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Résumé  
Afin d’atteindre les performances attendues d’un système 
industriel, des solutions sont souvent implémentées pour 
remédier aux problèmes qui peuvent nuire au bon 
fonctionnement du processus de production. Ceci étant, Il 
est fréquent que les différents services (qualité, 
maintenance…) agissent indépendamment les uns des 
autres. Pourtant, avec la digitalisation, la quantité 
d’information récoltée au niveau du système industriel est 
devenue de plus en plus importante ce qui encourage son 
exploitation en adoptant une approche intégrée. L’objet de 
cet article est de proposer une réponse à cette 
problématique en proposant un modèle qui s’appuie  sur 
l’utilisation des cartes de contrôle multivariées au lieu  des 
cartes univariées. Le gain par unité de temps sera 
considéré comme un indicateur de performance.

Summary 
In order to reach the expected manufacturing process 
performance, common solutions are often implemented to 
solve problems that may affect the flow of production. It is 
noticed that the different services (quality, maintenance) 
act in an independent way to come up with disjoint 
solutions. With the digitalization of the industrial domain, 
information and data issued from the manufacturing 
process witnessed a growth in size and became more 
available, which encourages its exploitation under an 
integrated framework. The purpose of this article is to 
suggest an answer to this problem with a model based on 
multivariate control charts and not on the commonly used 
univariate control charts, interlinked with condition based 
maintenance. The profit per unit of time is considered an 
indicator of performance. 

Introduction 

The industrial domain is well known for its constant battles 
over market shares, and its tendency to increase benefits 
acquiring a dominant position as the best provider of a
service or product. To stay ahead of the competition, 
industrial structures tend to get the focus on good image 
and customer satisfaction. Common solutions are often
implemented in shop floors like quality improvement 
programs, production optimization planning or 
maintenance optimal scheduling in order to get closer to 
the expected performance (Ben Daya and Duffuaa 1995).
Maintenance, Production and Quality of the industrial 
process are often managed in order to meet costumer’s 
expectations by treating each component as independent. 
However, just a focused interest on each of the different
elements of an industrial system tend to cover the real 
problem; that the whole process work in an integrated way 
based on a constant exchange of information (Hadidi et 
al., 2012)(Bassem Bouslah 2015). Each team tries to solve 
their problems disregarding their mutual interest which is 
optimizing overall system performance. Researchers took 
keen interest in the concept of integration since it helps 
improving the performance of the manufacturing system. 
As maintenance is considered as a “necessary evil“ to 
industrial specialists, flaws detection and failure prevention 
represents a constant challenge to ensure overall 
equipment efficiency (Kisi et al. 2015). An important
ascertainment, is the distinction between two different
approaches to consider maintenance policies. Either 
traditional maintenance actions are carried out with a 
predetermined schedule based on how much time the 
machine have been operational, we talk about systematic 
Time base Maintenance (TBM) (Kim et al. 2016). Or, 
another way to proceed with maintenance actions is to 
monitor the system and use the collected information 
reflecting the state of machines, which represents 
condition based maintenance (CBM) policies (Alaswad
and Xiang  

2017). In recent work, interest in condition based 
maintenance policies has grown and studies took interest 
in the concept using machine information to model its 
degradation level. 
Literature abounds with integration models suggesting 
improvement to classical disjoint optimization models. One 
area of improvement is integrating Statistical process 
control with maintenance planning (Hadidi et al., 2012). 
The link between maintenance and quality control is easily 
perceptible, as faulty equipment is ought to produce items 
with non-satisfactory quality requirements (Mtiba 2017). 
So, in order to get a closer image of the actual state of the 
process, researchers suggested the use of control charts 
to monitor and keep track of the eventual process shifts 
that can lead to non-quality items (Ben Daya and Rahim 
1999; Cassady et al. 2000; Liu et al. 2013).  And, yet again 
different approaches are perceived in the literature as 
presented integration solutions available vary between 
using univariate control charts and multivariate control 
charts (Montgomery 2009). Most of the proposed 
integration solutions rely on univariate control charts by 
monitoring one quality characteristic as an indicator of the 
shifts that can occur on the manufacturing process (Ben-
Daya 1999; Panagiotidou and Tagaras 2010; Makis 2008). 
But, the performance of such control charts (X-bar which is 
usually used) have been proved quite limited especially if 
multiple correlated quality characteristics are considered 
(Lowry And Montgomery 1995; Bersimis 2007). So, using 
just X-bar control chart for a single variable doesn’t 
represent an accurate process monitoring solution in a 
multivariate framework (Ardakan et al. 2016). Multivariate 
statistical process control was introduced on 1947 to 
provide a better detection in case of monitoring multiple 
correlated variables and is getting increased attention by 
research specialist in industrial engineering (Montgomery 
2009). The research work proposed in this paper is 
encouraged by the emergence of the condition based 
maintenance policies and multivariate control charts for 
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process for quality control which represent a research area 
to investigate furthermore. The proposed solution is based 
on the work of (Panagiotidou and Tagaras 2010) which is 
considered as a starting point. This study allows us to 
emphasize the importance of multivariate SPC over 
traditional univariate SPC which is widely used in the 
literature of integrated solutions. 
This work differs from the existing solutions of integration 
of statistical process control and CBM as it focuses on 
investigating the impact of using multivariate process 
control compared to the use of univariate process control. 
Authors in (Kisi et al. 2015) introduced a hidden Markov 
model for condition based maintenance and multivariate 
control charts where they used T² control chart for raw 
data analysis for a specific grinding system. Authors in 
(Ardakan et al. 2016) presented a model joining MEWMA 
control chart and maintenance planning. Their 
maintenance policy is a mix of reactive maintenance and 
systematic maintenance where the reactive maintenance 
actions are triggered automatically by the control chart 
alarm. The proposed approach relies on delivering a 
comparative study between the use of univariate control 
charts and univariate control charts under an integrated 
framework CBM – SPC. 
The next section gives insight about the integrated 
elements in the proposed model, SPC and CBM and the 
link between them. Section 3 explains the model definition 
and section 4 regroups the obtained results. Section 5 
concludes this study by summarizing the studied problem 
and results followed by the perspectives of this research 
work. 

Overview of SPC and CBM 

1. Process monitoring through control charts  

Satisfying costumer’s expectations is a constant challenge 
as industrial specialists try to manage both quantity but 
more importantly the quality of the product. Statistical 
process control is of the popular tools to track and detect 
deviations in the process performance in term of quality 
monitoring. Univariate control chart provide a control and 
monitoring solution, but it remains limited as it only tracks 
one single quality characteristic (Harris et al. 2016). Due to 
the complexity of manufacturing processes, using such 
simple solutions remains limited and no longer suitable. If 
we need to monitor multiple variables, using individual 
control chart for each variable becomes counterproductive 
when there is a correlation between the monitored 
variables. Multivariate control chart have been developed 
in order to control variability of correlated multiple process 
characteristics. Hotelling was the first to deliver a first 
glimpse on multivariate quality control and such concept 
have been constantly improved since then (Montgomery 
2009). One of the common multivariate control chart is 

Hotelling T². Since it is designed for multivariate statistical 
process control, it provides a greater sensitivity to out of 

control points in a multivariate framework compared to 
using multiple univariate X-bar charts (refer to Figure 1). 

2. Condition Based Maintenance vs Systematic 
maintenance  

Time based maintenance (TBM) or systematic 
maintenance schedules are typically determined based on 
a probabilistic model of system failure and based on 
historical failure data.  
On the other hand, condition-based maintenance (CBM) 
revolves around planning maintenance actions according 
to the state of the system through condition monitoring. 
Condition based maintenance concept gained popularity 
because of its reliance on stochastic deterioration models 
which describes at best the behavior of manufacturing 
systems. In a recent work, authors (Kim et al., 2016) led a 
head to head comparative study between TBM and CBM. 
They reached the conclusion that beside the high 
requirements to set up condition based maintenance in an 
industrial environment, such policy grants a steady 
condition level of the machines with increased reliability 
and reduced number of failures and critical errors. 
Nevertheless, TBM knows a widespread usage across the 
literature of integration modeling because of its simplicity 
of implementation and the growing complexity of the 
developed integrated models (Cassady et al. 2000; 
Bouslah et al., 2015). We highlight different kinds of CBM 
methods and one of the most popular is data driven 
methods which rely on collected data from the 
manufacturing process (Kisi et al. 2015). Other alternatives 
approaches are introduced for condition monitoring like the 
rate of defective produced items (Rivera-Gomez et al., 
2013; Kouki et al. 2014). 
 

3. Integration of Multivariate SPC with CBM 
 
Manufacturing processes are witnessing a growing 
digitalization, thus data is becoming more available. It is 
important to exploit overflow of information, on one hand, 
with the use of multivariate methods, on the other hand, 
with integrating the use of statistical process control along 
with condition based maintenance. CBM is based on 
collecting various information about the status of 
manufacturing process through condition monitoring, 
followed by a decision making process based on an 
estimation of the deterioration level or failure rate of the 
system (Rivera-Gomez et al., 2013; Deloux 2008). One of 
the widely used condition monitoring approaches is data 
driven methods. And often, such method is quite 
demanding in term of infrastructure (sensors, data 
cleaning, etc.). Despite the fact that such methods have 
the ability to deliver an accurate interpretation of the 
system, it still lack reliability as it relies on the quality of the 
collected data and delivers no tangible physical 
understanding Among other data driven methods, SPC 
have been considered for condition monitoring. Since the 
concept revolves around graphic process monitoring, it 
delivers a tangible image to the state of the process and 
witnessed a growing interest among the research work on 
condition monitoring and integration of SPC to 
maintenance planning (Ardakan et al. 2016). 
The proposed approach revolves around the use of the T² 
multivariate control charts to assess the system condition 
and deliver early detection of the shifts that the process 
may withstand. 

Figure 1. Univariate vs Multivariate detection for 
correlated variables (Montgomery 2009) 
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Model definition 

1. Problem description 

 
The system under study is a single imperfect machine 
subjects to random failures. An imperfect process is a 
process who can shift spontaneously from the in control 
state to the out of control state if not maintained. The in 
control state being the stage of production where the 
system performs according expectations and production 
items with good quality and the out of control state grants 
a higher probability of producing non-conform items. 
 
The process has 3 states (refer to Figure 2) 

• State 2 : In control operational state 
• State 1 : Out of control operational state 
• State 0 : Failure state 

 
The system is initially considered as good as new 
producing quality conform items. The process may shift to 
the out of control state. Disregarding its operating state 
(R= 1, 2), and like any manufacturing process, the system 
is subject to random breakdowns which induce heavy 
losses. Corrective maintenance (CM) actions are 
performed in case of process failure (R= 0). As for the 
eventual shifts that may occur on the process, preventive 
maintenance (PM) actions are carried out to recover the 
system to the in control state. The model under 
consideration is a renewal process which restarts upon the 
execution of maintenance action which is supposed 
perfect in this study. Perfect maintenance action recover 
the process to the as good as new state (R=2).The times 
of shift between each state (TRF0 ,TRF1 ,Tswitch) are 
random variables generated following a known probability 
density functions φ0(t) φ1(t) and φ(t) and their respective 
cumulative distribution functions Φ0(t), Φ1(t) and Φ(t). To 
identify process quality shift, non-periodic inspections are 
carried out to monitor the state of the system.  
The inspection times are predetermined following the 
constant integrated hazard rate inspection policy (refer to 
eq. (1)) introduced by Munford (1981) and its usage is 
popular in the literature (Rivera-Gomez et al., 2013; Ben 
Daya 1999). The hazard rate of the time to quality shift is  
 

h (t) = φ (t) (1-Φ(t))                       {1} 
 
with φ(t) being the probability density functions of the 
process quality shift and Φ(t) its respective cumulative 
distribution functions. The aim of the method is to obtain 
non periodic inspection times where the system probability 
of failure is the same between all inspection dates. The 
constant hazard rate policy is used to generate the quality 
sampling times given Eq (2) below: 
 

∫ h(t)dtti
ti−1

=∫ h(t)dtti+1
ti

 ∀ i =  2, . . . , s − 1                {2} 
 
In order to use this policy, the first interval of inspection is 
needed (t1, t2) as well as the number of inspections s. 
 

2. Integration strategy SPC and CBM  
 

What follows regroups the notations and the model 
assumptions as well as an overview of the system 
functioning. 

2.1. Assumptions:  
• The times to failure (TRF0 ,TRF1) and shifts (Tswitch) 

from state in control to out of control duration 
probability density are known;  

• Each inspection of the system is assumed to be 
perfect;  it delivers perfect information of the 
manufacturing process; 

• Each system inspection and quality control sampling 
require stopping the system; 

• The durations of maintenance actions are known and 
constant; 

• The related costs to maintenance actions, quality 
control and system inspection are known and 
constant; 

• Maintenance actions, sampling and inspections do 
not require setup time, they are executed right away; 

• Maintenance actions are considered perfect and they 
recover the system to an as good as new state 
(AGAN) (R=2); 

• The expected gains under the state out of control are 
significantly lower than the in control state gains as 
we suppose that the lower quality items are still sold 
at a reduced price. 
 

2.2. Model description: 
 

The system initially in control R= 2, may encounter 
one of the 3 events: 

 
i. Reaching inspection time at Tinspec 

A quality sampling (using control chart) takes place with 
duration Dqc. If an out of control signal is detected by the 
control chart, the system is declared statically out of 
control. 
A perfect investigation of the system for a duration Dinv 
takes place to check if it is a false alarm (Error I) or not  

• Case 1: Affirmative shift to the out of control state 
and then system undergoes a perfect preventive 
maintenance action, the system is As Good As 
New (AGAN) and the cycle ends. 

• Case 2: It is a false alarm, the system is declared 
in an in control state (R=2) and no maintenance 
actions are performed. 

 
ii. Natural shift from in control state (R=2) to out of 

control state (R=1) at Tswitch 

The events that may happen then are: 
o Failure (R=0) at TRF1: the process undergoes a 

perfect corrective maintenance action, the system 
is then AGAN and the production cycle ends. 

o Inspection time at Tinspec a quality inspection takes 
place:  

• Case 1: A shift to the out of control state is 
detected and the system is declared 
statistically out of control with an alarm 
(Alarm=1) and a perfect investigation of the 
system takes place. The system undergoes 
preventive maintenance actions and the 
production cycle ends. 

• Case 2: If the control chart doesn’t detect the 
actual state of the process (Error II – non 
detection) and no action performed, the 
system remains functioning until the next 
event occurs (failure or another inspection) 
 

iii. Reaching time of systematic preventive 
maintenance action (Tm0)  

Figure 2. SADT representation of the renewal process 
under study 
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The system undergoes a preventive maintenance action 
and the production cycle ends.  
As explained previously, the purpose of this model is to 
emphasize the performance of using multivariate control 
chart in comparison to multiple univariate control charts.  

2.2.1. Case univariate 
 
The univariate case is summarized using a traditional X-
bar control chart for each of the monitored variables. Each 
quality characteristic xij follows a normal distribution of 
mean µij (with i = 1,2 and j = 1,2,…, p ) and a standard 
deviation σj. The mean depends on the state in which the 
system is in. Out of control mean µ1j is a deviation from the 
in control mean µ2j by δσj (Eq. 3), with δ being the shift 
magnitude.  
µ1j = µ2j + δσj                                            {3} 
Sampling is proceeded according to the predetermined 
inspection intervals and the size of the sample is n.  
The control limits of each control chart are calculated as 
follows: 

UCL𝑗𝑗 = µ2j  + 𝑘𝑘σ𝑗𝑗
√𝑛𝑛
�                            {4} 

LCL𝑗𝑗  =  µ2j −
𝑘𝑘σ𝑗𝑗

√𝑛𝑛
�                                       {5} 

With k represents the control limit parameter k and UCLj 
and LCLj are respectively the upper and lower control 
limits of the characteristic xij. Next step is plotting the 
sample mean on the control chart and if the point exceeds 
in any of the p control charts, an alarm is triggered.  
The probability of false alarms (Error I) (refer to Eq. 5) and 
non-detection (Error II) (refer to Eq. 6) are as follow: 
α = 2 F(−k)                   {6} 
β = 2 F�k − δ√n� −  F �−�k + δ√n��                {7} 
With F represent the cumulative density function of the 
normal distribution. 
Note that a shift of the process doesn’t forcibly induce a 
shit of all the p monitored characteristic. Thus, each 
characteristic xij have a 1/p probability to shift its mean 
from µ2j to µ1j. 

2.2.2. Case multivariate 
 
To build a Hotelling’s T² control chart, it is assumed that 
historical samples data are available.  It is considered that 
p processes quality characteristics are monitored and 
represented by a p-dimensional vector X ~ N (µi, ∑) (with      
i = 1,2) a statistical multivariate normal distribution with µi 
representing the mean vector and ∑ the covariance matrix 
(Montgomery 2009). 
The available data is a set of m subgroup samples with n 
observations. Firstly, an estimation of the samples means 
�̅�𝑥𝑗𝑗  of each variable observations and the samples 
variances and covariances matrix S is conducted. 

𝑋𝑋 =

⎣
⎢
⎢
⎢
⎡
�̅�𝑥1
⋮
�̅�𝑥𝑗𝑗
⋮
�̅�𝑥p⎦
⎥
⎥
⎥
⎤
  �̅�𝑥𝑗𝑗 = ∑ 𝑥𝑥𝑖𝑖 𝑛𝑛

𝑖𝑖=1
𝑛𝑛

    𝑗𝑗 = 1,2, … ,𝑝𝑝                 {8} 

S =  �

�̅�𝑠12 s̅12 … s̅1𝑝𝑝
 �̅�𝑠22 … s̅2𝑝𝑝
 
 
  ⋱

 
�̅�𝑠𝑝𝑝2

�   s̅𝑗𝑗𝑗𝑗 =
∑ (𝑥𝑥𝑖𝑖𝑖𝑖 −�̅�𝑥𝑖𝑖)²𝑛𝑛
𝑖𝑖=1

𝑛𝑛−1
  𝑗𝑗 = 1,2, … , 𝑝𝑝    {9} 

Then calculate the statistic T²  
T2 = 𝑛𝑛(𝑋𝑋 − 𝑋𝑋�)′𝑆𝑆−1(𝑋𝑋 − 𝑋𝑋�)                   {10} 
 
with the upper control limits UCL given by Eq. (11) and the 
lower control limits LCL being zero. 
𝑈𝑈𝑈𝑈𝑈𝑈 =  𝑝𝑝(𝑚𝑚+1)(𝑛𝑛−1)

𝑚𝑚𝑛𝑛−𝑚𝑚−𝑝𝑝+1
𝐹𝐹𝛼𝛼,𝑝𝑝,𝑚𝑚𝑛𝑛−𝑚𝑚−𝑝𝑝+1            {11} 

Where 𝑋𝑋� represents the mean vector of the monitored 
characteristics and 𝐹𝐹𝛼𝛼,𝑝𝑝,𝑚𝑚𝑛𝑛−𝑚𝑚−𝑝𝑝+1 is the upper 100  𝛼𝛼 
percentile of the F distribution with (p,𝑚𝑚𝑛𝑛 −𝑚𝑚 − 𝑝𝑝 + 1 ) 
degrees of freedom.  

2.2.3. Performance analysis criteria 
 
The main output of this model is the expected profit per 
unit of time (EPT). It represents the difference between the 
profits of selling good and bad quality items and the cost 
issued from the manufacturing process, thus, the aim is 
increase the profit per unit of time. 
EPT is issued following the given formula:  

𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐸𝐸(𝑃𝑃)
𝐸𝐸(𝑇𝑇)

           {12} 
Where E(P) is the expected profit of a cycle and the E(T) is 
the expected cycle time.  
A reminder is that a cycle of the considered process starts 
with a manufacturing process as good as new and 
following the scenarios presented in §III.2 will restarts 
always after maintenance actions either corrective or 
preventives. 
The system operates under states in control and out of 
control with respective expected durations E(Ic) and 
E(Oc). Quality control sampling actions require a duration 
Dqc and checking the system condition requires a duration 
Dinv. Maintenance actions durations are not negligible and 
they require a Dpm time units per preventive maintenance 
actions and Dcm time units for corrective maintenance 
actions. All the quality control and system investigation as 
well as maintenance actions generate costs that are 
regrouped on what follows  
• Ccm : cost per corrective maintenance action 
• Cpm :cost per preventive maintenance action 
• Cinv: cost per system investigation 
• cinsp : Cost per quality sampling setup 
• csample : unit cost of sample  
• Cqc : cost per quality control actions 

Note that cost of sampling depends on the size of the 
sample n and is computed as follows  
Cqc = cinsp + n csample                      
{13} 
The expected cycle time and expected profit are calculated 
as follows:  
𝐸𝐸(𝐸𝐸) =  𝐸𝐸(𝐼𝐼𝐼𝐼) +  𝐸𝐸(𝑂𝑂𝐼𝐼) + 𝐸𝐸(𝑄𝑄𝐼𝐼)𝐷𝐷𝑞𝑞𝑞𝑞 + �𝐷𝐷𝑖𝑖𝑛𝑛𝑖𝑖 + 𝐷𝐷𝑝𝑝𝑚𝑚�𝑝𝑝𝑝𝑝𝑚𝑚  

+ 𝐷𝐷𝑖𝑖𝑛𝑛𝑖𝑖 𝐸𝐸(𝛼𝛼) + 𝐷𝐷𝑞𝑞𝑚𝑚𝑝𝑝𝑞𝑞𝑚𝑚 +  𝐷𝐷𝑝𝑝𝑚𝑚 𝑝𝑝𝑝𝑝𝑚𝑚(𝑇𝑇𝑚𝑚0) 
With ppm and pcm being respectively the probabilities of 
performing PM and CM on a cycle. And ppm (Tm0) is the 
probability to reach the critical age Tm0 in a cycle. 
𝐸𝐸(𝐸𝐸) =  𝐺𝐺𝑖𝑖𝑛𝑛𝐸𝐸(𝐼𝐼𝐼𝐼) + 𝐺𝐺𝑜𝑜𝑢𝑢𝑡𝑡𝐸𝐸(𝑂𝑂𝐼𝐼) −  𝑈𝑈𝑞𝑞𝑞𝑞 𝐸𝐸(𝑄𝑄𝐼𝐼)

−  �𝑈𝑈𝑖𝑖𝑛𝑛𝑖𝑖 +  𝑈𝑈𝑝𝑝𝑚𝑚�𝑝𝑝𝑝𝑝𝑚𝑚  −  𝑈𝑈𝑞𝑞𝑚𝑚𝑝𝑝𝑞𝑞𝑚𝑚 −  𝑈𝑈𝑖𝑖𝑛𝑛𝑖𝑖𝐸𝐸(𝛼𝛼)
−  𝑈𝑈𝑝𝑝𝑚𝑚 𝑝𝑝𝑝𝑝𝑚𝑚(𝑇𝑇𝑚𝑚0) 

With E(Qc) representing the expected number of quality 
control and E(α) the expected number of false alarms per 
cycle. 
Gin and Gout represent the respective gains the system 
provide under states in control and out of control. 
For further understanding of the mathematical model used 
in this work, we refer reader to the work of (Panagiotidou 
and Tagaras 2010) which represents the ground work of 
the proposed model.  

Results analysis 

1. Simulation approach   
 
Simulation is used to reproduce the behavior of the studied 
system and obtain the results of this model.  
Without loss of generality, the simulation model will be 
used to calculate, for a specific optimal configuration, the 
expected cost EPT. The aim of the simulation is not to 
optimize the expected cost but to reflect the behavior of 
the model and emphasize the differences between the 
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cases of using univariate control charts and multivariate T² 
control chart. Thus, the obtained results are issued from 
10000 simulation runs. 
The times to failure (TRF0, TRF1) and shifts (Tswitch) from 
state in control to out of control are generated following  
Weibull distribution of known shape (β0, β1, βsw) and scale 
parameters (η0 η1, ηsw). 
• TRF0 ~Weibull (β0, η0)  
• TRF1~ Weibull (β1, η1) 
• Tswitch~Weibull (βsw, ηsw) 

As the machine is highly likely to deteriorate faster under 
the out control state, the random variables above are 
generated for each simulation run granting a time to failure 
under the state out of control equal or lower than under the 
in control time. In order to ensure that, the random 
variables are generated under the conditions β0 = β1 and 
η0 ≥ η1 (Panagiotidou and Tagaras 2010). 
 

2. Effect of  magnitude of shift 
 
Monitoring quality characteristics shifts can be easily 
detected through univariate control charts. But, the 
monitoring is affected by the shifts magnitude.  
In (Panagiotidou and Tagaras 2010), authors used a 
factorial design of experiment to variate the input data of 
their model. They also proceeded by SPC and 
maintenance parameters optimization.  
In this work, the input data of the design of experiment is 
used to highlight the effect of using multivariate control 
charts vs univariate control charts. The data set used is 
issued from the design of experiment and allows us to 
variate the input data of our model; time to failure and 
shifts distribution parameters, durations and costs of the 
manufacturing process as well as the profit under both 
states in and out of control. 
For simulation, two quality characteristics are considered 
for monitoring. Thus, a set of data is generated following a 
multinomial distribution of mean vector µ2 =  �10� for the in 
control state and µ1 for the out of control state calculated 
with the Eq. (3) for each monitored characteristic with a 
shift magnitude δ = 0.5.  
The covariances matrix used for the further calculus is  
∑ = � 1 0.9

0.9 1 � 
 
Figure 3 highlights the impact of variating the magnitude of 
shift on the expected profit. The data used to obtain the 
results in Figure 3 are issued from line 29 of the DoE in 
(Panagiotidou and Tagaras 2010). 
With higher shift magnitude, the performance of a 
Multivariate T² control chart is quite similar to multiple 
univariate X bar control charts. 
 

 
Figure 3. Magnitude shift effect on EPT 

But the difference can be noticed with a magnitude of shift 
between 0.5 and 1.5. As individual monitoring of quality 
characteristics no longer reflects the actual state of the 
process which triggers false alarms and unnecessary 
system inspections which impact the overall system profit. 
 

3. Expected profit  
 
As presented previously in Eq. (14), the expected profit of 
the process relies on high performance with less false 
alarms and process inspections. Thus, process shift 
detection has an important impact on the process profit. 
But detections must be accurate in order to reduce the 
false alarms.  
DoE input data from (Panagiotidou and Tagaras 2010) is 
used to highlight the effect of using multivariate control 
charts over multiple univariate control charts for expected 
profit improvement.  
 
 
 

Data set Cinv Cqc Cpm Ccm Dinv Dqc Dpm Dcm 
7 100 11 400 1500 0,5 0,1 1 2 

18 100 11 400 1500 0,5 0,1 1 2 

29 100 11 400 1000 0,5 0 1 1 

32 100 3 800 1500 0,5 0,1 2 2 
 

Table 1 Input variables for the displayed results 

Overall EPT obtained values showed that multivariate 
control charts outperform always the use of multiple 
individual univariate control charts for each monitored 
variables. 

 
Figure 4 reflects the improvement in the expect profit with 
a multivariate quality control with high correlation between 
the variables 0.9. Table 1 represents the input variables 
considered for the displayed results which are 
characterized by a high cost and duration of system 
inspection. The obtained gain is justified by a lower rate of 
false alarm which results is lesser process inspection and 
as a result, a cost reduction of the overall manufacturing 
process. Also a difference in the time where the system is 
out of control before the detection of shifts is noticed as 
the multivariate T² allows a faster detection of the shifts 
that may occur on the process.  
Thus, Multivariate control charts give a better assessment 
of the equipment condition and their usage to monitor the 
condition of the process surpasses in case of correlation 
between the variables. We remind the reader that, the 
considered shifts that the system undergoes are supposed 
of a low magnitude (δ = 0.5).  

Figure 4. EPT obtained for sets of input values with high 
cost and duration of inspections 
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Conclusion 
 
Condition based maintenance is taking a leap in industrial 
engineering as it is witnessing an increasing interest in the 
concept. Condition monitoring represents a keystone to 
reflect with accuracy the state of the system. The aim of 
this work is to highlight the aspect of using control charts 
for condition monitoring and more specifically multivariate 
control charts. The model developed is quite simple as it 
relies on a 3 state model with transition probabilities 
following a known distribution but it allows us to reflect the 
importance that multivariate control charts have to deal 
with the monitoring of multiple correlated variables. 
Simulation is used to reflect the result and effect on the 
expected cost of the manufacturing system. This 
comparative study helped us asses the importance of 
exploring integrating multivariate control charts with a 
noticeable effect compared to univariate control charts 
which are quite popular in the literature.  
In this study, a T² control chart and multiple Xbar control 
charts are used and this work doesn’t cover optimization 
as the input data is issued from the literature. Those 
results provide a window to the area of integrated SPC-
CBM improvement. Other assumptions are quite restrictive 
as the nature of the renewal process restarts upon 
maintenance action.  
It would be interesting to push the use of multivariate 
control charts to diversify maintenance actions. For 
example, studying the effect of variating costs, durations 
on different types of maintenance actions depending on 
the monitored characteristics as well as delivering 
confidence intervals of our expected profit which would 
allow us to refine our solution. 
As far as this model is concerned, it covers only detection 
of a shift to the out of control state, thus, identification of 
the cause of the shift may provide additional information to 
be used for the maintenance policy and reduce inspection 
duration and costs. 
One important point also is the consideration of incipient 
shifts, as such concept is not treated in the literature under 
an integrated framework. Thus, its consideration can be of 
a great insight to our research as the main goal is to reflect 
the system state and prevent degradation in order to 
optimize the performance and reduce the overall cost of 
the manufacturing process. 
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