k(cq
n; q)k(a; q)k(c/a; q)k(x; q)k(c/x; q)kq

k

(q; q)k(c; q)k(c; q)2k
. (1.6)

Clearly (1.6) is an extension of (1.5). In the same vein we shall establish the following
result.

Theorem 1.4. Let n be a non-negative integer. Then
(

n
∑

k=0

(q−n; q)k(x; q
2)kq

k

(q; q)k(c; q)k

)(

n
∑

k=0

(q−n; q)k(x; q
2)kc

kqnk−(
k

2)

(q; q)k(c; q)kxk

)

=

n
∑

k=0

(q−n; q)k(cq
n; q)k(x; q

2)k(c
2/x; q2)kq

k

(q; q)k(c; q)k(c; q)2k
. (1.7)

In this paper we shall consider two q-analogues of D(m,n). We first recall some
standard q-notation (see [5]). The q-binomial coefficients are given by

[

n

k

]

:=











(q; q)n
(q; q)k(q; q)n−k

if n > k > 0,

0 otherwise.

The following two natural q-analogues of Delannoy numbers were introduced in [4, p. 30]
and [12]:

Dq(m,n) :=

n
∑

k=0

q(
k

2)
[

n

k

][

n+m− k

n

]

, (1.8)

D∗

q(m,n) :=

n
∑

k=0

q(
k+1

2 )
[

n

k

][

n+m− k

n

]

. (1.9)
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Note that D∗

q(m,n) := qmnDq−1(m,n). We first show that both Dq(m,n) and D∗

q(m,n)
have a q-analogue of the second expression in (1.1) and provide a q-analogue of [7, (3.1)],
which was asked in [7, Problem 5.2].

Theorem 1.5. Let m and n be non-negative integers. Then

Dq(m,n) =
m
∑

k=0

q(m−k)(n−k)

[

m

k

][

n

k

]

(−1; q)k, (1.10)

D∗

q (n,m) =
m
∑

k=0

q(m−k)(n−k)

[

m

k

][

n

k

]

(−q; q)k. (1.11)

Moreover,

Dq(m,n)D∗

q(m,n) =
n
∑

k=0

q(m−k)(n−k)

[

n+ k

2k

][

m

k

][

m+ k

k

]

(−1; q)k(−q; q)k. (1.12)

Applying the formula (1.12), we shall prove the following two results originally con-
jectured by the second author [7, Conjectures 5.3 and 5.4].

Theorem 1.6. Let p be an odd prime and m a positive integer. Then

p−1
∑

k=0

1− q2k+1

1− q
Dq(m, k)Dq−1(m, k)q−k

≡



























1− q−2m

1− q2
q (mod [p]2) if m ≡ 0 (mod p),

1− q2m+2

1− q2
q (mod [p]2) if m ≡ −1 (mod p),

0 (mod [p]2) otherwise,

(1.13)

where [p] = 1 + q+ · · ·+ qp−1, and the congruences are understood in the polynomial ring

Z[q].

Theorem 1.7. Let m, n, and r be positive integers. Then all of

n−1
∑

k=0

(1− qm)(1− qm+1)(1− q2k+1)

(1− q2)(1− qn)2
Dq(m, k)Dq−1(m, k)q−k, (1.14)

n−1
∑

k=0

1− q2k+1

1− qn
Dq(m, k)rDq−1(m, k)rq−k, (1.15)

n−1
∑

k=0

(−1)n−k−11− q2k+1

1− qn
Dq(m, k)rDq−1(m, k)rq(

k

2) (1.16)

are Laurent polynomials in q with non-negative integer coefficients.
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Note that Theorem 1.7 is a q-analogue of [7, Theorem 1.1] for the first three poly-
nomials. The rest of the paper is organized as follows. We shall give three lemmas in
Section 2 and prove Theorem 1.1 in Section 3. In Sections 4 and 5 we prove Theorems 1.4
and 1.5. In Sections 6 and 7, by using Theorem 1.5 we give proofs of Theorems 1.6 and
1.7 respectively.

2. Three lemmas

The following three lemmas are crucial ingredients of our proof of Theorem 1.1.

Lemma 2.1. Let n and h be positive integers and let m be a non-negative integer with

h 6 n−m. Then

m
∑

j=0

n
∑

k=0

(q−n; q)j(q
−n; q)k(x; q)j(x; q)k(q

j−m−h+1; q)h−1(q
k−m−h+1; q)h−1(1− qk−j)q2j+k

(q; q)j(q; q)k(c; q)j(c; q)k

=
(q; q)n(q; q)h−1(x; q)m+h(c/x; q)n−hx

n−hq
m2

+3m
2

−mn−mh−h2+h

(−1)m−1(q; q)m(c; q)m(c; q)n(q; q)n−m−h

. (2.1)

Proof. Note that both sides of (2.1) are polynomials in x of degree m+ n with the same
leading coefficient. Therefore, to prove (2.1), it suffices to prove that both sides have the
same roots as polynomials in x. Denote the left-hand side of (2.1) by Lm,n(x). We first
assert that

Lm,n(x) =

m
∑

j=0

n
∑

k=m+1

(q−n; q)j(q
−n; q)k(x; q)j(x; q)k

(q; q)j(q; q)k(c; q)j(c; q)k

× (qj−m−h+1; q)h−1(q
k−m−h+1; q)h−1(1− qk−j)q2j+k. (2.2)

In fact, since (1−qj−k)q2k+j = −(1−qk−j)qk+2j, we have
∑m

j=0

∑m

k=0 = 0 for the summands
in Lm,n(x). We now consider the following two cases.

• For x = q−r with 0 6 r 6 m+ h− 1, we have

Lm,n(q
−r) =

m
∑

j=0

n
∑

k=0

(q−n; q)j(q
−n; q)k(q

−r; q)j(q
−r; q)k

(q; q)j(q; q)k(c; q)j(c; q)k

× (qj−m−h+1; q)h−1(q
k−m−h+1; q)h−1(1− qk−j)q2j+k.

If r 6 m, then Lm,n(q
−r) = 0 by the antisymmetry of j and k in Lm,n(q

−r). If
r > m+1, then h > r−m+1, i.e., r−m− h+1 6 0, and so (qk−m−h+1; q)h−1 = 0
for m+ 1 6 k 6 r. Hence, by (2.2), we again get Lm,n(q

−r) = 0.

• For x = cqr with 0 6 r 6 n− h− 1, we shall prove that

n
∑

k=0

(q−n; q)k(cq
r; q)k(q

k−m−h+1; q)h−1(1− qk−j)q2j+k

(q; q)k(c; q)k
= 0. (2.3)

5



In fact, we can rewrite the left-hand side of (2.3) as

n
∑

k=0

(−1)k
[

n

k

]

q−nk+(k2)Rk, (2.4)

where

Rk =
(cqr; q)k(q

k−m−h+1; q)h−1(1− qk−j)q2j+k

(c; q)k
.

Since

(cqr; q)k
(c; q)k

=
(cqk; q)r
(c; q)r

,

we see that Rk is a polynomial in qk of degree r + h− 1 + 2 6 n with no constant
term. By the q-binomial theorem (see, for example, [2, Theorem 3.3])

n
∑

k=0

(−1)k
[

n

k

]

q(
k

2)xk = (x; q)n, (2.5)

we have

n
∑

k=0

(−1)k
[

n

k

]

q(
k

2)q−ik = 0 for 0 6 i 6 n− 1.

It follows that the expression (2.4) is equal to 0. Namely, the identity (2.3) holds.

Hence, we see that all the m+ n roots of Lm,n(x) are the same as those of the right-hand
side of (2.1). ✷

Lemma 2.2. Let n and h be positive integers and let m be a non-negative integer with

h 6 n−m. Then

m
∑

j=0

n
∑

k=m+h

(q−n; q)j(q
−n; q)k(a; q)j(a; q)k(1− qk−j)qj+k+jh

(q; q)j(q; q)k(c; q)j(c; q)k

[

k −m− 1

h− 1

][

m+ h− j − 1

h− 1

]

=
(q; q)n(a; q)m+h(c/a; q)n−ha

n−hq
m2+m−h2+h

2
−mn

(−1)m−h(q; q)m(c; q)m(c; q)n(q; q)h−1(q; q)n−m−h

. (2.6)

Proof. It is easy to see that
[

k−m−1
h−1

]

= 0 for m+1 6 k < m+ h. Therefore, the left-hand
side of (2.6) remains unchanged when we replace

∑n

k=m+h by
∑n

k=m+1. Moreover,

[

k −m− 1

h− 1

][

m+ h− j − 1

h− 1

]

=
(qj−m−h+1; q)h−1(q

k−m−h+1; q)h−1q
(m−j)(h−1)+(h2)

(−1)h−1(q; q)2h−1

.

The proof then follows from (2.1) and (2.2) with x = a. ✷

The following result has been proved in [8, (3.5)].
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Lemma 2.3 ( [8]). Let n be a positive integer. Then

(x; q)n + (a/x; q)n = (x; q)n(a/x; q)n + (a; q)n +
n−1
∑

k=1

(x; q)k(a/x; q)kBn,k(a), (2.7)

where

Bn,k(a) := (1− qn)
n−k
∑

h=1

(−1)h
[

n− k − 1

h− 1

][

k + h− 1

h− 1

]

q(
h

2)+khah

1− qh
.

3. Proof of Theorem 1.1

As
(

n
∑

k=0

ak

)(

n
∑

j=0

bj

)

=

n
∑

k=0

akbk +
∑

06j<k6n

(akbj + ajbk),

the left-hand side of (1.6) is equal to

n
∑

k=0

(q−n; q)2k(a; q)
2
kq

2k

(q; q)2k(c; q)
2
k

(x; q)k(c/x; q)k

+
∑

06j<k6n

(q−n; q)j(q
−n; q)k(a; q)j(a; q)kq

j+k
(

(x; q)j(c/x; q)k + (x; q)k(c/x; q)j
)

(q; q)j(q; q)k(c; q)j(c; q)k
. (3.1)

For 0 6 j < k, from (2.7) we deduce that

(x; q)j(c/x; q)k + (x; q)k(c/x; q)j

= (x; q)j(c/x; q)j
(

(xqj ; q)k−j + (cqj/x; q)k−j

)

= (x; q)k(c/x; q)k + (x; q)j(c/x; q)j(cq
2j ; q)k−j +

k−j−1
∑

i=1

(x; q)j+i(c/x; q)j+iBk−j,i(cq
2j)

= (x; q)k(c/x; q)k + (x; q)j(c/x; q)j +

k−j−1
∑

i=0

(x; q)j+i(c/x; q)j+iBk−j,i(cq
2j),

where we have used the q-binomial theorem (2.5) in the last step:

(cq2j; q)k−j = 1 +

k−j
∑

h=1

(−1)h
[

k − j

h

]

q(
h

2)+2jhch.

It follows that (3.1) can be written as
∑n

m=0 αm(x; q)m(c/x; q)m, where

αm =
n
∑

j=0

(q−n; q)j(q
−n; q)m(a; q)j(a; q)mq

j+m

(q; q)j(q; q)m(c; q)j(c; q)m

+

m
∑

j=0

n
∑

k=m+1

(q−n; q)j(q
−n; q)k(a; q)j(a; q)kq

j+k

(q; q)j(q; q)k(c; q)j(c; q)k
Bk−j,m−j(cq

2j). (3.2)

7



By the q-Chu-Vandermonde summation formula [5, Appendix (II.6)]:

2φ1

[

a, q−n

c
; q, q

]

=
(c/a; q)n
(c; q)n

an, (3.3)

we have
n
∑

j=0

(q−n; q)j(q
−n; q)m(a; q)j(a; q)mq

j+m

(q; q)j(q; q)m(c; q)j(c; q)m

= (−1)m
(q; q)n(a; q)m(c/a; q)nq

m2
+m
2

−mn

(q; q)m(c; q)m(c; q)n(q; q)n−m

an. (3.4)

Substituting (3.4) and (2.6) into (3.2), we obtain

αm =
(−1)m(q; q)nq

m2
+m
2

−mn

(q; q)m(c; q)m(c; q)n

n−m
∑

h=0

(a; q)m+h(c/a; q)n−ha
n−hqmhch

(q; q)h(q; q)n−m−h

. (3.5)

The last sum can be summed again by the q-Chu-Vandermonde formula (3.3) and is equal
to

(a; q)m(c/a; q)m(cq
2m; q)n−ma

n

(q; q)n−m

. (3.6)

It follows from (3.5) and (3.6) that αm is just the coefficient of (x; q)m(c/x; q)m on the
right-hand side of (1.6).

Remark. Letting c = q2s+1, a = aqs, x = xqs, and replacing n by n−s in (1.6) (0 6 s 6 n),
we get the following result:
(

n
∑

k=s

(q−n; q)k(a; q)k(x; q)kq
k

(q; q)k−s(q; q)k+s

)(

n
∑

k=s

(q−n; q)k(a; q)k(q/x; q)kq
k

(q; q)k−s(q; q)k+s

)

=
(q−n; q)s(a; q)sa

n−sq(n+1)s−s2

(qn+1; q)s(q/a; q)s

n
∑

k=s

(q−n; q)k(q
n+1; q)k(a; q)k(q/a; q)k(x; q)k(q/x; q)kq

k

(q; q)k−s(q; q)k+s(q; q)2k
.

(3.7)

It is clear that the a = −q−n case of (3.7) reduces to (1.5).

4. Proof of Theorem 1.4

We need a special case of Theorem 1.1. Letting a = −x in (1.6), we are led to
(

n
∑

k=0

(q−n; q)k(x
2; q2)kq

k

(q; q)k(c; q)k

)(

n
∑

k=0

(q−n; q)k(−x; q)k(c/x; q)kq
k

(q; q)k(c; q)k

)

= (−x)n
n
∑

k=0

(q−n; q)k(cq
n; q)k(x

2; q2)k(c
2/x2; q2)kq

k

(q; q)k(c; q)k(c; q)2k
. (4.1)

We also need the following result.
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Lemma 4.1. Let n be a non-negative integer. Then

n
∑

k=0

(q−n; q)k(x; q)k(y; q)kq
k

(q; q)k(c; q)k
=

n
∑

k=0

(−1)k
(q−n; q)k(x; q)k(c/y; q)kx

n−kykqnk−(
k

2)

(q; q)k(c; q)k
. (4.2)

Proof. This follows from combining Jackson’s two transformations of terminating 2φ1

series [5, Appendix (III.7) and (III.8)]:

3φ2

[

q−n, b, bzq−n/c
bq1−n/c, 0

; q, q

]

= bn3φ1

[

q−n, b, q/z
bq1−n/c

; q,
z

c

]

with b → x, c → xq1−n/c and z → qy/c. ✷

Replacing x and y by −x and c/x respectively in (4.2), we are led to

n
∑

k=0

(q−n; q)k(−x; q)k(c/x; q)kq
k

(q; q)k(c; q)k
= (−x)n

n
∑

k=0

(q−n; q)k(x
2; q2)kc

kqnk−(
k

2)

(q; q)k(c; q)kx2k
. (4.3)

Combining (4.1) and (4.3) (also x → √
x), we obtain Theorem 1.4.

Remark. Letting c = q2s+1, x → xq2s, and replacing n by n− s (0 6 s 6 n) in (1.7), we
get the following identity

(

n
∑

k=s

(q−n; q)k(x; q
2)kq

k

(q; q)k−s(q; q)k+s

)(

n
∑

k=s

(q−n; q)k(x; q
2)kq

(n+1)k−(k2)

(q; q)k−s(q; q)k+sxk

)

=
(−1)s(q; q)2n(x; q

2)sq
s

(q; q)n−s(q; q)n+s(q2/x; q2)sxs

n
∑

k=s

(q−n; q)k(q
n+1; q)k(x; q

2)k(q
2/x; q2)kq

k

(q; q)k−s(q; q)k+s(q; q)2k
,

which was originally conjectured in a preliminary version (arXiv:1408.0512v1) of [8].

5. Proof of Theorem 1.5

If we replace n by n − i in the q-Chu-Vandermonde summation formula (3.3) with a =
q−m+i and c = qi+1 then

m
∑

k=i

q(m−k)(n−k)

[

m

k

][

n− i

k − i

]

=

[

n+m− i

n

]

.

Hence, by the q-binomial theorem (2.5) we have

m
∑

k=0

q(m−k)(n−k)

[

m

k

][

n

k

]

(x; q)k =
m
∑

k=0

q(m−k)(n−k)

[

m

k

][

n

k

] k
∑

i=0

(−1)i
[

k

i

]

q(
i

2)xi

=
m
∑

i=0

(−1)i
[

n

i

]

q(
i

2)xi

m
∑

k=i

q(m−k)(n−k)

[

m

k

][

n− i

k − i

]

=

m
∑

i=0

q(
i

2)
[

n

i

][

n+m− i

n

]

(−x)i.

9
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When x = −1 and x = −q, we obtain (1.10) and (1.11), respectively. Now, letting c = q
and a = q−m in (1.6), we get

(

m
∑

k=0

q(m−k)(n−k)

[

m

k

][

n

k

]

(x; q)k

)(

m
∑

k=0

q(m−k)(n−k)

[

m

k

][

n

k

]

(q/x; q)k

)

=

m
∑

k=0

q(m−k)(n−k)

[

n+ k

2k

][

m

k

][

m+ k

k

]

(x; q)k(q/x; q)k.

This entails the identity (1.12) by taking x = −1 or −q.

6. Proof of Theorem 1.6

The following identity can be easily proved by induction.

n−1
∑

k=j

(1− q2k+1)

[

k + j

2j

]

q−(j+1)k =
(1− qn)(1− qn−j)

1− qj+1

[

n+ j

2j

]

q−(j+1)(n−1). (6.1)

By (1.12) and (6.1), the left-hand side of (1.13) is equal to

p−1
∑

k=0

1− q2k+1

1− q

k
∑

j=0

qj
2
−mj−(j+1)k

[

k + j

2j

][

m

j

][

m+ j

j

]

(−1; q)j(−q; q)j

=

p−1
∑

j=0

qj
2
−mj−(j+1)(p−1) (1− qp)(1− qp−j)

(1− q)(1− qj+1)

[

p+ j

2j

][

m

j

][

m+ j

j

]

(−1; q)j(−q; q)j . (6.2)

By [7, Theorem 2.1], we know that

(1− qm)(1− qm+1)(1− qp−j)

(1− q)(1− qp)(1− qj+1)

[

p+ j

2j

][

m

j

][

m+ j

j

]

=
(1− qp−j)(1− qj+1)

(1− q)(1− qp)

[

p+ j

2j

][

m+ 1

j + 1

][

m+ j

j + 1

]

is a polynomial in q with non-negative integer coefficients. Since [p] = (1− qp)/(1− q) is
an irreducible polynomial in q for any prime p and gcd(qm − 1, qn − 1) = (qgcd(m,n) − 1),
we conclude that

1− qp−j

1− qj+1

[

p+ j

2j

][

m

j

][

m+ j

j

]

≡ 0 (mod [p]) if m 6≡ 0,−1 (mod p),

and so the right-hand side of (6.2) is congruent to 0 modulo [p]2 in this case.
On the other hand, if m ≡ 0,−1 (mod p), then

1− qp−j

1− qj+1

[

m

j

][

m+ j

j

]

≡ 0 (mod [p]) if j = 0, 1, . . . , p− 2.
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Therefore, if m ≡ 0 (mod p), then the right-hand side of (6.2) is congruent to

q

[

2p− 1

2p− 2

][

m

p− 1

][

m+ p− 1

p− 1

]

(−1; q)p−1(−q; q)p−1 ≡ q
1− q2p−1

1− q
.
1− qm

1− qp−1
(−q−1) · 2q

1 + q

≡ −2q(1− qm)

1− q2

≡ 1− q−2m

1− q2
q (mod [p]2),

where we have used the congruence (−q; q)p−1 ≡ 1 (mod [p]) (see [6, (1.6)] or [11]); while
if m ≡ −1 (mod p), then the right-hand side of (6.2) is congruent to

1− q2p−1

1− q
.
1− qm+1

1− qp−1
· 2q

1 + q
≡ 2q(1− qm+1)

1− q2

≡ 1− q2m+2

1− q2
q (mod [p]2).

7. Proof of Theorem 1.7

Similarly to (6.2), the left-hand side of (1.14) is equal to

n−1
∑

j=0

qj
2
−mj−(j+1)(n−1) (1− qm)(1− qm+1)(1− qn−j)

(1− q2)(1− qn)(1− qj+1)

[

n + j

2j

][

m

j

][

m+ j

j

]

(−1; q)j(−q; q)j .

It is easy to see that

(1− qm)(1− qm+1)(1− qn−j)

(1− q2)(1− qn)(1− qj+1)

[

n+ j

2j

][

m

j

][

m+ j

j

]

(−q; q)j

=















(1− qm)(1− qm+1)

(1− q2)(1− q)
if j = 0,

(1− qn−j)(1− qj+1)

(1− q)(1− qn)

[

n+ j

2j

][

m+ 1

j + 1

][

m+ j

j + 1

]

(−q2; q)j−1 if j > 1

is a polynomial in q with non-negative integer coefficients by [7, Theorem 2.1]. We con-
clude that (1.14) is the desired Laurent polynomial in q.

Let

Sn(x0, . . . , xn; q) =

n
∑

k=0

[

n+ k

2k

][

2k

k

]

q−nkxk.

To prove that (1.15) and (1.16) also have the same properties, we first establish the
following result.
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Lemma 7.1. Let n and r be positive integers. Then both

n−1
∑

k=0

1− q2k+1

1− qn
Sk(x0, . . . , xk)

rq−k and

n−1
∑

k=0

(−1)n−k−11− q2k+1

1− qn
Sk(x0, . . . , xk)

rq(
k

2)

are polynomials in x0, . . . , xn−1, q and q−1 with non-negative integer coefficients.

Proof. Recall the identity

[

k + i

2i

][

2i

i

][

k + j

2j

][

2j

j

]

=

i+j
∑

s=i

[

i+ j

i

][

j

s− i

][

s

j

][

k + s

2s

][

2s

s

]

q(i+j−s)(k−s).

which can be proved using the q-Pfaff-Saalschütz identity (see [14, Lemma 2.1]). It follows
that

Sk(x0, . . . , xk)
r =

∑

06i1,...,ir6k

r
∏

j=1

[

k + ij
2ij

][

2ij
ij

]

q−kijxij

=
∑

06i1,...,ir6k

xi1 · · ·xir

i1+···+ir
∑

s=i1

P (i1, . . . , ir, s)

[

k + s

2s

][

2s

s

]

q−ks, (7.1)

where P (i1, . . . , ir, s) is a Laurent polynomial in q independent of k with non-negative
integer coefficients. Therefore, by (6.1), we see that

n−1
∑

k=0

1− q2k+1

1− qn
Sk(x0, . . . , xk)

rq−k

=
∑

06i1,...,ir6n−1

xi1 · · ·xir

i1+···+ir
∑

s=i1

P (i1, . . . , ir, s)
1− qn−s

1− qs+1

[

n+ s

2s

][

2s

s

]

q−(s+1)(n−1)

is a polynomial in x0, . . . , xn−1, q and q−1 with non-negative integer coefficients since

1− qn−s

1− qs+1

[

n+ s

2s

][

2s

s

]

=

[

n + s

s

][

n

s+ 1

]

.

Similarly, since

n−1
∑

k=s

(−1)n−k−11− q2k+1

1− qn

[

k + s

2s

][

2s

s

]

q(
k

2)−sk =

[

n− 1

s

][

n+ s

s

]

q(
n

2)−sn,

we deduce from (7.1) that

n−1
∑

k=0

(−1)n−k−11− q2k+1

1− qn
Sk(x0, . . . , xk)

rq(
k

2)

=
∑

06i1,...,ir6n−1

xi1 · · ·xir

i1+···+ir
∑

s=i1

P (i1, . . . , ir, s)

[

n− 1

s

][

n+ s

s

]

q(
n

2)−sn
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is a polynomial in x0, . . . , xn−1, q and q−1 with non-negative integer coefficients. ✷

For k = 0, . . . , n− 1, let

xk =

[

m+ k

2k

]

(−1; q)k(−q; q)kq
k2−mk.

Then the identity (1.12) may be rewritten as

Dq(m,n)Dq−1(m,n) =

n
∑

k=0

[

n+ k

2k

][

2k

k

]

q−nkxk.

It is clear that x0, . . . , xn−1 are Laurent polynomials in q with non-negative integer coef-
ficients. By Lemma 7.1, so are the expressions (1.15) and (1.16).
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