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Approximation de la superposition de processus de renouvellement par modèle 
d’âge virtuel : propriétés analytiques et application 

Approximation of the superposition of renewal processes by virtual age model: 
analytical properties and application 

Yann DIJOUX Xingheng LIU 
UTT UTT 
12 Rue Marie Curie, 10300 Troyes 12 Rue Marie Curie, 10300 Troyes 

Résumé  
Dans le cadre d’ingénierie de modèle et de maintenance, 
nous présentons une modélisation méthode, noté WARA 
(Weibull arithmetic reduction of age), qui vise à approximer 
et simplifier la superposition des Weibull processus de 
renouvellement, ce qui est souvent rencontrée face au 
système réparable en série ou à une file d’attente. Ce 
modèle nous permet d’estimer la distribution de temps inter 
panne en fonction de l’histoire de maintenance. 
Nous présentons d’abords les propriétés analytiques du 
modèle avant de montrer l’adéquation de son utilisation 
face aux systèmes réparables en série par la simulation. 
Une application en données réelles (les temps de panne
de climatiseurs collectés à partir des avions Boeing) est 
également présentée. 

Summary
In the context of model engineering and maintenance, we 
present a modelling method, WARA (Weibull arithmetic 
reduction of age). Based on virtual age model, it aims to 
approximate the superposition of Weibull renewal 
processes (SRP) which is often encountered when 
studying a repairable serial system or in queueing theory. 
Compared to other RP-based approximation method, this 
model allows us to calculate more precisely the interval 
distribution conditioned on maintenance history. Some 
analytical properties of the model are presented before 
evaluating the quality of WARA approximation using 
simulations. An application on a real data (failure time of air 
conditioning system of a fleet of Boeing airplanes) is also 
presented.

1. Introduction and context

We consider a repairable serial system composed by n
independent components, whose breakdown shall cause a 
system failure. A corrective maintenance with a negligible 
operation time is carried out after the failure, in order to 
repair or replace the failed part. This will form a renewal
process for the component and an SRP (superposition of 
renewal process) for the system (figure 1).

Figure 1. An example of SRP data 

At a system level, the maintenance is between AGAN (as 
good as new) and ABAO (as bad as old) as only one 
constituent is repaired at one time. Therefore, an SRP can 
be viewed as an imperfect maintenance model.  

It is well known that the superposition of a finite number of 
renewal processes are not renewal anymore. Although the 
inter failure times are statistically dependent, computing 
the interval’s distribution is relatively easy. First found by 
(Cox et al.,1954), the survival function of the pooled data is 
given by: 

Rs(t) = v1v2…vn
v1+v2+⋯vn

∑ Ψ1n
i=1 …Ψi−1RiΨi+1 …Ψn {1} 

Where n the total number of RP superimposed, Ri the 
survival function of the interval of component i, Ψi(t) =
∫ Ri(u)du∞
t , and vi = 1

Ψi(0)
 denote the average rate of ith 

renewal source. 

Analysing an SRP at a component level can be difficult 
considering the number of parameters involved and the 
efforts needed for ML estimations (Ye Tian, 2013). Thus, 
most of literature aims to simplify or approximate un SRP, 
and usually by a RP. (Whitt, 1982) has proposed 2 
methods based on moment-matching: an approximation by 
hyper-exponential RP for high-variation case and a shifted-
exponential model for low-variation case; (Kamen et al., 
2001) has proved that a RP approximation can be rate-
optimal if its interval distribution equals that of SRP ({1}); 
(Araghi et al., 2008) has proposed a 3 parameters 
generalised erlang RP model, matching the index of 
dispersion and the mean value of inter-failure time. 

However, the main drawback of using RP approximation is 
that the dependency between the intervals is ignored. This 
dependency can be either positive or negative according 
to the nature of RP superposed. (Lawrence, 1973) has 
found the joint distribution of adjacent intervals and has 
proposed a formula for correlation calculation. He also 
noticed that a negative correlation between intervals might 
occur when 2 erlang RP are superimposed. 

In the following, we focus on a particular configuration of 
SRP, where the RP superposed are Weibull with a shape 
parameter greater than 1. To model this type of SRP, we 
propose to use the WARA method which conserves 
partially the negative dependence observed between 
Weibull SRP intervals.  

In section 2, we recall the history and some notions of 
virtual age models. In section 3, several analytical 
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properties of WARA model are presented. We then 
compare an SRP to its WARA approximation in section 4. 
In section 5, we discuss the distribution of inter failure 
times conditioned on the maintenance history. In section 6, 
The WARA model is applicated to model and explain the 
failure data of the air conditioning systems of Boeing 
airplanes. Conclusion are in section 7. 
 

2. Virtual age models 
 

Virtual age models (Kijima et al.,1988) are the most 
frequently used imperfect repair models. The principle is 
that the wear-out does not depend on the chronological 
age of the system, but on a virtual age, commonly 
between zero and the elapsed time since the system was 
new. A virtual age model is entirely characterized by the 
failure rate of a new system and by the virtual age 
assumptions. (Kijima, 1989) has proposed two widespread 
classes of virtual age assumptions. He supposes that each 
repair efficiency is represented by a random variable 
supported on the interval [0,1]. A model under Kijima Type 
I assumption is such that a repair rejuvenates the virtual 
age of a proportional amount of the last inter-failure 
duration, whereas a model under Kijima Type II 
assumption supposes that the rejuvenated amount is 
proportional to the virtual age just before the repair. A 
special case is to consider that the repair efficiency is a 
constant ρ ∈ [0,1], called restoration factor. The resulting 
models have been developed by (Malik, 1979) and by 
(Brown et al., 1983) for the Kijima type I and II models, 
respectively. A unified version of the last two models has 
been presented by (Doyen et al., 2004), called model of 
arithmetic reduction of age with memory m, and denoted 
ARAm. The ARA1 and ARA∞ models are special cases of 
the Kijima Type I and II models, respectively.  

 
In the following, we give a detailed introduction of the basic 
notions in an ARA∞ model, which is then combined with the 
Weibull assumption in section 3. 
 
A repairable system has been observed since it was new. 
The observations consist of the successive maintenance 
times {Ti} i ≥0. The corresponding inter-maintenance times 
are denoted {Xi} i ≥1 and the repair process can also be 
characterized by a counting process {Nt} t ≥0 where Nt = 
∑ 1{𝑇𝑇𝑖𝑖<𝑡𝑡}
∞
𝑖𝑖=1  . By convention, T0 and X0 are equal to zero 

and time can be either calendar or operational. The 
distributions are obtained from the failure intensity defined 
in {2}, where Ht

−
 is the history of the repair process at time 

t −, commonly the failure times before t. 
 
∀t ≥ 0, λt = limΔt→0

1
Δt

P(Nt+Δt − Nt− = 1|Ht−)                           
{2} 
 
The failure rate of a new system, called initial failure 
intensity and denoted λ(t), is assumed to be a deterministic 
and continuous function of time. It corresponds to the 
hazard rate of T1. The cumulative hazard rate function is 
denoted Λ(t) = ∫ λ(u)t

0 du. f, F and R are the probability 
density function, cumulative distribution function and 
survival function, respectively. As industrial systems are 
assumed to wear out, the initial failure intensity is 
increasing. Consequently, the two-parameter Weibull 
distribution has been chosen as in {3}. For wearing-out 
systems, the shape parameter β is greater than 1. 
 
∀t ≥ 0, λ(t) = αβtβ−1                                                         {3} 
 
A virtual age model (Kijima et al., 1988) assumes that after 
the ith repair, the system behaves as a new and 
unmaintained one of age Ai. This age is called effective 
age. The assumption is mathematically described in {4}, 
where Z is the time to failure of a new system and has the 
same distribution as X1. 
 

∀i ≥ 0,∀t ≥ 0, P(Xi+1 > t|X1, … Xi) = P(Z > Ai + t|Z > Ai){4} 
The conditional survival function of the (i+1)th inter-failure 
time in {4} is simply R(Ai + t)/R(Ai). The age of the system 
A0 at the beginning of the observation is zero if the system 
is as good as new, and greater than 0 otherwise. At a 
given time t, the virtual age of the system Vt is obtained 
from the latest effective age and the elapsed time since 
the last repair as in {5}. 
 
Vt = ANt− + t − TNt−                                                           {5} 
 
The virtual age of the system just before the ith repair is de- 
noted Ai

− . The failure intensity can be derived from the 
initial failure intensity as in {6}.  
 
λt = λ(Vt) = λ�ANt− + t − TNt−�                                         {6} 
 
Many models have been developed from different 
assumptions on the virtual ages (Proschan et al., 1983); 
(Dijoux et al., 2013); (Doyen et al., 2004); (Kijima, 1989). 
In particular, a Kijima type II model (Kijima, 1989) assumes 
that regarding the ith repair, the effective age Ai is 
proportional to Ai

−  . The model of arithmetic reduction of 
age with infinite memory ARA∞ (Doyen et al., 2004) 
assumes that this proportion is a constant ρ in the interval 
[0,1] as in {7}. ρ  is called the repair efficiency or the 
restoration factor. 
 
Ai = (1 − ρ)Ai

− = (1 − ρ)(Ai−1 + Xi)                                {7} 
 
In particular, a minimal and a perfect maintenance can be 
modelled with ρ  = 0 and ρ = 1, respectively. The effective 
age in {7} can be explicitly expressed in terms of the inter-
failure times and A0, as in {8}. One can find useful 
applications of the ARA ∞  model in different situations 
(Bartholomew-Biggs et al., 2009); (Brown et al., 1983); 
(Clavareau et al., 2009); (Dijoux et al., 2013); (Kahle, 
2007); (Yun et al., 1999). 
 
Ai = (1 − ρ)iA0 + ∑ (1 − ρ)i−j+1Xj

i
j=1                                  {8} 

 
Combining {6} and {8}, a model under the ARA ∞ 
assumption is defined by the initial age A0, the initial failure 
intensity λ(.) and the repair efficiency ρ.  
 

3.     Analytical properties of WARA model 
 
The Weibull-ARA ∞  model, denoted WARA ∞  or simply 

WARA, consists of the ARA∞ assumption, the Weibull initial 
failure defined in {3} and a null initial age. 
 
(Nguyen et al., 2016) has found the closed forms of the 
distributions and expected values of age An and of interval 
Xn and has proved their convergence to a stationary 
regime. Some of the formulas are recalled below ({9}, {10}, 
{11}, {12}) while the proofs are omitted here. 
 

∀n ≥ 1, RAn(t) = ∑ 1

(q,q)n−k�
1
q,1q�k−1

n
k=1 e

−αt
β

qk                            {9} 

 
Where q = (1 − ρ)β  and (a, q)k = ∏ (1 − aqj)k−1

j=0  the q-
Pochhammer symbol. 
 

RXn+1(t) = �
∑ ∫ αβ𝑥𝑥β−1𝑒𝑒−α(𝑥𝑥+𝑡𝑡)β+α�1−𝑞𝑞−𝑘𝑘�𝑥𝑥β𝑑𝑑𝑑𝑑∞

0

𝑞𝑞𝑘𝑘(𝑞𝑞,𝑞𝑞)𝑛𝑛−𝑘𝑘�
1
𝑞𝑞,1𝑞𝑞�𝑘𝑘−1

       𝑛𝑛 ≥ 1𝑛𝑛
𝑘𝑘=1

𝑒𝑒−α𝑡𝑡β                                                              𝑛𝑛 = 0

  {10} 

 
 
 
In the asymptotic case where n is large, the limiting 
distributions of A∞ and X∞ are shown below: 
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𝑅𝑅𝐴𝐴∞(𝑡𝑡) = ∑ 1

(𝑞𝑞,𝑞𝑞)∞�
1
𝑞𝑞,1𝑞𝑞�𝑘𝑘−1

𝑒𝑒
−α𝑡𝑡

β

𝑞𝑞𝑘𝑘∞
𝑘𝑘=1                                       {11} 

 

RX∞(t) = ∑ ∫ αβxβ−1∞
0 e−α(x+t)β+α�1−q−k�xβdx

qk(q,q)∞�
1
q,1q�k−1

∞
k=1                        {12} 

 
Based on these equations, we have further developed 
some properties of WARA model, including dependency 
between adjacent intervals, coefficient of variation, high 
order moments of An and Xn, as shown below. The proofs 
are also dropped for brevity. 
 
Theorem 3.1 negative dependency between intervals 
In an ARA model with parameters α, β, ρ where α > 0 , 
β > 1  and 0 < ρ < 1 , 2 successive inter-failure times Xn 
and Xn+1, n ≥ 1, are negatively dependent. 
 
Theorem 3.2 Low variability of interval X  
In an ARA model with parameters α, β, ρ where α > 0 , 
β > 1  and 0 < ρ < 1 , the coefficient of variation of X  is 
smaller than 1. 
 
The m-order moment of An, E(An

m), is given by the following 
equation: 

E(An
m) = α−

m
βΓ �1 + m

β
�∑ q

km
β

(q,q)n−k�
1
q,1q�k−1

n
k=1                         {13} 

 
The 2nd, 3rd and 4th moments of Xn are used respectively to 
calculate the variance, skewness and kurtosis. The 
formula of the mth moment is as follows: 
 
E(Xn+1

m ) = α−
m
βΓ �1 + m

β
�∑ 1

(q,q)n−j�
1
q,1q�j−1

n
j=1    

∗  {1−q
jm
β

1−qj
+ m∑ �m−1k �(−1)k q

jm
β

β+k
m−1
k=1 F}                               {14} 

 
with F =2 F1 �1,1 + m

β
; 2 + k

β
; 1 − qj�  the hypergeometric 

function and n ≥ 1, m ≥ 2, m, n ∈ Z 
 
Like the first moment, the formula of the mth moment can 
also be generalized to the stationary regime: when n is 
large, the expected value of X and its moments will 
converge. 
 
We have also obtained the expression of E(XnXn+k) which 
can be used for covariance calculation.  It is not presented 
here for brevity reasons, but we will show in section 6 how 
it can be applicated to a real data.  
 
4. WARA approximation of SRP: theoretical 

goodness of fit evaluation 
 

In this section, we show first how to deduce the WARA 
parameters (α, β and ρ) form an observed data; then we 
evaluate the approximation quality by comparing the 
estimated ARA moments, correlations and coefficient of 
variation of inter failure time X to the real values.  
 

4.1. WARA parameter estimation 
 
The most classic method for parameter estimation is the 
maximum likelihood estimation. (Nguyen et al., 2016) used 
ML estimation by maximizing the WARA’s likelihood 
function: 
 
L(α, β, ρ; t1, t2 … tn) =
∏ λ(ai−1 + ti − ti−1) e−∑ [Λ(ai−1+ti−ti−1)−Λ(ai−1)]n+1

i=1n
i=1                                        

{15} 
 
Where t1, t2…tn represent the n failure times and ai the 
virtual age. Three parameters (α,β, ρ) are then estimated. 
Even though explicit expression of the estimators is not 
available, they are can be easily obtained by general op- 

itemization methods, for instances the Nelder–Mead 
downhill simplex, interior point method etc. 
 

4.2. Approximation quality evaluation  
 
We need to answer the question how much our 
approximating process is like the approximated SRP. 
However, there are no classic criterion for comparing 2 
stochastic processes and investigating simply the interval 
distributions is certainly not enough. We will compare a 
serial of statistics including moments, correlations and 
coefficients of variations. But first we need to define the 
SRP configurations to be studied. 
 

4.2.1.  SRP configurations 
 
Here we investigate only the superposition of identical 
renewal processes, which is entirely determined by 3 
parameters: ns, number of RP superimposed; a and b, 
scale and shape parameter of Weibull distribution. In our 
simulations, a is fixed to 1, b takes the following values: 
[1.5, 2, 2.5, 3, 3.5, 5, 10] as in industrial reliability analysis, a 
Weibull distribution of lifetime with shape parameter b ≥ 10 
are rarely encountered (Jiang et al., 2011). And ns takes 
the values in [2,3,4,5,10,20] . The interest of using ARA 
approximation lies mainly in the situations when ns are not 
too big, as it has been proven in (Cox et al.,1954) that 
when ns becomes large, the interval between successive 
failure tends to be distributed exponentially. 
 

4.2.2. asymptotic interval distribution 
 
The asymptotic inter-failure time distribution is an intuitive 
measure of the similarity between a point process and its 
approximation. The calculations (using {1} and {11}) show 
that ARA model has a density that is close to the SRP 
density when b is small (figure 2). It should also be noticed 
that the distance between the density functions increases 
as b increases.  
 

4.2.3. 1st-4th moments 
 
We consider the relative error Er between the moments of 
ARA and that of SRP in their stationary regimes. ARA 
moments are calculated by {14} whereas SRP moments 
by {1}. Here are some basic observations: 
(1) Er of the first moment is small. For all configurations 
considered, the maximal absolute value of relative error is 
0.000682; 
(2) For 2nd, 3rd and 4th moments, Er are negative, meaning 
that the moments of ARA are smaller than that of SRP; 
(3) For all combinations of ns and b, |Er(m4)| ≥ |Er(m3)| ≥
|Er(m2)| ≥ |Er(m1)| (figure 3) ; 
(4) For 2nd, 3rd and 4th moments, |Er| increases as b 
increases. 
 

4.2.4. Coefficient of variation 
 

 Having calculated the first and second moment we can 
compare the coefficient of variation c between SRP and its 
ARA approximation. c is defined as σ/ μ, usually used to 
characterise the variability of a random variable. c > 1 
represent a high-variability case and c < 1 low variability, 
see (Whitt, 1982). Among the common distributions, the 
exponential distribution has a c that equals 1 and the 
Weibull distribution has a c smaller than 1. Our simulations 
show that the c of an SRP among the configurations 
considered above, is smaller than 1, so do that of their 
ARA approximations.  
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4.2.5. Correlation between 2 successive inter-
failure time 

 
One of the most attractive characteristic of ARA 
approximation, when compared to RP approximations, is 
that it conserves partially the dependencies between inter-
failure times. It is known that this dependency is extremely 
complicated in SRP and some of the special cases have 
been studied in (Lawrence, 1973). According to our 
simulations, 2 successive inter-failure times of Weibull 
SRP are negatively correlated. As proved in the section 3, 
any 2 inter-failure times in ARA model has also a negative 
correlation. 
 

4.2.6. Conclusion 
 
Both ARA and pooled Weibull RP have negative interval 
dependencies and a coefficient of variation smaller than 1. 
In terms of approximation errors, using WARA model to 
approximate the SRP can lead to small errors in moments 
or correlation. For small values of b, these errors are 
usually acceptable. As b grows larger, however, the errors 
increase.  
 

5.  Conditional distribution of intervals 
 
Imagine that we want to use a RP approximation to 
describe an observed SRP data (with known parameters). 
Under renewal assumption, the distribution of Xn given Xn-1 
is just the asymptotic interval distribution described by {1}: 
information contained in Xn-1 is unused. Note that the 
dependency between SRP intervals makes sure that the 
conditional distribution is not the same as {1}. 
 
Under ARA assumption, the information contained in Xn-1 
can be used to get a more accurate estimation of the 
distribution of Xn. In fact, in ARA model, the distribution of 
Xn depends directly on the virtual age An-1, whose density 
is then determined by Xn-1 and An-2. This is demonstrated by 
the following simulation: an SRP data of length 1000000 is 
generated (by pooling Weibull point processes) and the 
triplet (α β ρ) is estimated thanks to {15}. The original data 
is noted {Xsrp}, whose first and third quantile are noted 
respectively q1 and q3. Using (α β ρ), we calculate the 
survival function of Xn conditioned on Xn-1. Consider the 
following 4 distributions: 
(1) Rq1

srp: the empirical distribution of X in {Xsrp} whose 
previous value is smaller than q1; 
(2) Rq3

srp: the empirical distribution of X in {Xsrp} whose 
previous value is bigger than q3; 
(3) Rq1

ara: the theoretical distribution of X in ARA, knowing 
its previous value is smaller than q1; 
(4) Rq3

ara: the theoretical distribution of X in ARA, knowing 
its previous value is bigger than q3. 
 
If the ARA model can indeed give a more accurate 
estimation of the conditional distribution, the difference 
between Rq1

srp and Rq1
ara (as well as  Rq3

srp and Rq3
ara) should be 

small, or at least less than that between {1} and Rq1
srp. 

 
It should be noticed that the theoretical calculation of 
Rq1
srp and of Rq1

ara are under the following assumptions: 
(a) An-2 is asymptotically distributed as {11} 
(b) Xn-1 is asymptotically distributed as {12} 
(c) Xn-1 ≤ q1 or Xn-1 ≥ q3 
We can then calculate the conditional density of the virtual 
age An-1, before using {4} to deduce the distribution of Xn. 
 

5.1.  Rq1
srp and Rq1

ara  
 
The condition that the Xn-1 is smaller than q1 signify that 2 
maintenances are performed in a short time. Thus, the 
system can be considered as ‘young’ if the number of RP 
superposed is small. Figure 4 shows an example of how 
ARA approximation provides a more accurate conditional 
density estimation compared to RP model, with ns=2, a=1, 

b=1.5. Note that survival funcitons of both ARA and RP are 
under that of SRP. 
 

5.2.  Rq3
srp and Rq3

ara 
 

 
Figure 2. An example of density comparison where 2 

identical RP with shape parameter b=1.5 are superposed. 

 
Figure 3. The relative errors of 1st – 4th moment augment 

with shape parameter b. 

 
Figure 4. The survival functions conditioned on q1. 

 
Figure 5. The survival functions conditioned on q3. 

 
The condition that the previous inter failure time is larger 
than q3 implies a long functional time since last repair and 
the system is considered as ‘old’ if ns is large. Figure 5 
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shows an example of how ARA approximation provides a 
more accurate conditional density estimation compared to 
RP model, with ns=2, a=1, b=1.5. Note that survival 
funcitons of both ARA and RP are above that of SRP. 
 
As b becomes larger, the improvement of the accuracy of 
conditional density estimation brought by ARA is more 
significant; but the distance between ARA and empirical 
densities increases too.  
 

6. Application of ARA model on air 
conditioning sysyem of Boeing airplanes 

  
In this section, we show how to use the WARA method to 
model and explain the failure data of the air conditioning 
systems of Boeing airplanes.  
 

6.1. Description of data and related work 
 
The data first appeared in (Proschan, 1963), where the 
author tried to explain the observed DFR (decreasing 
failure rate) of the life distribution of a system. He showed 
that the mixture of independent exponential failure times 
with different failure rate could lead to a pooled failure data 
with DFR.  
 
The data arose in the following way. Records were kept for 
the time of successive failures of the air conditioning 
system of each member of a fleet of Boeing 720 jet 
airplanes.  13 planes are recorded in total. After roughly 
2000 hours of service the planes received major overhaul. 
In (Proschan 1963), the failure interval containing major 
overhaul is omitted from the listing since the length of that 
failure interval may have been affected. 
 

6.2. Summary of ongoing analysis 
 
In this article, we focus on a subset of the original data: 
instead of using all 13 airplanes’ failure times, we study the 
system formed by 3 planes: plane 7909,7911 and 8045. 
Their failure times are grouped in the following table (only 
failure times before major overhall are considered). 
 
Plane 
number 

Successive failure times 

7909 90,10,60,186,61,49,14,24,56,20,79,84,44,59,29, 
118,25,156,310,76,26,44,23,62 

7911 55,320,56,104,220,239,47,246,176,182,33 
8045 102,209,14,57,54,32,67,59,134,152,27,14,230, 

66,61,34 
Table 1. The failure times of 3 Boeing planes 

The reason why we choose these particuler aircrafts are 
as follows:  First, the gain of using ARA model lies mainly 
in situations where a small number of point process are 
pooled. Secondly, when a Weibull model is fitted to these 
data, the shape parameters is relatively significant 
compared to others.  
 
In the following, we prove first the necessary conditions of 
using ARA model; then the ARA parameters are deduced 
from the pooled data before finally showing the variation of 
virtual age and failure rate under ARA model.  
 

6.3.  Necessary conditions of using ARA model 
 
2 conditions are indispensable if we want to fit a WARA 
model to a SRP data: first, we need to verify if the Weibull 
assumption holds for a single failure time data, and 
specifically, the shape parameter needs to be larger than 
1; second, the pooled data should have an increasing 
failure rate (IFR). 
 

6.3.1.  Weibull assumption 
Anderson-Darling test is performed respectively for the 3 
failure time data, with null hypothesis that the observed 

successive failure times come from a Weibull distribution. 
Their p-values and estimated parameters are grouped in 
table 2. 
 
Plane 
number 

p-value Weibull scale 
parameter 

Weibull shape 
parameter 

7909 0.1935 76.8222 1.2418 
7911 0.1671 170.7914 1.6485 
8045 0.4156 89.8924 1.3461 

Table 2. The results of AD goodness of fit test 

Setting the significance level α = 0.05 , it seems safe to 
accept the hypothesis that these failure data come from 
the Weibull distribution, as all p-values are larger than α.  
 

6.3.2. Increasing failure rate 
In WARA model, the failure rate defined by {3} is an 
increasing function. If the pooled data is observed to be 
DFR, using ARA is not a good choice.  
 
In (Proschan 1963), the author proved that the inter failure 
times of the pooled data (13 planes) is DFR. We use the 
same method to prove that for the subset of plane 7909, 
7911 and 8045, the inter failure times of pooled data is 
IFR. 
 
Figure 6 shows the empirical survival function and the 
fitted exponential survival function. One can easily notice 
the fact that the empirical survival function lies consistently 
above the exponential for 0 ≤ t ≤ 23.5 and then lies 
consistently below the exponential for t ≥23.5. The fact that 
the survival curve seems to cross the exponential once 
only, and from above, suggests strongly the possibility that 
the failure distribution for the pooled failure intervals has 
an increasing failure rate, as supported by the inverse of 
Theorem 1 of (Proschan 1963):  
 
Theorem 1 inverse: Let F be a distribution with density f, 
satisfying (a) F(t)  =  0 for t <  0, (b) the failure rate r(t) 
= f(t)/F�(t) is increasing for t ≥  0, (c) F�ξp� = p; i.e., ξp is 
the pth percentile. Then 
 

F�(t) �
≥ e−αt    ∀    t ≤ ξp
≤ e−αt      ∀    t ≥ ξp

 

 
Where 𝛼𝛼 = −𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑝𝑝)/𝜉𝜉𝑝𝑝. The proof is omitted here. 
 

6.4. ARA model fit 
 
Using ML estimation, we deduce the ARA parameters from 
the pooled data before investigating weather the model fits 
well the observed inter-failure times or not. 
 
 α β ρ 
ARA parameters 0.0141 1.1685 0.7358 

Table 3. The parameters of fitted ARA model 

The value of ρ  seems to suggest a rather acceptable 
maintenance efficiency, while a  β close to 1 suggests a 
low degrading (aging) rate.  
 
We then compare some statistics calculated by ARA 
model to the empirical ones as in section 4. Table 4 shows 
that the errors caused by ARA are acceptable. The 
correlation used is Pearman’s rho, whose value is 
calculated theoretically by a formula that is not exhibited in 
this article. Compared to RP model which supposes that 
the pooled inter failure times are independent, and which 
uses {1} and the estimated Weibull parameters in table 2, 
the ARA approximation is evidently more accurate. This is 
mainly because the observed data are not enough to 
support firmly the Weibull assumption, nor to deduce an 
accurate estimation of the Weibull parameters.   
 
 mean Moment 

order 2 
Correlation between 
successive intervals 
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Empirical 
(observed) 

33.4510 2184.8 -0.0687 

ARA 
(calculated) 

33.4167 2033.6 -0.0387 

RP 30.6491 1654.5 0 
Table 4. ARA model captures more accurately the 

moments and correlations. 

6.5. Virtual age and failure rate under ARA 
assumption 

 
One of the central concept of ARA model is the virtual age. 
Once a repair is carried out, ARA model assume that the 
system’s age is reduced; meanwhile, the change of age 
leads to the change of failure intensity (failure rate). Here 
we show how the virtual age and failure rate change under 
ARA model. 
 
Figure 7 shows how the virtual age of system changes 
with time. One may notice that the when the VA grows, the 
slope is not constant. This is because the VA is a linear 
combination of all past inter failure times. The significant 
growth of VA usually appears when the system is not 
maintained for a long time. For example, the 5th repair 
takes place at t=160 followed by a virtual age va=15.88; 
while the 6th repair is carried out at t=311 followed by a 
virtual age va=44.0932. 
 
Having calculated the virtual age, we can easily draw the 
variation of failure intensity using {3} and {6} (figure 8). 
Note that the failure rate is reduced to 0 right after a 
maintenance and then grows rapidly: the intensity can 
reach 0.02 in just 3 hours.    
 
Conclusion 
 
We study the statistical properties of a WARA model, 
which is a combination of the ARA virtual age model and 
the Weibull RP assumptions. We then evaluate the 
adequacy of using it to approximate or simplify the 
superposition of Weibull renewal processes, by comparing 
their moments, coefficient of variation and correlation 
between intervals.  
The WARA model performs well in estimating the interval’s 
conditional distribution, due to the fact that it preserves 
partially the negative dependency between intervals of an 
SRP. It can therefore be used to evaluate a system’s 
health state (virtual age) and to forecast the RUL based on 
the maintenance history. Compared to traditional failure 
data analysis, the estimation of WARA model can be 
easily done and it leads to more accurate estimation. 
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