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ABSTRACT  

As current attention of the offshore industry is drawn by developing pilot farms of Floating 
Wind Turbines (FWTs) in shallow-water between 50m and 100m, the application of nylon as a 
mooring component can provide a more cost-effective design. Indeed, nylon is a preferred 
candidate over polyester for FWT mooring mainly because of its lower stiffness and a 
corresponding capacity of reducing maximum tensions in the mooring system. However, the 
nonlinear behaviors of nylon ropes (e.g. load-elongation properties, fatigue characteristics, etc.) 
complicate the design and modeling of such structures. Although previous studies on the 
mechanical properties and modeling of polyester may be very good references, those can not 
be applied directly for nylon both on testing and modeling methods. In this study, first, an 
empirical expression to determine the dynamic stiffness of a nylon rope is drawn from the 
testing data in the literature. Secondly, a practical modeling procedure is suggested by the 
authors in order to cope with the numerical mooring analysis for a semi-submersible type FWT 
taking into account the dynamic axial stiffness of nylon ropes. Both the experimental and 
numerical results show that the tension amplitude has an important impact on the dynamic 
stiffness of nylon ropes and, as a consequence, the tension responses of mooring lines. This 
effect can be captured by the present modeling procedure. Finally, time domain mooring 
analysis for both Ultimate Limit State (ULS) and Fatigue Limit State (FLS) is performed to 
illustrate the advantages and conservativeness of the present approach for nylon mooring 
modeling. 

Key words: Floating Wind Turbine; Numerical Modeling; Dynamic Stiffness; Nylon; 
Polyester; Mooring Line. 
 
1 Introduction  

For shallow-water offshore floating structures such as semi-submersibles, FPSOs, etc., the 

mooring lines are usually constituted of long, large diameter chain lines to provide a necessary 

catenary offset. For deep-water applications, hybrid mooring lines composed of chain, wire and 

fiber ropes (e.g. polyester, HMPE, aramid, etc.) are often used in order to reduce the weight of 

the mooring lines and the mooring cost.  For FWTs in shallow water, the use of low modulus 

ropes such as polyester, nylon can provide a more compliant and cost-effective design [1] (e.g. 
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the unit length cost of nylon is about half that of chain with the same breaking strength). 

Obviously, longer mooring footprints would be required for polyester in order to reduce 

extreme tension responses. It is also interesting to note that due to the higher stiffness of 

polyester, the tension responses in fatigue condition are also more critical than for nylon. 

Consequently, that might result in a critically low fatigue life not only for polyester itself but 

also (more importantly) for the chain sections in the mooring lines. 

Unlike rigid material, synthetic material such as polyester, nylon, etc., exhibit highly nonlinear 

and time-dependent load-elongation characteristics. Such behaviors should be determined by 

relevant tests before the design and application of those fiber rope components. The tests should 

exhibit not only the nonlinear behaviors of ropes as hysteretic materials but also the dynamic 

loading conditions that ropes undergo during operation (e.g. tension magnitude, the frequency 

of loading, loading history, etc.).  

Testing and modeling methods for polyester have been studied by the offshore industry since 

the early 80’s. The outcomes of several Joint Industry Projects (JIP) have been integrated into 

offshore standards such as API-RP-2SM [2], DNVGL-RP-E305 [3], ABS [4], BV-NI432-

DTO-R01E [5]. Although the above-mentioned methods are very good examples, those can not 

be applied directly on nylon. 

In this study, an empirical expression of dynamic stiffness is drawn from the nylon rope testing 

data on the Whitehill’s wire-lay nylon rope [6]. A practical mooring analysis procedure is 

suggested by the authors in order to account for the dynamic stiffness of nylon ropes on the 

mooring line modeling of a semi-submersible type FWT. The procedure is inspired from the 

original methodology recommended by DNVGL RP-E305 where we try to improve the DNV’s 
procedure in order to capture the tension amplitude effect on dynamic mooring analysis of 

nylon mooring ropes. 

The numerical simulation is performed using Orcaflex [7] in which two mooring systems that 

compose of chain-nylon-chain and chain-polyester-chain are compared. The empirical 

expression proposed by François et al. [8] and the fiber rope mooring analysis procedure 

recommended by DNVGL-RP-E305 [3] are applied for polyester. The empirical dynamic 

stiffness model and the mooring analysis procedure presented herein are applied for the 

modeling of nylon ropes. 

2 An empirical formula for determining the dynamic stiffness of nylon ropes 

Offshore standards and researchers have given recommendations for rope testing procedures 

and empirical expressions of dynamic stiffness for synthetic ropes. Generally, the dynamic 

stiffness of fiber ropes depends strongly on the mean tension, moderately on the tension 

amplitude and mildly on the frequency of loading [9], [10]. Practically, the loading frequency 
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and tension amplitude impacts are negligible for polyester [8]. Nylon, although seems to have 

closely similar behaviors as polyester, its responses are found to be more nonlinear than the 

latter [11]. Liu et al. [12] also studied the main factors influencing the dynamic stiffness of 

synthetic fiber ropes under cyclic loading. According to their conclusions, the mean tension is 

the main factor that influences significantly the dynamic stiffness, also the effects of strain 

amplitude and loading cycles can not be ignored. Huang et al. [13] highlighted the importance 

of understanding the change-in-length properties including creep, hysteresis, recovery, stiffness 

evolution of synthetic ropes. 

The DNVGL-RP-E305 [3], Falkenberg et al. [14], [15] introduce the concept of the Syrope 

model with the following definitions, which are illustrated in Fig. 1. 

- The original curve: the tension-stretch curve obtained during the very first and quick 

loading of the new ropes. 

- The original working curve: the lower-bound original curve for very slow loading 

so that visco-elastic stretch can be obtained without delay. 

- Working curves: Tension-stretch curves accounting for the historical maximum 

tension that the rope has been through. 

- Instant-elastic (dynamic) stiffness: A stable stiffness (after stabilization of working 

strain) in response to very fast changes in tension under cyclic loading. The dynamic 

stiffness results from instant-elastic strain only. Normally, it will take only 10 to 20 

cycles for polyester ropes before the dynamic stiffness become practically constant 

[14]. 

 
Fig. 1. The Syrope model. 
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Falkenberg et al. [14], [15] recommend selecting a pertinent working curve for static mooring 

analysis to determine the floating structure excursions (i.e. the excursions at the equilibrium 

position due to mean environmental loads). This working curve should account for the historical 

maximum tension that the rope has been through. DNVGL-RP-E305 [3] requires using a correct 

dynamic stiffness model to calculate the designed tension responses. An earlier research by 

Bitting [9] reported an important factor of 3 to 4 times between the dynamic and quasi-static 

stiffness of nylon ropes. This, again, highlights the importance of using different stiffness 

models for structure excursions and tension response analysis.  

Vecchio [10] and Fernandes et al. [16] proposed an empirical expression of dynamic stiffness 

for polyester ropes as 

0

E
 = α + ȕLm - ȖLa - δlog(T )

ρ
            (1) 

where   
E

ρ
: Specific modulus (N/tex);  Lm: Mean load (% of MBL); 

  La: Load amplitude (% of MBL);  T0: Period of loading; 

  α, ȕ, Ȗ, δ: Empirical coefficients. 

A non-dimensional axial stiffness of ropes can be expressed as   

   Kr = (La.l) / (∆l.MBL)               (2) 

MBL: Minimum Breaking Load La: Tension amplitude (% of MBL) 

l: Initial Length of the rope ∆l: Stretch 

François et al. [8] proposed empirical expressions of quasi-static and dynamic stiffness for 

typical polyester ropes depending on the mean tension in the lines (as mentioned above the 

impacts of tension amplitudes and frequency of loading are considered negligible). These have 

been integrated into BV-NI432-DTO-R01E [5] as 

 Quasi-static stiffness:  Krs = 13 to 15 

 Dynamic stiffness:  Krd = 18.5 + 0.33.Lm        (3) 

 for normally stiff polyester ropes. 

This model will be used in the following for the modeling of polyester ropes. 
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Fig. 2. Dynamic stiffness of the wire-lay nylon rope depending on the mean tension, Lm [6]. 

 

Fig. 3. Dynamic stiffness of the wire-lay nylon rope depending on the tension amplitude, La 
[6]. 

Based on recent dynamic stiffness tests on a wire-lay 3-strand nylon rope from Huntley [6], it 

is found that the dynamic stiffness of the nylon rope depends strongly on both the applied mean 

tension and the tension amplitude. This is illustrated in Fig. 2 and Fig. 3. 

An expression of dynamic stiffness for nylon can be proposed as, 

Krd = a.Lm – b.La + c                (4) 

where a, b, c are determined from a multiple linear regression on the nylon dynamic stiffness 
testing data reported by Huntley [6]. These values (with 95% of upper-confidence limits) are 
presented in Table 1. 

Table 1. Empirical coefficients for determining the dynamic stiffness of the nylon rope. 

a b c 

0.39 0.21 2.08 
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3. Analytic catenary equations 

For an inextensible, flexible line without bending stiffness, the catenary shape (Fig. 4) is well 

known as the static equilibrium configuration of such an element. The Orcaflex finite element 

model of a line is illustrated in Fig. 5. 

The catenary equation for inelastic lines (i.e. those are considered axially un-stretched) can be 

expressed as, [17] 

-1 -1a a a
inelas

a a

Th Tv +ws Tv
x = sinh -sinh

w Th Th

    
    

    
   (5) 

2 2

a a a
inelas

a a

Th Tv +ws Tv
z = 1+ - 1+

w Th Th

             
   (6) 

where s is the length from the end A, w is the weight per unit length, Tha and Tva are the 

horizontal and vertical tension components at the end A, respectably. 

 

Fig. 4. The catenary shape of mooring lines. 

 

Fig. 5. Finite element model for a line. 

For synthetic materials with large axial elongation, it is then crucial to consider such an elastic 

behavior. Therefore, the catenary equations are modified as, [17] 
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where K is the axial stiffness of the elastic line component. 

4. A practical modeling procedure for nylon mooring analysis 

A mooring analysis procedure considering the dynamic stiffness of polyester ropes was 

proposed by Kim et al. [18] for a SPAR. Since tensions in the mooring lines of a SPAR are 

often dominated by slow drift motions, this procedure can not be applied for semi-submersible 

type floating structures where first-order wave motions are the dominating ones, Arnal et al. 

[19]. Also, Kim’s procedure has its limitation relating the convergent principle since the high-

frequency tension component in mooring lines does not result from the motion of the SPAR but 

more likely from the resonance vibration of the polyester rope. Tahar et al. [20] extended the 

traditional elastic rod theory to allow large elongation and nonlinear stress-strain relationships 

for the modeling of polyester mooring lines. The empirical expression for determining the axial 

stiffness of polyester proposed by Bosman [21] was adopted considering a non-constant 

stiffness depending on the applied mean load. A similar attempt was made by Lin et al. [22] for 

the modeling of polyester mooring for a SPAR-type floating wind turbine. The mooring tension 

responses were validated against the Orcaflex software. 

The recent standard DNVGL-RP-E305 [3] and Falkenberg et al. [14], [15] recommend a very 

practical procedure for fiber rope mooring analysis including the following steps. 

- Step 1: Perform the mooring static analysis using the appropriate nonlinear working 

curves for each mooring line considering the mean environmental loads (i.e. if the 

mean tension in any of the lines is higher than the preceding highest working tension 

then the working curve for these lines needs to be updated). 

- Step 2: Determine the mean tensions, Lm, at the top of the synthetic lines and update 

the model with an axial stiffness depending on the mean tension, Lm (the empirical 

expression as Eq. (3) can, therefore, be applied without difficulty). A stress-free 

length of the lines corresponds to this stiffness and the mass per unit length of the 

line are also updated. 

- Step 3: Perform static and dynamic analysis with the updated mooring line 

properties.  

Since this procedure ignores the tension amplitude effect, it can not be applied for the dynamic 

modeling of nylon ropes. Based on that, a modified procedure is suggested by the authors for 

the numerical mooring analysis of a semi-submersible type floating wind turbine considering 

the dynamic axial stiffness of nylon ropes. The present procedure composed of the following 

steps that were basically proposed by DNVGL-RP-E305 [3], Falkenberg et al. [14], [15], but 
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some modifications are added (highlighted in red color in Fig. 6.) in order to take into account 

the impact of the tension amplitude on the dynamic stiffness of nylon. 

- Step 1: Same as above. 

- Step 2: Determine the mean tension, Lm, at the top of each synthetic line and update 

the model with an axial stiffness (determined by the Eq. (4)) depending on the mean 

tension, Lm, and an initial tension amplitude, La (with the corresponding standard 

deviation, 1
2

La  ), chosen optionally. A stress-free length of the lines corresponds 

to this stiffness and the mass per unit length of the line are also updated. 

- Step 3: Perform static and dynamic analysis with the updated mooring line 

properties. Calculate the standard deviation σ2 of the tension response. 

- Step 4: Check if the convergent criterion σ2 = σ1 is satisfied with a certain tolerance. 

If not, go back to step 2 and input a new tension amplitude, La, and continue the 

procedure iteratively up to convergence. 

 

Fig. 6. Mooring analysis procedure taking into account the impact of tension amplitudes on 

the dynamic stiffness of nylon ropes. 
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The idea is to find a convergent dynamic stiffness for each sea state based on the empirical 

expression in Eq. (4) for the specific mean tension and the convergent tension amplitude 

determined for each sea state. As can be seen in Fig. 6, the present procedure works as an 

iterative process in order to determine a convergent dynamic stiffness of the nylon rope for the 

sea state by comparing the standard deviation of the input tension amplitude with the standard 

deviation of the tension response. The compromise is implied, however, by comparing the 

standard deviation of a deterministic loading process (i.e. with a constant tension amplitude of 

variation) with the standard deviation of a random tension response process due to the floating 

structure wave-frequency motions. In fact, it can be seen that the dynamic stiffness tests are 

performed for regular loading where the tension amplitude is related to its standard deviation 

as 1 2La   . However, due to the fact that the incoming waves are normally irregular 

processes, the tension responses must have the same characteristics. For that reason, we have 

to accept a compromise by choosing 2 2La   as tension amplitude of the irregular tension 

response in order to apply the present empirical dynamic stiffness model for irregular sea states. 

First, for a harmonic signal, the amplitude is equal to 1 2La   . Secondly, an irregular 

process can be described by the sum of a very large number of sinusoidal processes (with 

different amplitudes and phases). Therefore, in our opinion, it seems acceptable to assume a 

tension amplitude, 2 2La   , to represent the variation of the tension response for each 

specific irregular sea state. However, validation with field measurements on nylon mooring 

lines seems necessary to check the appropriateness of this assumption. Although ones might 

also argue that the convergence check in the present procedure (Fig. 6) should be made for both 

wave frequency and low frequency motions, we believe that it would be difficult and 

computationally expensive considering them at the same time by using coupled time domain 

simulations. Moreover, since low frequency motions are small compared to the wave frequency 

responses for semi-submersible type FWTs (or at least for existing concepts) which is the 

subject of this study, it seems, therefore, acceptable not to consider low frequency motions in 

the convergence check. However, the converged dynamic stiffness once determined will be 

updated in the model in order to calculate the mooring responses considering the coupled wave 

and low frequency motions.  

The Power Spectral Density (PSD) of the tension response in a mooring line is presented in the 

Fig. 7 showing clear dominance of wave frequency responses. 
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Fig. 7. Power spectral density of the incoming wave and the tension response. 

5 Dynamic modeling of fiber mooring ropes 

The primary objective of this section is to assess the impact of the nylon rope dynamic stiffness 

on the dynamic behaviors of mooring lines in real sea conditions by applying the suggested 

nylon mooring analysis procedure described in Fig. 6 and the empirical expression of nylon 

rope dynamic stiffness in Eq. (4). Dynamic mooring analysis is performed for both ULS and 

FLS cases in order to investigate the impact of the present nylon dynamic stiffness model on 

both strength and fatigue design of mooring lines. 

A chain-polyester-chain mooring system and a chain-nylon-chain system are also compared to 

study the impact of the different stiffness cases corresponding to the two synthetic materials on 

the design motions and tension responses of the system.  

5.1. Floating structure and mooring line properties 

The mooring configuration studied in this paper is derived from the 2 MW FWT which is 

installed at the SEM-REV test site since 2017 as part of the FP7-EU FLOATGEN project. The 

French Atlantic test site SEM-REV is located 20 km off the coast of Le Croisic in Loire 

Atlantique, Berhault et al. [23]. The mean water depth of the site is taken as 36 m in this study. 

The considered FWT has a total mass of about 5000 t and a draft of approximately 7 m. The 

floater is considered in this study as a square ring with a 36 m width, a height of 10 m, and a 

21 m wide moonpool. The wind turbine’s nacelle is located 60 m above the free surface. The 
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floating structure model is illustrated in Fig. 8. The layout of the mooring system connected to 

a semi-submersible type FWT is illustrated in Fig. 9 in which a line composed of an upper part 

and a touchdown part made of chain, a middle part made of nylon. A similar floating structure 

and mooring configuration have been published by Spraul et al. [24] based on the publically 

available information from IDEOL and the Ecole Centrale de Nantes. However, ones should be 

aware that the floater and mooring characteristics used in this study were selected only for the 

study purpose and are not representative of the IDEOL’s real floating structure and the 
FLOATGEN mooring system.  

 
Fig. 8. Left- The FLOATGEN FWT [25]; Right- The floating structure modeled by 
HydroStar [26].  
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Fig. 9. The layout of the floating structure and its hybrid mooring lines. 

The mooring line properties are presented in Table 2 in which the same minimum breaking 

strength is chosen for all the mooring components. 

Table 2. Mooring line properties. 

Materials/Properties 
Diameter 

(m) 
Axial stiffness  

EA_dynamic (kN) 
Minimum Breaking 

Strength (kN) 

Nylon 0.216 
Determined by the Eq. (4) 
and the procedure Fig. 6 

10.000E3 

Polyester 0.188 
Determined by the Eq. (3) 

and the DNVGL's procedure 
10.000E3 

Chain/R4S 0.095 1.10E6 9.987E3 

5.2. Dynamic mooring analysis 

For simplification, wind and current loads are approximated as a steady contribution included 

in the mean tension. The mooring lines dynamic analysis is performed using OrcaFlex with a 

simulation duration set to 3 hours. The hydrodynamic database is calculated using HydroSTAR. 

The wave-frequency and low-frequency floating-body motions are then computed within 

OrcaFlex using a coupled analysis with the mooring system. Although no dynamic wind forces 

are considered, the wind turbine assembly has an influence on the mass and inertia of the 
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system. Quadratic viscous damping on the structure is also included in order to achieve realistic 

vertical motions.  

Table 3. Extreme and moderate sea states at the SEMREV sea test site. 

Sea state Spectra type Hs (m) Tp (s) Gamma 
Extreme -100 year return period Jonswap 10 15.7 3.3 

Moderate - Fatigue Jonswap 2.61 13.8 3.3 

The extreme and moderate sea states at the SEMREV sea test site (as presented in Table 3) are 

used in the calculation. 

5.2.1. Dynamic modeling of nylon mooring ropes 

The fiber rope mooring analysis procedure presented in Fig. 6 is applied to determine the 

dynamic tensions in mooring lines based on the convergent dynamic stiffness determined for 

each specific sea state. The procedure starts with a tension amplitude, La, that is equal to the 

mean tension, Lm, (the lowest realistic stiffness case in our experience) then converges very 

quickly after a few iterations. For instance, the dynamic stiffness case, 30 % +- 15.32 % of 

MBL, determined for the ULS case represents the mean tension, Lm, at 30 % of MBL and the 

convergent tension amplitude, La, equals to 15.32 % of MBL, determined by the procedure. 

The corresponding convergent dynamic stiffness of 10 % +- 0.9 % of MBL is found for the 

FLS case. The results presented in Table 4 show the important impact of the tension amplitude 

on the dynamic stiffness of nylon and the resulting dynamic tension responses in the mooring 

lines. The corresponding platform motion statistics are presented in Table 5. 

Table 4. Different dynamic stiffness cases of the nylon rope and the resulting standard 
deviation of the tension response. 

Sea state 
Mean 

Tension (% 
of MBL) 

Tension  
Amplitude 

(% of MBL) 

Axial stiffness 
EA_dynamic 

(kN) 

Standard deviation 
of the tension 
response (kN) 

Extreme -100 year 
return period 

30 30 74.8E3 0.571E3 

Extreme -100 year 
return period 

30 26 83.2E3 0.655E3 

Extreme -100 year 
return period 

30 21 93.7E3 0.757E3 

Extreme -100 year 
return period 

30 15.32 105.628E3 1.0833E3 

Moderate - Fatigue 10 10 38.8E3 0.045E3 
Moderate - Fatigue 10 7 45.1E3 0.052E3 
Moderate - Fatigue 10 5 49.3E3 0.056E3 
Moderate - Fatigue 10 0.9 57.91E3 0.064E3 
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Table 5. Different dynamic stiffness cases of the nylon rope and the resulting platform 
motions. 

Stiffness case / 
Motions 

30 +- 30 % MBL 30 +- 26 % MBL 
Mean STD Min Max Mean STD Min Max 

Surge (m) -0.58 5.84 -25.4 13.8 -0.62 6.2 -25.7 14.56 
Sway (m) -0.01 0.02 -0.08 0.06 -0.01 0.02 -0.1 0.09 
Heave (m) 0.02 2.53 -9.93 8.34 0.03 2.53 -9.93 8.31 
Roll (deg) 0 0.01 -0.02 0.02 0 0.01 -0.02 0.02 
Pitch (deg) -0.51 2.58 -8.89 7.14 -0.51 2.57 -8.87 7.13 
Yaw (deg) 0.06 0.01 0.02 0.09 0.06 0.01 0.02 0.09 

30 +- 21 % MBL 30 +- 15.32 % MBL 
Mean STD Min Max Mean STD Min Max 

Surge (m) -0.69 6.54 -27.5 15 -0.81 6.98 -30.30 15.40 
Sway (m) -0.01 0.02 -0.12 0.11 -0.01 0.02 -0.16 0.16 
Heave (m) 0.03 2.53 -9.94 8.27 0.04 2.54 -9.96 8.23 
Roll (deg) 0 0.01 -0.02 0.02 0.00 0.01 -0.02 0.03 
Pitch (deg) -0.52 2.55 -8.85 7.01 -0.53 2.51 -8.81 6.68 
Yaw (deg) 0.06 0.01 0.01 0.1 0.06 0.01 0.01 0.11 

 

Fig. 10. Dynamic tension of a mooring line in ULS condition applied the present fiber rope 
mooring analysis procedure in Fig. 6.  

 
Fig. 11. Dynamic tension of a mooring line in FLS condition applied the present fiber rope 
mooring analysis procedure in Fig. 6. 
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Fig. 10 and Fig. 11 show the tension time histories at the fairlead point of the front line 1 

comparing different cases of stiffness (i.e. with the same mean tension but different tension 

amplitudes). It is noted that at the same mean tension, with a lower tension amplitude, the rope 

is stiffer, and that results in more severe tension responses in the line (both in peak and trough 

values). This confirms the important impact of the tension amplitude on the dynamic stiffness 

of nylon ropes and the resulting dynamic tension in both strength and fatigue conditions. 

The maximum design tension of the mooring component is chosen as 

MBL
Tmax_design=

SF
    (9) 

where   MBL - The Minimum Breaking Load of the mooring component. 

SF – The minimum safety factor of the mooring components taken as 1.67 

according to API RP 2SK [27]. 

 

Fig. 12. Comparison of maximum tensions for different cases of stiffness with the design 
breaking tension (i.e. which considers the safety factor of 1.67 according to API RP 2SK [27]). 

It can be seen in Fig. 12 that if the tension amplitude is not correctly considered while 

determining the rope stiffness, the maximum tension in the mooring lines can be 

underestimated. Indeed, the line is still considered correctly designed for the three stiffness 

cases (30 % +- 30 % of MBL, 30 % +- 26% of MBL, 30 % +- 21 % of MBL) whereas it has 

already failed if the convergent dynamic stiffness (i.e. determined following the procedure in 

Fig. 6), 30 % +- 15.32 % of MBL is considered. 

As there is currently limited publically available research on the fatigue behavior of nylon 

ropes, the fatigue analysis will be performed hereafter for only the chain section at the fairlead 

point. This, however, shows the importance of the present dynamic stiffness model on the 

global fatigue responses of the mooring lines.  
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The T-N fatigue curve approach according to API RP 2SK [27] is applied as 

-mN=K.R      (10) 

where   N - the number of cycle to failure under a tension range R 

  K = 1000, m = 3 for studlink chain [27] 

The fatigue damage accumulation is calculated following the Palmgren-Miner’s rule, 

 1 1

1 1n n
m
i

i i

D R
N Ri K 

         (11) 

where   Ri - the tension range at tension cycle number i. 

                                                        
Fig. 13. Expected fatigue lives for different stiffness cases (the fatigue life in each case is 
already consider a safety factor of 3 according to API RP 2SK [27]).  

The time domain fatigue analysis is performed by Orcaflex. Fig. 13 compares the fatigue life 

of the front line 1 at the fairlead point for different cases of stiffness. It shows that the 

convergent dynamic stiffness model gives a more conservative fatigue life estimate. For 

instance, the fatigue life considering the dynamic stiffness equivalent to the case 10 +- 10% of 

MBL is about 89 years whereas it is only about 22 years for the convergent dynamic stiffness 

case, i.e. 10% +- 0.9% of MBL. 

5.2.2. Comparison of chain-nylon-chain and chain-polyester-chain mooring systems 

Two mooring systems composing of chain-nylon-chain and chain-polyester-chain are 

compared to study the impact of the different cases of stiffness for the two synthetic materials 

on mooring line responses. The same MBL (as presented in Table 2) and the same mean 

tensions in each sea state are chosen for the two mooring systems in order to investigate the 

required fiber rope lengths and the resulting tension responses. The un-stretched lengths of 

polyester and nylon ropes are chosen according to the mean tension for each sea state. For this, 
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the quasi-static stiffness (as in Eq. (3)) and the static modulus reported Varney et al. [28] are 

used for polyester and nylon respectively. 

The line characteristics and motion statistics of the floating structure are presented in Tables 6 

and 7. It can be seen that at the same mean tension significantly higher stiffness is found for 

polyester. Consequently, that results in not only longer required un-stretched lengths of the lines 

but also restricted levels of motions corresponding with more severe dynamic tension 

responses. 

Table 6. Mooring line properties 

Materials/Properties Mean Tension 
Axial Stiffness 
EA_dynamic 

(kN) 

Un-stretched 
length (m) 

Nylon 30 % of MBL 105.628E3 681.195 
Polyester 30 % of MBL 284E3 722.530 

Nylon 10 % of MBL 57.91E3 713.896 
Polyester 10 % of MBL 218E3 732.362 

Table 7. Motion statistics 

Stiffness cases / 
Motions 

Surge 
(m) 

Sway 
(m) 

Heave 
(m) 

Roll 
(deg) 

Pitch 
(deg) 

Yaw 
(deg) 

  Mean -0.81 -0.01 0.04 0.00 -0.53 0.06 
Nylon STD 6.98 0.02 2.54 0.01 2.51 0.01 

 30% of 
MBL 

Min -30.30 -0.16 -9.96 -0.02 -8.81 0.01 

  Max 15.40 0.16 8.23 0.03 6.68 0.11 

  Mean -1.35 0.00 -0.40 0.00 -0.56 0.06 
Polyester STD 6.98 1.11 2.55 0.18 2.16 0.47 
30% of 
MBL  

Min -27.80 -5.83 -9.31 -1.06 -6.95 -3.39 

  Max 16.31 4.82 7.17 1.18 6.54 2.35 

  Mean -0.04 0.00 -0.01 0.00 0.00 0.00 
Nylon STD 0.98 0.00 0.77 0.00 1.43 0.00 

 10% of 
MBL 

Min -4.03 -0.01 -2.50 -0.01 -4.09 0.00 

  Max 2.65 0.01 2.30 0.01 4.13 0.00 

  Mean -0.30 0.00 -0.08 0.00 -0.14 0.06 
Polyester STD 2.07 0.01 0.72 0.00 1.37 0.02 
10% of 
MBL  

Min -6.23 -0.04 -2.24 -0.01 -3.55 0.01 

  Max 4.84 0.03 1.87 0.01 3.18 0.13 

The tension responses in both ULS and FLS conditions are also compared in Fig. 14 and Fig. 

15. The significant increases in tension extremes (i.e. peak and trough) is found in the chain-
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polyester-chain mooring system. This confirms the advantage of nylon for reducing the extreme 

tension responses in mooring lines, which is favorable for both extreme and fatigue designs. 

 
Fig. 14. Tension responses, ULS 

 
Fig. 15. Tension responses, FLS 

6.  Conclusions and discussion 

This study focuses on the dynamic modeling of nylon ropes in mooring line design for a semi-

submersible type FWT. An empirical expression of dynamic stiffness for nylon is drawn from 

the experimental data in the literature. This confirms that the testing and modeling methods for 

polyester can not be applied directly to nylon. Specifically, unlike polyester, the tension 

amplitude effect is important and should not be ignored for nylon ropes. A practical mooring 

analysis procedure is then suggested by the authors (by modifying the fiber rope mooring 

analysis procedure recommended by DNVGL [3]) in order to cope with this modeling issue. 

The numerical results show the advantages and conservativeness of the present nonlinear 

dynamic stiffness model for nylon mooring modeling in both ULS and FLS cases. However, 

comparison with field measurements on real nylon mooring lines or dynamic stiffness tests 

under irregular loading are necessary in order to validate and improve our model. Furthermore, 
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the coupled aero-hydrodynamic analysis could be of great importance for the modeling of FWT 

responses but is not considered in this research. 

Two mooring systems that compose of chain-nylon-chain and chain-polyester-chain are 

compared. The results show the advantage of nylon on reducing the required mooring line 

lengths and tension responses. These are favorable for both strength and fatigue design of the 

system.  

As mentioned above, there has been little research on fatigue characteristics of the recent nylon 

ropes (i.e. those are integrated with new coating technologies and fatigue-reducing rope 

construction). Ridge et al. [29] studied a 3-strand nylon subrope manufactured by Bridon by 

applying accelerating fatigue tests. The fatigue analysis results using the nylon fatigue curve 

proposed by the same research showed a better fatigue behavior of nylon against the chain. 

However, whether or not that fatigue testing data can be extrapolated to lower tension levels is 

still really a concern. For this, a comprehensive study on the critical fatigue damage 

mechanisms of nylon should be the topic of future work. 
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