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Abstract
A graph is d-orientable if its edges can be oriented so that the maximum in-degree of the resulting
digraph is at most d. d-orientability is a well-studied concept with close connections to funda-
mental graph-theoretic notions and applications as a load balancing problem. In this paper we
consider the d-Orientable Deletion problem: given a graph G = (V,E), delete the minimum
number of vertices to make G d-orientable. We contribute a number of results that improve the
state of the art on this problem. Specifically:

We show that the problem is W[2]-hard and logn-inapproximable with respect to k, the
number of deleted vertices. This closes the gap in the problem’s approximability.
We completely characterize the parameterized complexity of the problem on chordal graphs:
it is FPT parameterized by d+ k, but W-hard for each of the parameters d, k separately.
We show that, under the SETH, for all d, ε, the problem does not admit a (d + 2 − ε)tw,
algorithm where tw is the graph’s treewidth, resolving as a special case an open problem on
the complexity of PseudoForest Deletion.
We show that the problem is W-hard parameterized by the input graph’s clique-width. Com-
plementing this, we provide an algorithm running in time dO(d·cw), showing that the problem
is FPT by d+ cw, and improving the previously best know algorithm for this case.
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24:2 Parameterized Orientable Deletion

1 Introduction

In this paper we study the following natural optimization problem: we are given a graph
G = (V,E) and an integer d, and are asked to give directions to the edges of E so that in
the resulting digraph as many vertices as possible have in-degree at most d. Equivalently,
we are looking for an orientation of E such that the set of vertices K whose in-degree is
strictly more than d is minimized. Such an orientation is called a d-orientation of G[V \K],
and we say that K is a set whose deletion makes the graph d-orientable. The problem of
orienting the edges of an undirected graph so that the in-degree of all, or most, vertices
stays below a given threshold has been extensively studied in the literature, in part because
of its numerous applications. In particular, one way to view this problem is as a form of
scheduling, or load balancing, where edges represent jobs and vertices represent machines. In
this case the in-degree represents the load of a machine in a given assignment, and minimizing
it is a natural objective (see e.g. [6, 10, 14, 20]). Finding an orientation where all in- or
out-degrees are small is also of interest for the design of efficient data structures [11]. For
more applications we refer the reader to [2, 3, 4, 5, 9] and the references therein.

State of the art. d-orientability has been well-studied in the literature, both because of
its practical motivations explained above, but also because it is a basic graph property that
generalizes and is closely related to fundamental concepts such as d-degeneracy (as a graph
is d-degenerate if and only if it admits an acyclic d-orientation), and bounded degree. This
places d-Orientable Deletion in a general context of graph editing problems that measure
the distance of a given graph from having one of these properties [7, 17].

Deciding if an unweighted graph is d-orientable is solvable in polynomial time [5], though
the problem becomes APX-hard [14] and even W-hard parameterized by treewidth [19] if
one allows edge weights. In this paper we focus on unweighted graphs, for which computing
the minimum number of vertices that need to be deleted to make a graph d-orientable
is easily seen to be NP-hard, as the case d = 0 corresponds to Vertex Cover. This
hardness has motivated the study of both polynomial-time approximation and parameterized
algorithms, as well as algorithms for specific graph classes. For approximation, if the objective
function is to maximize the number of non-deleted vertices, the problem is known to be
n1−ε-inapproximable; if one seeks to minimize the number of deleted vertices, the problem
admits an O(log d)-approximation, but it is not known if this can be improved to a constant
[2]. From the parameterized point of view, the problem is W[1]-hard for any fixed d if the
parameter is the number of non-deleted vertices [9]. To the best of our knowledge, the
complexity of this problem parameterized by the number of deleted vertices is open.

We remark that sometimes in the literature a d-orientation is an orientation where all
out-degrees are at most d, but this can be seen to be equivalent to our formulation by reversing
the direction of all edges. d-Orientable Deletion has sometimes been called Min-(d+ 1)-
Heavy/Max-d-Light [2], depending on whether one seeks to minimize the number of
deleted vertices, or maximize the number of non-deleted vertices (the two are equivalent
in the context of exact algorithms). The problem of finding an orientation minimizing the
maximum out-degree has also been called Minimum Maximum Out-degree [5].

An important special case that has recently attracted attention from the FPT algorithms
point of view is that of d = 1. 1-orientable graphs are called pseudo-forests, as they are exactly
the graphs where each component contains at most one cycle. 1-Orientable Deletion,
also known as PseudoForest Deletion, has been shown to admit a 3k algorithm, where
k is the number of vertices to be deleted [8, 18].
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Our contribution. We study the complexity of d-Orientable Deletion mostly from the
point of view of exact FPT algorithms. We contribute a number of new results that improve
the state of the art and, in some cases, resolve open problems from the literature.

We first consider the parameterized complexity of the problem with respect to the natural
parameter k, the number of vertices to be deleted to make the graph d-orientable. We show
that for any fixed d > 2, d-Orientable Deletion is W[2]-hard parameterized by k. This
result is tight in two respects: it shows that, under the ETH, the trivial nk algorithm that
tries all possible solutions is essentially optimal; and it cannot be extended to the case d = 1,
as in this case the problem is FPT [8]. Because our proof is a reduction from Dominating
Set that preserves the optimal, we also show that the problem cannot be approximated
with a factor better than lnn. This matches the performance of the algorithm given in [2],
and closes a gap in the status of this problem, as the previously best known hardness of
approximation bound was 1.36 [2].

Second, we consider the complexity of d-Orientable Deletion when restricted to
chordal graphs, motivated by the work of [9], who study the problem on classes of graphs
with polynomially many minimal separators. We are able to completely characterize the
complexity of the problem for this class of graphs with respect to the two main natural
parameters d and k: the problem is W[1]-hard parameterized by d, W[2]-hard parameterized
by k, but solvable in time roughly dO(d+k), and hence FPT when parameterized by d+ k.
We recall that the problem is poly-time solvable on chordal graphs when d is a constant [9],
and trivially in P in general graphs when k is a constant, so these results are in a sense tight.

Third, we consider the complexity of d-Orientable Deletion parameterized by the
input graph’s treewidth, perhaps the most widely studied graph parameter. Our main
contribution here is a lower bound which, assuming the Strong ETH, states that the problem
cannot be solved in time less than (d + 2)tw, for any constant d > 1. As a consequence,
this shows that the 3tw algorithm given for PseudoForest Deletion in [8] is optimal
under the SETH. We recall that Bodlaender et al. [8] had explicitly posed the existence of a
better treewidth-based algorithm as an open problem; our results settle this question in the
negative, assuming the SETH. Our result also extends the lower bound of [16] which showed
that Vertex Cover (which corresponds to d = 0) cannot be solved in (2− ε)tw.

Finally, we consider the complexity of the problem parameterized by clique-width. We
recall that clique-width is probably the second most widely studied graph parameter in
FPT algorithms (after treewidth), so after having settled the complexity of d-Orientable
Deletion with respect to treewidth, investigating clique-width is a natural question. On
the positive side, we present a dynamic programming algorithm whose complexity is roughly
dO(d·cw), and is therefore FPT when parameterized by d+ cw. This significantly improves
upon the dynamic programming algorithm for this case given in [9], which runs in time
roughly nO(d·cw). The main new idea of this algorithm, leading to its improved performance,
is the observation that sufficiently large entries of the DP table can be merged using a more
careful characterization of feasible solutions that involve large bi-cliques. On the negative
side, we present a reduction showing that d-Orientable Deletion is W[1]-hard if cw is
the only parameter. This presents an interesting contrast with the case of treewidth: for
both parameters we can obtain algorithms whose running time is a function of d and the
width; however, because graphs of treewidth w always admit a w-orientation (since they are
w-degenerate), this immediately also shows that the problem is FPT for treewidth, while our
results imply that obtaining a similar result for clique-width is impossible (under standard
assumptions). Due to space constraints, some proofs (marked with a F) are omitted.

SWAT 2018
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2 Definitions and Preliminaries

Complexity background. We assume that the reader is familiar with the basic definitions
of parameterized complexity, such as the classes FPT and W[1] [13]. We will also make use
of the Exponential Time Hypothesis (ETH), a conjecture by Impagliazzo et al. asserting that
there is no 2o(n)-time algorithm for 3-SAT on instances with n variables [15]. We also use a
corollary (a slightly weaker statement) of the Strong Exponential Time Hypothesis (SETH),
stating that SAT cannot be solved in time O∗((2− ε)n) for any ε > 0 [15].

Graph widths. We also make use of standard graph width measures, such as pathwidth,
treewidth, and clique-width, denoted as pw, tw, cw respectively. For the definitions we refer
the reader to standard textbooks [13, 12]. We recall the following standard relations:

I Lemma 1. For all graphs G = (V,E) we have tw(G) 6 pw(G) and cw(G) 6 pw(G) + 2.

Graphs and Orientability. We use standard graph-theoretic notation. If G = (V,E) is a
graph and S ⊆ V , G[S] denotes the subgraph of G induced by S. For v ∈ V , the set of
neighbors of v in G is denoted by NG(v), or simply N(v), and NG(S) := (

⋃
v∈S N(v))\S will

often be written just N(S). We define N [v] := N(v)∪{v} and N [S] := N(S)∪S. Depending
on the context, we use (u, v), where u, v ∈ V to denote either an undirected edge connecting
two vertices u, v, or an arc (that is, a directed edge) with tail u and head v. An orientation
of an undirected graph G = (V,E) is a directed graph on the same set of vertices obtained
by replacing each undirected edge (u, v) ∈ E with either the arc (u, v) or the arc (v, u). In a
directed graph we define the in-degree δ−(v) of a vertex u as the number of arcs whose head
is u. A d-orientation of a graph G = (V,E) is an orientation of G such that all vertices have
in-degree at most d. If such an orientation exists, we say that G is d-orientable. Deciding if
a given graph is d-orientable is solvable in polynomial time, even if d is part of the input [5].
Let us first make some easy observations on the d-orientability of some basic graphs.

I Lemma 2 (F). K2d+1, the clique on 2d+ 1 vertices, is d-orientable. Furthermore, in any
d-orientation of K2d+1 all vertices have in-degree d.

I Lemma 3 (F). The complete bipartite graph K2d+1,2d is not d-orientable.

I Definition 4. In d-Orientable Deletion we are given as input a graph G = (V,E) and
an integer d. We are asked to determine the smallest set of vertices K ⊆ V (the deletion set)
such that G[V \K] admits a d-orientation.

I Definition 5. In Capacitated-d-Orientable Deletion we are given as input a graph
G = (V,E), an integer d > 1, and a capacity function c : V → {0, . . . , d}. We are asked to
determine the smallest set of vertices K ⊆ V such that G[V \K] admits an orientation with
the property that for all u ∈ V \K, the in-degree of u is at most c(u).

It is clear that Capacitated-d-Orientable Deletion generalizes d-Orientable Dele-
tion, which corresponds to the case where we have c(u) = d for all vertices. It is, however,
not hard to see that the two problems are in fact equivalent, as shown in the following lemma.
Furthermore, the following lemma shows that increasing d can only make the problem harder.

I Lemma 6. There exists a polynomial-time algorithm which, given an instance [G =
(V,E), d, c] of Capacitated-d-Orientable Deletion, and an integer d′ > d, produces an
equivalent instance [G′ = (V ′, E′), d′] of d-Orientable Deletion, with the same optimal
value and the following properties: pw(G′) 6 pw(G) + 2d′ + 1, cw(G′) 6 cw(G) + 4, and if G
is chordal then G′ is chordal.
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0

1 2

3 4

u

Figure 1 A 2-orientation of a clique
K5. Observe that any edge connecting a
vertex u to the clique must be oriented
towards u (setting its capacity) to main-
tain a 2-orientation.

v1

v2 v3

v4 v5

v1 v2 v3 v4 v5

v1 v3 v4v2 v5V1

V2

c = 0

c = 1

c = 2

Figure 2 Left: A graph with its dominating
set in black. Right: The corresponding instance
and 2-orientation, where deleted vertices are in
gray. Original edges with a deleted vertex as an
endpoint are dotted.

Proof (Sketch). The idea of the reduction is to construct for every u ∈ V for which c(u) < d′

a clique of K2d′+1 vertices and connect d′ − c(u) vertices of the clique to u (see Figure 1).
Lemma 2 ensures that the edges connecting the clique to u will be oriented towards u,
simulating its decreased capacity. We can then argue that in the new instance there always
exists an optimal solution that does not delete any of the new vertices, therefore optimal
solutions are preserved. J

3 Hardness of Approximation and W-hardness

In this section we present a reduction from Dominating Set to d-Orientable Deletion
for d > 2 that exactly preserves the size of the solution. As a result, this establishes that, for
any fixed d > 2, d-Orientable Deletion is W[2]-hard, and the minimum solution cannot
be approximated with a better than logarithmic factor. We observe that it is natural that
our reduction only works for d > 2, as the problem is known to be FPT for d = 1, which is
known as PseudoForest Deletion, and d = 0, which is equivalent to Vertex Cover.

I Theorem 7. For any d > 2, d-Orientable Deletion is W[2]-hard parameterized by the
solution size k. Furthermore, for any d > 2, d-Orientable Deletion cannot be solved in
time f(k) · no(k), unless the ETH is false.

Proof. We will describe a reduction from Dominating Set, which is well-known to be W[2]-
hard and not solvable in f(k) · no(k) under the ETH, to Capacitated-d-Orientable
Deletion for d = 2. We will then invoke Lemma 6 to obtain the claimed result for d-
Orientable Deletion. Let [G(V,E), k] be an instance of Dominating Set. We begin by
constructing a bipartite graph H by taking two copies of V , call them V1, V2. For each v ∈ V2
we construct a binary tree with |NG[v]| leaves. We identify the root of this binary tree with
v ∈ V2 and its leaves with the corresponding vertices in V1. We now define the capacities of
our vertices: each vertex of V1 has capacity 0; each internal vertex of the binary trees has
capacity 2; and each vertex of V2 has capacity 1.

We will now claim that G has a dominating set of size k if and only if H can be oriented
in a way that respects the capacities by deleting at most k vertices.

For the forward direction, suppose that there is a dominating set in G of size k. In H we
delete the corresponding vertices of V1. We argue that the remaining graph is orientable in a
way that respects the capacities. We compute an orientation as follows:
1. We orient the remaining incident edges away from every vertex of V1 that is not deleted.
2. For each non-leaf vertex u of the binary tree rooted at v ∈ V2 we define the orientation of

the edge connecting u to its parent as follows: u is an ancestor of a set Su ⊆ NG[v] of
vertices of V1. If Su contains a deleted vertex, then we orient the edge connecting u to
its parent towards u, otherwise we orient it towards u’s parent.

SWAT 2018



24:6 Parameterized Orientable Deletion

The above description completely defines the orientation of the remaining graph (see also
Figure 2). Let us argue why the orientation respects all capacities. This should be clear for
vertices of V1. For any non-leaf vertex u of a binary tree, if we orient the edge connecting it
to its parent away from u, then the in-degree of u is at most 2, which is its capacity. On the
other hand, if we orient this edge towards u, there is a deleted vertex in Su. However, this
implies either that one of u’s children has been deleted, or that one of the edges connecting u
to one of its children is oriented away from u. In both cases, the in-degree of u is at most 2,
equal to its capacity. Finally, for each u ∈ V2, if we started with a dominating set, then one
of the children of u in the binary tree is either deleted or its edge to u is oriented towards it.

For the converse direction, suppose that there is a set of k vertices in H whose deletion
makes the graph orientable in a way that respects the capacities. Suppose now that we have
a solution that deletes some vertex v ∈ V2 or some internal vertex of a binary tree. We
re-introduce v in the graph, orient all its incident edges towards v, and then delete one of the
children of v. This preserves the size and validity of the solution. Repeating this argument
ends with a solution that only deletes vertices of V1. We now claim that these k vertices
are a dominating set. To see this, observe that any undeleted vertex of V1 has all its edges
connecting it to binary trees oriented away from it. Hence, if there is a binary tree with
root v ∈ V2 such that none of its leaves are undeleted, all its internal edges must be oriented
towards v, which would make the in-degree of v greater than its capacity. J

I Corollary 8 (F). For any d > 2, if there exists a polynomial-time o(logn)-approximation
for d-Orientable Deletion, then P=NP.

4 Chordal Graphs

In this section we consider the complexity of d-Orientable Deletion on chordal graphs
parameterized by either d or k (the number of deleted vertices). Our main results state
that the problem is W-hard for each of these parameters individually (Theorems 9 and 10);
however, the problem is FPT parameterized by d+ k (Theorem 11).

I Theorem 9 (F). d-Orientable Deletion is W[1]-hard on chordal graphs parameterized
by d. Furthermore, it cannot be solved in no(d) under the ETH.

I Theorem 10. d-Orientable Deletion is W[2]-hard on chordal graphs parameterized by
the solution size k. Furthermore, under the ETH it cannot be solved in time no(k).

Proof. We start from an instance of Dominating Set: we are given a graph G = (V,E) and
an integer k and are asked if there exists a dominating set of size k. We will retain the same
value of k and construct a chordal instance of Capacitated-d-Orientable Deletion, for
which we later invoke Lemma 6. Let |V | = n and we assume without loss of generality that
n − k is odd (otherwise we can add an isolated vertex to G). We construct G′ as follows.
Take two copies of V , call them V1, V2 and add all possible edges between vertices of V2. For
each u ∈ V , we connect u ∈ V1 with all vertices v ∈ V2 such that v ∈ NG[u], i.e. all vertices
v that are neighbors of u in G. Let us also define the capacities: each u ∈ V1 has capacity
dG(u); each u ∈ V2 has capacity n−k−1

2 . This completes the construction. G′ is chordal
because it is a split graph.

Suppose that G has a dominating set of size k. We delete the same vertices of V2 and
claim that G′ becomes orientable. We observe that all vertices of V1 have at least a deleted
neighbor, since we deleted a dominating set of G, hence for each such vertex the number of
remaining incident edges is at most its capacity. We therefore orient all edges incident on V1
towards V1. Finally, for the remaining vertices of V2 which induce a clique of size n− k we
orient their edges using Lemma 2 so that they all have in-degree exactly n−k−1

2 .
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v u

2d+ 2

c = 1

v u

W Z

W ′ Z ′

U

B̂

B̂′

Figure 3 Left: An example OR gadget. In the following, OR gadgets are shown as dotted edges.
Right: Example connections between a set U and the p sets W, Z in the gadgets B̂ of its group.

For the converse direction, suppose we can delete at most k vertices of the new graph to
make it orientable respecting the capacities. Again, as in Theorem 9 we assume we have a
solution of size exactly k, otherwise we add some vertices. Furthermore, any used vertex
of V1 can be exchanged with one of its neighbors in V2, since all vertices of V1 have degree
one more than their capacities, hence we assume that the solution deletes k vertices of V2.
We show that these vertices are a dominating set of G. Suppose for contradiction that they
are not, so u ∈ V1 does not have any deleted neighbors in V2. Since there are d(u) + 1
edges connecting u ∈ V1 to V2, at least one of them is oriented towards V2. But now the
n − k non-deleted vertices of V2, because of Lemma 2 all have in-degree exactly equal to
the capacities inside the clique they induce. Hence, the additional edge from V1 will force a
vertex to violate its capacity. J

I Theorem 11 (F). d-Orientable Deletion can be solved in time dO(d+k)nO(1) on
chordal graphs, where k is the size of the solution.

5 SETH Lower Bound for Treewidth

Overview. We follow the approach for proving SETH lower bounds for treewidth algorithms
introduced in [16] (see also Chapter 14 in [13]), that is, we present a reduction from SAT to
d-Orientable Deletion showing that if there exists a better than (d+ 2)tw algorithm for
d-Orientable Deletion, we obtain a better than 2n algorithm for SAT.

Similarly to these proofs, our reduction is based on the construction of “long paths” of Block
gadgets, that are serially connected in a path-like manner. Each such “path” corresponds to
a group of variables of the given formula, while each column of this construction is associated
with one of its clauses. Intuitively, our aim is to embed the 2n possible variable assignments
into the (d+ 2)tw states of some optimal dynamic program that would solve the problem on
our constructed instance. The hard part of the reduction is to take the natural d+ 2 options
available for each vertex, corresponding to its in-degree (d + 1) or the choice to delete it
(+1), and use them to compress n boolean variables into roughly n

log(d+2) units of treewidth.
Below, we present a sequence of gadgets used in our reduction. The aforementioned block

gadgets, which allow a solution to choose among d + 2 reasonable choices, are the main
ingredient. We connect these gadgets in a path-like manner that ensures that choices remain
consistent throughout the construction, and connect clause gadgets in different “columns”
of the constructed grid in a way that allows us to verify if the choice made represents a
satisfying assignment, without increasing the graph’s treewidth.

OR gadget. We use an OR gadget with two endpoints v, u whose purpose is to ensure that
in any optimal solution, either v or u will have to be deleted. This gadget is simply a set of
2d+ 2 vertices of capacity 1, connected to both v and u, as shown in Figure 3.

SWAT 2018



24:8 Parameterized Orientable Deletion

Clause gadget Ĉ(N). This gadget is identical to the one used for Independent Set in
[16] (where all vertices are of capacity 0), as finding a maximum independent set can be
seen as equivalent to finding a minimum-sized deletion set for 0-orientability. Due to space
restrictions, its construction and proof of correctness are omitted here. The gadget has
N input vertices and its purpose is to offer an 1-in-N choice, while its pathwidth remains
constant. The non-deleted input will correspond to a true literal within the clause.

Block gadget B̂. This gadget is the basic building block of our construction:
1. Make three vertices a, a′, b. Note that in the final construction, our block gadgets will be

connected serially, with vertex a′ being identified with the following gadget’s vertex a.
2. Make three independent sets X := {x1, . . . , xd}, Y := {y1, . . . , yd}, Q := {q1, . . . , q2d+1}.
3. Make two sets W := {w0, . . . , wd+1} and Z := {z0, . . . , zd+1}.
4. Connect all vertices of X with vertex a and with all vertices of Q.
5. Connect all vertices of Y with vertex a′ and with all vertices of Q.
6. Connect all vertices from W except wd+1 to b and all vertices of X.
7. Connect all vertices from Z except zd+1 to b and all vertices of Y .
8. Attach OR gadgets between the pairs: a and b, b and a′, a and wd+1, a′ and zd+1.
9. Attach OR gadgets between any pair of vertices in W ∪ Z, except for the pairs (wi, zi)

for i ∈ {0, . . . , d+ 1}. In other words, W ∪ Z is an OR-clique, minus a perfect matching.

We set the capacities as follows (see also Figure 4).
c(a) = c(a′) = d, c(b) = 0.
∀i ∈ [1, 2d+ 1], c(qi) = d, and ∀i, j ∈ [1, d], c(xi) = c(yj) = 0.
∀i ∈ [0, d], c(wi) = i, c(zi) = d− i, and c(wd+1) = c(zd+1) = 0.

Intuitively, there are d+ 2 options in each gadget, linked to the circumstances of vertices
a, a′ and b:1 there will have to be d vertices deleted in total from X ∪Y and the numbers will
be complementary: if i vertices remain in X then, due to Q being of size 2d+ 1 (it is never
useful to delete any of them), there must be d− i vertices remaining in Y . Thus, the d+ 1
options can be seen as represented by the number of vertices remaining in X, while for each
one, vertex b must also be deleted due to the OR gadgets connecting it to a, a′. The extra
option is to ignore the actual number of deletions within X and remove both a, a′ instead.

The setsW,Z are connected in such a way that any reasonable feasible solution will delete
all of their vertices, except for a pair wi, zi for some i ∈ {0, . . . , d+ 1}. The non-deleted pair
is meant to encode a choice for this block gadget.

Global construction. Fix some integer d, and suppose that for some ε > 0 there exists a
(d+2−ε)tw algorithm for d-Orientable Deletion. We give a reduction which, starting from
any SAT instance with n variables and m clauses, produces an instance of d-Orientable
Deletion, such that applying this supposed algorithm on the new instance would give a
better than 2n algorithm for SAT.

We are faced with the problem that d + 2 is not a power of 2, hence we will need to
create a correspondence between groups of variables of the SAT instance and groups of block
gadgets. We first choose an integer p = d 1

(1−λ) log2(d+2)e, for λ = logd+2(d+ 2− ε) < 1. We

1 Each such option can be seen to correspond with one of the states that some optimal dynamic
programming algorithm for the problem would assign to vertex a: it is either deleted, or has a number
i ∈ [0, d] of incoming edges within the gadget.
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a

b

a′

X Q Y

W Z

c = d

c = d

c = 0 c = 0

c = 0

c(wi) = i c(zi) = d− i

c(wd+1) = 0 c(zd+1) = 0

c = d

Figure 4 Our block gadget B̂. Capacities are shown next to vertices/sets, the OR-connections
within W, Z are shown as paths, while the OR-connections between W, Z are only shown for w0.

then group the variables of φ into t = dnγ e groups F1, . . . , Ft, where γ = blog2(d+ 2)pc is the
maximum size of each group. Our construction then proceeds as follows (see Figure 5):
1. Make a group of p block gadgets B̂1,π

τ for π ∈ [1, p], for each group Fτ of variables of φ
with τ ∈ [1, t].

2. Make a clique U1
τ := {u1,1

τ , . . . , u
1,(d+2)p

τ } on (d+ 2)p vertices, whose capacities are all set
to 0, for each group Fτ of variables of φ with τ ∈ [1, t].

3. Associate each of these (d+ 2)p vertices from U1
τ with one of the d+ 2 options for each

gadget B̂1,π
τ , i.e. over all π ∈ [1, p].

4. Connect each u1,i
τ for i ∈ [1, (d+ 2)p] to each vertex from each W and Z within each of

the p gadgets B̂ that do not match the option associated with u1,i
τ via OR gadgets (see

Figure 3 for an example).
5. Make m(tpd+ 2) copies of this first “column” of gadgets.
6. Identify each vertex a′ in B̂l,πτ with the vertex a of its following gadget B̂l+1,π

τ , i.e. for
fixed τ ∈ [1, t] and π ∈ [1, p], all block gadgets are connected in a path-like manner.

7. For every clause Cµ, with µ ∈ [1,m], make a clause gadget Ĉoµ with N = qµ inputs, where
qµ is the number of literals2 in clause Cµ and o ∈ [0, tpd+ 1].

8. For every τ ∈ [1, t], associate one of the (d+ 2)p vertices of U lτ (that is in turn associated
with one of d+ 2 options for each of the p gadgets of group Fτ ), with an assignment to
the variables in group Fτ . Note that as there are at most 2γ = 2blog2(d+2)pc assignments
to the variables in Fτ and (d+ 2)p > 2γ such vertices, the association can be unique for
each τ (and the same for all l ∈ [1,m(tpd+ 2)]).

9. Each of the clause gadget’s qµ inputs will correspond to a literal appearing in clause Cµ.
10. Connect via OR gadgets each input from each Ĉoµ, corresponding to a literal whose

variable appears in group Fτ , to the all vertices from the set Umo+µ
τ (in its appropriate

column) whose associated assignments do not satisfy the input’s literal.

I Theorem 12 (F). For any fixed d > 1, if d-Orientable Deletion can be solved in
O∗((d+ 2− ε)tw(G)) time for some ε > 0, then there exists some δ > 0, such that SAT can
be solved in O∗((2− δ)n) time.

2 We assume that qµ is always even, by duplicating some literals if necessary.
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Figure 5 A simplified picture of the complete construction.

I Corollary 13. If Pseudoforest Deletion can be solved in O∗((3 − ε)tw(G)) time for
some ε > 0, then there exists some δ > 0, such that SAT can be solved in O∗((2− δ)n) time.

6 Algorithm for Clique-Width

In this section we present a dynamic programming algorithm for d-Orientable Deletion
parameterized by the clique-width of the input graph, of running time dO(d·cw). The algorithm
is based on the dynamic programming of [9] for Max W -Light, the problem of assigning a
direction to each edge of an undirected graph so that the number of vertices of out-degree at
most W is maximized. As noted in [9] (and our Section 1), that problem is supplementary
to Min (W + 1)-Heavy, the problem of minimizing the number of vertices of out-degree at
least W + 1 in terms of exact computation (though their approximability properties may
vary), that in turn can be seen as the optimization version of d-Orientable Deletion
for d = W , if we simply consider the in-degree of every vertex instead of the out-degree (by
reversing the direction of every edge in any given orientation).

The dynamic programming algorithm of [9] runs in XP-time nO(d·cw), by considering the
full number of possible states for each label of a clique-width expression T for the input
graph G:3 for each node t of T , it computes an in-degree-signature of Gt, being a table
At = (Ai,jt ),∀i ∈ [1, cw], j ∈ [0, d], if there is an orientation Λt (of every edge of Gt) such
that for each label i ∈ [1, cw] and in-degree-class j ∈ [0, d], the entry Ai,jt is the number
of vertices labelled i with in-degree j in Gt under Λt, and also a deletion set Kt, where
Kt :=

⋃
i∈[1,cw] K

i
t for each i ∈ [1, cw], where Ki

t is the set of vertices labelled i that are
deleted from Gt. Based on this scheme, the updating process of the tables is straightforward
for Leaf, Relabel and Union nodes, while for Join nodes, the computation of the degree
signatures is based on a result by [1], stating that an orientation satisfying any given lower
and upper in-degree bounds for each vertex can be computed in O(m3/2 logn) time, where
m is the number of edges to be oriented. We refer to [9] for details.

3 Slightly paraphrased here for d-Orientable Deletion, keeping the same notation.
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ael bel
aeh beh

Wi

Ai Bi

Wj

Aj Bj

c = n

c = 0

c = n

c = 0

c = n− l − 1

c = l − 1

c = n− h− 1

c = h− 1

Figure 6 A partial view of the construction, depicting the gadgets encoding the selection for
Vi, Vj , as well the representation of an edge e = (vli, vhj ). Note dotted edges signifying OR gadgets.

The aim of this section is to improve the running time of the above algorithm to dO(d·cw),
that is FPT-time parameterized by d and cw, by showing that not all of the natural states
utilized therein are in fact required. The main idea behind this improvement is based on
the redundancy of exactly keeping track of the size of an in-degree-class above a certain
threshold (i.e. d4), since the valid d-orientations of a biclique created after joining such an
in-degree-class with some other label are greatly constrained, as any optimal solution will
always orient all new edges towards the vertices of this “large” class in order to maintain
d-orientability (and update in-degree-class sizes accordingly), while respecting the given
deletion set and orientation of previously introduced edges.

I Theorem 14 (F). Given a graph G along with a cw-expression T of G, the d-Orientable
Deletion problem can be solved in time O∗(dO(d·cw)).

7 W-hardness for Clique-Width

In this section we present a reduction establishing that the algorithm of Section 6 is essentially
optimal. More precisely, we show that, under the ETH, no algorithm can solve d-Orientable
Deletion in time no(cw). As a result, the parameter dependence of dO(cw) of the algorithm
in Section 6 cannot be improved to a function that only depends on cw. We prove this result
through a reduction from k-Multicolored Independent Set. As before, we employ
capacities and implicitly utilize Capacitated-d-Orientable Deletion.

Construction. Recall that an instance [G = (V,E), k] of k-Multicolored Independent
Set consists of a graph G whose vertex set is given to us partitioned into k sets V1, . . . Vk,
with |Vi| = n for all i ∈ [1, k], and with each Vi inducing a clique. Given such an instance,
we will construct an instance G′ = (V ′, E′) of d-Orientable Deletion, where d = n. Let
Vi := {v1

i , . . . , v
n
i },∀i ∈ [1, k]. To simplify notation, we use E to denote the set of non-clique

edges, i.e. those connecting vertices in parts Vi, Vj for i 6= j. Our construction is given as
follows, while Figure 6 provides an illustration:
1. Create two sets Ai, Bi ⊂ V ′,∀i ∈ [1, k] of n vertices each, of capacities 0.
2. Make a set of guard vertices Wi,∀i ∈ [1, k], of size kn+ 3|E|+ 1, of capacities n.
3. Connect each vertex of Wi to all vertices of Ai, Bi for all i ∈ [1, k].

SWAT 2018
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4. For each edge e = (vli, vhj ) ∈ E with endpoints vli ∈ Vi, vhj ∈ Vj (i.e. the l-th vertex of Vi
and the h-th vertex of Vj), make four new vertices ael , bel , aeh, beh.

5. Connect ael , bel , aeh, beh to each other via OR gadgets.
6. Connect ael to all vertices of Ai and bel to all vertices of Bi, while aeh is connected to all

vertices of Aj and beh to all vertices of Bj .
7. Set the capacities c(ael ) = n− l − 1, c(bel ) = l − 1, c(aeh) = n− h− 1 and c(beh) = h− 1.

I Theorem 15 (F). d-Orientable Deletion is W[1]-hard parameterized by the clique-
width of the input graph. Furthermore, if there exists an algorithm solving d-Orientable
Deletion in time no(cw) then the ETH is false.
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