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Abstract:
In the framework of functional parameters estimation (such as e.g. den-

sity estimation), we consider a wide class characterized by the fact that
its elements can be written as limits of sums of the expected values of
random variables. We propose an “hybrid” projection estimator of such
a general functional parameter when we observe n realizations of a dis-
crete time stochastic process (Xt). The estimator is said “hybrid” because
the dimension of the projection subspace is chosen differently according
to the sample size, very large or not. From the asymptotic point of view,
this estimator locally reaches a superoptimal rate for the mean integrated
square error (MISE) on a dense subset of the space to which the considered
functional parameter is supposed to belong, and we state under which hy-
potheses there is a near-optimal rate of convergence elsewhere in L2. Note
that some hypothesis have been relaxed with respect to previous literature.
The finite sample performance is clearly improved with respect to other
estimators of the same kind; indeed performance is evaluated through a
simulation study, where the parameter to estimate is the spectral density:
the proposed estimator is shown to reduce often drastically the MISE in
comparison with that of the classical projection estimator and the kernel
estimator. Finally, from the practioner point of view this new estimator can
be completely data-driven with only a smoothing parameter to choose.

1. Introduction

Many papers and books in statistical literature treat the estimation of functional
parameters considering one at a time for example the density, the regression
function or the spectral density, whereas a more general approach is possible.
We adopt here the projection estimation introduced by Cencov (1962), that
consists in projecting a potentially infinite dimensional functional parameter
ϕ onto a subspace with finite dimension kn (that increases with the size n of
the observed sample) and then estimating its projection. By assumption the
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functional parameter admits a Fourier development through a given projection
basis, so that a natural way for its estimation consists in truncating the series
and estimating a finite number of Fourier coefficients. After Cencov’s paper,
several results enrich the theory about the projection estimation. Bleuez and
Bosq (1976) give necessary and sufficient conditions for the density projection
estimator to be consistent. Delecroix and Protopopescu (2001) define limits
for the Mean Integrated Square Error (MISE) for regression; these limits are
particularized in the cases of the trigonometric basis, Legendre basis and Haar
basis, so that rates of convergence of the MISE are given. Devroye and Gyorfi
(1985) and Devroye (1987) evaluate density estimators by a L1 norm criterion
and Efron and Tibshirani (1996) try to solve problems linked to the fact that
the density projection estimator is not necessarily positive.

The projection estimator is based on the choices of a projection basis and of
a truncation index. Of course, both of them play a central role in the behaviour
of the estimator. As a matter of fact, several authors cope with these issues.
To choose a basis, Efromovich (1999) in the case of the density and Eubank
and Speckman (1990) in the case of the regression both use results of Krylov
(1955) concerning orthonormal systems. Other basis examples can be found in
Sansone (1959), Kolmogorov and Fomin (1957) or Antoniadis (2007). Instead,
the truncation index (or cutoff), that is the projection subspace dimension, is
usually chosen to minimize an estimation of the MISE (see Hart 1985; Diggle
and Hall 1986; or Tarter and Lock 1993). Nevertheless, the quantity to minimize
is the sum of an infinite series and this minimization problem can be solved in an
iterative way, considering the contribution of each term added to estimate the
MISE (Kronmal and Tarter 1968). This procedure has been generalised by Bosq
and Lecoutre (1987) and by Aubin and Leoni-Aubin (2008) in a semiparametric
framework.

In the last decades, new estimators are presented such as those based on ker-
nels or wavelets (see for example Prakasa-Rao 1983; Silverman 1986; Nadaraya
1989; Thompson and Tapia 1990; Hart 1997; Efromovich 1999; or more recently
Bosq and Blanke 2007). In the wavelets’ framework, Donoho et al. (1996) and
Lepski, Mammen and Spokoiny (1997) introduce two ways of choosing which
coefficients are kept in the estimation procedure, using respectively “hard” and
“soft” thresholding. The soft thresholding consists in keeping all the coefficients
associated to the first components of the basis until a certain kn (chosen by the
statistician). The hard threshold method only keeps the Fourier terms associ-
ated with estimated coefficients larger than a certain threshold, and discards
terms with small estimated coefficients despite their order in the Fourier devel-
opment. According to Donoho et al. (1996), “one expects that soft thresholding
will better suppress noise artifacts, while hard thresholding will better preserve
the visual appearance of peaks and jumps”. Picard and Tribouley (2000) demon-
strate that soft thresholding estimators give better confidence intervals than
those constructed through hard thresholding. In the orthogonal series’ frame-
work, Efromovich (1996, 1999, 2010) introduces a “universal” estimator which
combines hard and soft thresholding procedures. Instead, Bosq (2002,2005) in-
troduces an “adaptive” version of the projection estimator in the case of density.
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The adaptivity lies in the choice of the dimension of the projection space. The
chosen dimension k̂n corresponds in most cases to the greatest j ≤ kn such that
the absolute value of the estimated Fourier coefficient is greater than a threshold

γn := c

√
log(n)

n
(1)

where c and kn are fixed by the statistician and n denotes the sample size. A
strong advantage of this method is the fact that k̂n is a consistent estimator of
the real order of development of φ with respect to the projection basis. If this
real order is finite then the “adaptive” estimator is superoptimal with respect to
the MISE. Some assumptions (as the independence of data) have been relaxed
in Aubin (2006) in the case of the density, and in Souare (2008) in the case of
the spectral density.

Subsequently, Bosq and Blanke (2007) consider a wide class of functional
parameters introduced by Carbon (1984), characterized by the fact that the
elements of this class can be written as limits of sums of the expected values of
random variables. The Carbon’s class contains density, numerator of regression,
spectral density, among others. Theoretical properties of the (“adaptive” and
not) projection estimators for this class are presented in Bosq and Blanke (2007,
Section 3.7). However, their approach is not totally satisfactory: the threshold
for the estimated Fourier coefficients is completely specified as a function of
n and it also depends on a multiplicative constant c (see (1)) to choose in a
suitable way in order to fulfill assumptions related to asymptotic properties.
Having finite samples, so far the user had to choose this “suitable constant” in
the threshold that appears in the definition of the data driven truncation index
k̂n (that estimates the projection subspace dimension). Aubin (2005) shows the

tremendous influence of this constant on the behaviour of k̂n and consequently
on the projection estimator itself through simulations.

The main drawback of all the thresholding methods is that c has to be well
chosen - with respect to the data - to allow a sharp estimation. For example,
Efromovich (1999, 2010) recommend to use c =

√
2 as a standard choice, while

Bosq and Blanke (2007) consider a sequence only depending on n growing slowly
to infinity. Although these choices make the procedure more easy-to-use, they
clearly do not take into account a large part of available information (e.g. by
means of estimated coefficients) and cannot provide a sharp-enough choice of c
to give completely convincing results for a finite sample.

In this work, we propose an “hybrid” projection estimator (hPE) both esti-
mating very accurately ϕ even for small sample sizes and satisfying the asymp-
totic superoptimality with respect to the MISE when ϕ admits a finite develop-
ment. These properties hold for any value of c, so relaxing stronger constraints in
previous literature. The hPE is called “hybrid” because it is featured by the fact
that the threshold is defined as the minimum between two quantities: (i) a data-
driven component, that does not require any choice of tuning parameters but the
maximum dimension of the projection subspace kn; (ii) a quantity dependent on
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n up to some constants (this latter quantity coincides with the threshold defined
in Bosq and Blanke, 2007, in the case of geometrically α −mixing processes).
We will consider dependent data generated by α − mixing processes in two
cases: the associated α−mixing coefficients are geometrically or arithmetically
decreasing.

The rest of the paper is as follows. In Section 2 we recall the definition of the
Carbon’s class of functional parameters and the hybrid projection estimator, and
we set the assumptions for the theoretical framework. In Section 3, we analyse
the large sample behaviour of the proposed estimator hPE and its associated
truncation index k̂n that is, under mild hypotheses, an estimator of the right
order of the development of ϕ with respect to the projection basis. Also, we
show that hPE reaches a superoptimal rate for MISE on a dense subset G0 of the
space H to which ϕ belongs and we state under which conditions this estimator
reaches a near-optimal rate of convergence when the unknown parameter ϕ does
not belong to G0. Note that these results do not depend on c. In Section 4 we
illustrate the estimator finite sample behaviour in the case of the spectral density
estimation. Simulation results allow to evaluate the finite sample performance
of k̂n and hPE (using the MISE criterion), and to compare hPE to the classical
projection estimator and to the kernel estimator. Concluding remarks are given
in Section 5, whereas all the proofs are postponed in the Appendix.

2. Hybrid Projection Estimator (hPE)

Let consider n observations {x1, . . . , xn} from a discrete time stochastic process
{Xt}t∈ZZ where the random variables Xt are defined on (Ω,A, IP) and take values
in a measurable space (E,B). We are interested in the estimation of a general
parameter ϕ, that depends on the distribution IPX of the process {Xt}t∈ZZ, that
is ϕ = g(IPX), and could have an infinite dimension, belonging to a separable
real Hilbert space H, equipped with scalar product 〈·, ·〉 and norm ‖·‖.

The class of functional parameters introduced by Carbon (1984) can be for-
malized in the following definition (as in Bosq and Blanke, 2007).
We will say that ϕ is (e,h)–adapted if there exists a fixed orthonormal sys-
tem e = (ej , j ≥ 0) of H and a family h = (hj , j ≥ 0) of applications hj :
Eν(j)+1 −→ R, j ≥ 0 such that

ϕ =

∞∑
j=0

ϕjej (2)

with
ϕj = 〈ϕ, ej〉 = E

[
hj
(
X0, . . . , Xν(j)

)]
, j ≥ 0, ϕ ∈ H,

where E
[
h2
(
X0, . . . , Xν(j)

)]
<∞ and ν(j) ≤ j, j ≥ 0.

Density, numerator of regression, spectral density, and other functional parame-
ters are (e, h)–adapted, under suitable conditions, as shown in Bosq and Blanke
(2007). For them, the functions hj are specified by writing down the Fourier
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development (2) whereas the orthonormal system e can be chosen by the statis-
tician, even if sometimes a natural choice is given, as in the case of the spectral
density (where e is the cosine basis).

The estimation procedure proposed here holds for the class

C := {ϕ ∈ H : ϕ is (e, h)–adapted} .

Some technical hypotheses hold in the following.
First, the functions hj need to satisfy the following condition for every j:

∃M <∞ such that ‖hj‖∞ < M ;

note that this hypothesis can be satisfied by convenient conditions either on
the random variables Xt or on the functions ej of the projection basis (e.g. the
trigonometric basis verifies this condition).
We also suppose that the random variables

(Yj)i := hj(Xi, . . . , Xi+ν(j))− IE
(
hj(Xi, . . . , Xi+ν(j))

)
are α–mixing (w.r.t. i), according to the Rosenblatt (1956) definition, and in
the following we deal with two cases:

(A) arithmetically mixing: ∃δ > 0 such that ∀n ∈ IN, α(n) ≤ n−δ,
(G) geometrically mixing: ∃a > 0, b > 0 such that ∀n ∈ IN, α(n) ≤ a exp(−bn),

where α(n) are the mixing coefficients.

The hybrid projection estimator (hPE) for ϕ ∈ C is defined by

ϕ̂n :=

k̂n∑
j=0

ϕ̂j,nej (3)

where ϕ̂j,n = 1
n−ν(j)

∑n−ν(j)
i=1 hj(Xi, . . . , Xi+ν(j)) is an empirical unbiased esti-

mator of ϕj and the truncation index k̂n is defined by

k̂n =

{
max {0 ≤ j ≤ kn : |ϕ̂j,n| > γn} if {0 ≤ j ≤ kn : |ϕ̂j,n| > γn} 6= ∅
kn if {0 ≤ j ≤ kn : |ϕ̂j,n| > γn} = ∅

(4)

where the statistician chooses the sequence (kn)n∈IN such that kn < n, kn →∞,
kn/n→ 0, while the threshold is defined as follows:

γn = min

√∑kn
j=0 ϕ̂j,n

2

kn + 1
, c

√
log(n)

nβ

 with 0 < β < 1 for the case (A),

γn = min

√∑kn
j=0 ϕ̂j,n

2

kn + 1
, c

√
log2Γ(n)

n

 with Γ > 1 for the case (G), (5)
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with c ≥ 0.

If {0 ≤ j ≤ kn : |ϕ̂j,n| > γn} = ∅, it means that all the estimates of the
Fourier coefficients have absolute value smaller than γn. Hence, according to
the definition of k̂n, we come back to the “classical” (à la Cencov) projection

estimator. This happens also when c = 0 since γn = c = 0 and hence k̂n = kn.
The definition of γn is fundamental because a good threshold allows for a

good behaviour of k̂n and of the resulting estimator ϕ̂n (see the following Sec-
tion). The thresholding is operated through γn and the research for a maximum
in (4) stops at j∗ when it does not exist an integer j0 > j∗ such that the ab-
solute value of ϕ̂j0,n is larger than the threshold γn. Thus we keep all the ϕ̂j,n
with j ≤ k̂n (so that we also keep some coefficients smaller than the threshold),
while “hard” thresholding keeps only the estimated Fourier coefficients larger -
in absolute value - than the threshold.
The threshold introduced here is “hybrid” in the sense that it can assume a
different nature according to the sample size n, the dimension kn and other

constants. If γn = c

√
log2Γ(n)

n in the case (G), we go back to the projection

estimator in Bosq and Blanke (2007). We have an analogous estimator in the

case (A) if γn = c
√

log(n)
nβ

. Nevertheless, in such cases the threshold γn depends

not only on c but also on Γ in the case (G) and β in the case (A) that are
unknown (see Section 4 for a brief discussion).

However, if γn =

√∑kn
j=0 ϕ̂j,n

2

kn+1 we do not need to know any constant. In this

case, the truncation index k̂n reaches the biggest integer j such that ϕ̂2
j,n is

larger than the average of the first (kn + 1) squared estimated Fourier coeffi-
cients. Thus the research of a maximum in the definition (4) stops on the rank of
the last squared estimated coefficient larger than this average. Consequently the
truncation index is such that the discarded estimated coefficients are expected
to be small, and therefore the hPE estimator should keep the most part of the
available information.

However, for any value of c if n is large enough, we will see in Proposition

3.1. that, under mild conditions, almost surely γn = c

√
log2Γ(n)

n in the case (G)

and γn = c
√

log(n)
nβ

in the case (A), respectively. Thus the hybrid projection

estimator for large sample maintains good properties as in Bosq and Blanke
(2007).
Instead, for finite samples the application of the hybrid projection estimator does
not ask for precising any constant (except kn) and does not need to establish if
data fits in the case (G) or (A), as we will see in Section 4.
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3. Asymptotic behaviour of hPE

The asymptotic behaviour of the considered estimator differs in the case when
ϕ admits a finite development or not, with respect to the basis e, that is when
ϕ ∈ G0 or ϕ ∈ G1 where

G0(0) := {ϕ ∈ H : ϕj = 0, ∀j > 0} ,
∀K ≥ 1,G0(K) := {ϕ ∈ H : ϕK 6= 0 and ϕj = 0, ∀j > K} ,

G0 :=
⋃
K∈IN

G0(K),

G1 := H − G0.

We show here that the hybrid projection estimator defined in (3) reaches for
the MISE a superoptimal rate on G0. Cencov (1962) showed that the rate of
the classical projection estimator is of order kn

n where kn → ∞ with n. The
thresholding projection estimator achieves a rate of order 1

n . Instead, over G1

we have a little loss in the convergence rate, precisely of order log2Γ n (Γ > 1)
for the case (G) and of order n1−β log n(0 < β < 1) for the case (A); for this
reason we say that hPE reaches a “near-optimal” rate in case (G). These results
are demonstrated for n large enough thanks to the fact that almost surely the
hybrid threshold γn in (5) takes values according to the not data-driven case,
as shown in the following proposition.

Proposition 3.1. In the case (A), if ∃j0 : ϕj0 6= 0, kn = o
(

nβ

log(n)

)
and

δ > 1+β
1−β then ∀c > 0 it exists nc such that for n > nc we have√∑kn

j=0 ϕ̂j,n
2

kn + 1
> c

√
log(n)

nβ
almost surely.

In the case (G), if ∃j0 : ϕj0 6= 0, kn = o
(

n
log2Γ(n)

)
, then ∀c > 0 it exists nc

such that for n > nc we have√∑kn
j=0 ϕ̂j,n

2

kn + 1
> c

√
log2Γ(n)

n
almost surely.

3.1. Superoptimality in G0

In order to analyse the asymptotic behaviour of the proposed hPE estimator
when ϕ ∈ G0, first we study k̂n defined in (4): the following property shows that

k̂n behaves like an estimator of K, that is the order of development of ϕ with
respect to the basis.

Proposition 3.2. If it exists K such that ϕ ∈ G0(K) and

• in the case (A) if kn = o
(

nβ

log(n)

)
and if δ > 2+5β/4

1−β ,
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• in the case (G) if kn = o
(

n
log2Γ(n)

)
,

then for n large enough

k̂n = K a.s.

The finite development of ϕ and the previous proposition allow to prove the
following theorem.

Theorem 3.3. If it exists K such that ϕ ∈ G0(K) and

• in the case (A) if kn = o
(

nβ

log(n)

)
and if δ > 3+5β/4

1−β ,

• in the case (G) if kn = o
(

n
log2Γ(n)

)
,

then nIE‖ϕ̂n − ϕ‖2 = O(1)

By recalling that MISE(ϕ̂n) = IE‖ϕ̂n − ϕ‖2, we have nMISE(ϕ̂n) = O(1).
Thus the estimator hPE reaches a rate of convergence for MISE of order 1

n that
is a parametric rate.

3.2. Convergence in G1

If ϕ belongs to G1, the data driven truncation index k̂n tends to infinity with n,
as stated in the following property.

Proposition 3.4. If ϕ ∈ G1 and

• in the case (A) if kn = o
(

nβ

log(n)

)
and if δ > 2+5β/4

1−β ,

• in the case (G) if kn = o
(

n
log2Γ(n)

)
,

then
k̂n →∞ a.s.

In G1, it is also possible to derive the convergence rate of MISE(ϕ̂n) in the
following theorem.

Theorem 3.5. If ϕ ∈ G1 and

• in the case (A) if kn = o
(

nβ

log(n)

)
and if δ > 2+5β/4

1−β , then

IE‖ϕ̂n − ϕ‖2 = O
(
kn log n

nβ

)
;

• in the case (G) if kn = o
(

n
log2Γ(n)

)
, then

IE‖ϕ̂n − ϕ‖2 = O

(
kn log2Γ n

n

)
.
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We recall that in the case (G) Bosq and Blanke (2007) proved the same
result about a quasi-optimal rate with c depending on n and growing slowly to
infinity, whereas we relax this assumption since the previous theorem holds for
all c.

4. Finite sample behaviour of hPE

In order to analyse the finite sample behaviour of the hPE estimator, we look
at the behaviour of the truncation index and we evaluate MISE(ϕ̂n) in a simu-
lation study. Moreover we compare hPE with the classical projection estimator
and the kernel one by examining their MISEs.

We focus on a particular (e, h)-adapted functional parameter, that is the
spectral density of a discrete time zero-mean stationary stochastic process. In
this case, the choice of the cosine system as projection basis is naturally imposed
by writing

f(λ) =
1

2π

∑
t∈ZZ

ctcosλt =
∑
j∈IN

pjcjej(λ) for λ ∈ [−π, π]

where

pj =


1√
2π

if j = 0

1√
π

if j 6= 0

and cj represents the autocovariances cj = E (X0Xj) , j ≥ 0, such that
∑∞
j=0 |cj | <

∞, and the basis is given by e0(λ) = 1√
2π

and ej(λ) = cosλj√
π

.

So the functional parameter is ϕ = f(λ) =
∑
j∈IN pjcjej(λ) with ϕj = pjcj and

the estimator of ϕj is given by

ϕ̂j,n =
1

n− j

n−j∑
i=1

hj(Xi, . . . , Xi+j) =
1

n− j

n−j∑
i=1

pjXiXi+j .

Since we have two kinds of asymptotic behaviour for the MISE, a superop-
timal rate when ϕ admits a finite development and a not optimal rate when it
belongs to G1, we consider two processes to generate observations in order to
reproduce a favourable case for hPE and a not favourable one.
Specifically, if we consider n observations from a MA(q) process, the spectral
density belongs to G0(q) since it admits a finite development of order q. Hence

the estimator k̂n is an estimator for q, the true order of the Moving Average
process, and from the theoretical results in Section 3 we know that it is strongly
consistent. Actually we consider a MA(1) process

Xt = Zt + θZt−1
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where Zt is a white noise with σ2 = V ar(Z0), so that its spectral density is

f(λ) =
σ2

2π

∣∣1 + θ exp−iλ
∣∣2 =

σ2

2π
(1 + 2θ cos(λ) + θ2).

On the other hand, if the spectral density does not admit a finite development
we can consider MA(∞) process, that is an AR(1) process:

Xt = φXt−1 + Zt

where Zt is a white noise with σ2 = V ar(Z0), and its spectral density is

f(λ) =
σ2

2π

∣∣1− φ exp−iλ
∣∣−2

=
σ2

2π
(1− 2φ cos(λ) + φ2)−1.

In our simulation study, we consider θ = 0.05, 0.20, 0.35, 0.50, 0.65, 0.80, 0.95 in
the MA case and the same values of φ in the AR case. Moreover, we consider the
innovations variance σ2 taking the set of values {0.16, 0.36, 0.64, 1, 1.44, 1.96}.
For sample sizes n = 50, 80, 100, 150, we generate 1000 independent sets of sam-
ples. For the sake of brevity, the following Figures show results for n = 50 and
n = 150.

First of all, our simulations are devoted to explore the finite sample behaviour
of k̂n and of MISE(ϕ̂n) both for MA(1) and AR(1) processes. The definition

of k̂n strongly depends on γn (see (4)) and indeed we choose a constant c large

enough to have γn =

√∑kn
j=0 ϕ̂j,n

2

kn+1 . Indeed, to compare the two quantities in the

definition (5) of γn we would need to know first of all if data are drawn from
a geometrically (or arithmetically) α-mixing process, and then the associated
decreasing rate constants δ (or a and b) in order to fix values for Γ > 1 (or
0 < β < 1). Unfortunately, so far the literature about the estimation of mix-
ing coefficients is very limited; to the best of our knowledge, only McDonald et
al. (2015) propose an estimator for the β-mixing coefficients based on a single
stationary sample path but not for the α-mixing case. Hence we cannot take
information from data to fix a value for Γ (or β). As explained before, the choice
of a very large c has the advantage to make γn data driven so that the user does
not need to fix other constants but kn.

In practice, the three estimators we want to compare ask for a choice: a
“smoothing parameter”. With the proposed data driven threshold we need to
choose only kn for hPE, as in the case of the truncation index for the classical
projection estimator (PE); for both of them we take kn as given in (6). Instead
for the kernel estimator, the selection of the smoothing parameter corresponds
to the choice of the bandwidth.

Concerning the choice of the maximum dimension of the projection space,
kn + 1, in order to satisfy the conditions kn < n, kn → ∞, kn/n → 0, and the
assumptions in Proposition 3.1 (for both the cases (A) and (G)) we choose the
following sequence kn:

kn := 2 blog(n)c+ 1 (6)
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Fig 1. Proportion of the occurrences {k̂n = 1} in the MA(1) case, with n = 50 (left) and
n = 150 (right)

where bxc is the integer part of x. As explained in Aubin (2005), a sequence of
(kn) increasing slowly to infinity allows to reduce both the number of estimated
parameters in the model and the computation time.

4.1. MA(1) process

When we have observations generated by a MA(1) process, the spectral density
admits a finite development with K = 1 and hence we are in a very favourable
case for the proposed estimator hPE. Since the truncation index k̂n estimates
the parameter K, we evaluate the proportion (that is the relative frequency) of

the occurrences {k̂n = 1}. This proportion is shown in Figure 1 for the sample
sizes n = 50 and n = 150: it increases clearly with the sample size as well as
with θ (corr in the axis), whereas it seems independent from the innovations
variance σ2. Proportions very close to 1 are observed for n = 150 and θ larger
than 0.5.

To evaluate the finite sample behaviour of hPE we calculate its MISE and plot
in Figure 2 the quantity ln(1000MISE) in order to improve the visualization;
also, the vertical axis scale goes from 0 to 12 to make easier a visual comparison
with the case AR(1). Figure 2 (top) shows that the estimation error of hPE is
small in all the treated cases and it descreases with the sample size, while it
increases with θ and σ2. Indeed, the maximum value of the MISE of hPE in our
simulation study is very small and this is not surprising since a MA(1) process
is a favourable case for hPE.

4.2. AR(1) process

When observations are generated by a AR(1) process the real order of develop-

ment is infinity. To look at the behaviour of k̂n we consider the proportion (that

is the relative frequency) of the occurrences {k̂n > kn/2}. These proportions
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Fig 2. ln(1000MISE) of hPE in the MA(1) case (top) and AR(1) case (down), with n = 50
(left) and n = 150 (right)
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are very small, they usually decrease when the innovations variance σ2 and n
increase. This is expectable since, in the case of a AR(1) process, sequence of
Fourier coefficients is decreasing, and the choice of γn implies that the trunca-
tion index will generally be small in this specific case. The unique exception is
observed if φ takes values close to 1. In this case, the decrease of the Fourier
coefficients sequence is so slow that the truncation index assumes larger values.
We recall that, with the choice of a large c, k̂n will reach the biggest integer j
such that the square of the associated estimated Fourier coefficient ϕ̂2

j,n is larger
than the mean of the first (kn + 1) squared estimated Fourier coefficients.

As shown in Figure 2, the MISE of hPE is clearly higher in the AR(1) case
than in the MA(1) case. A possible explanation is that the spectral density of a
AR(1) does not admit a finite development with respect to the projection basis
(so this is a very unfavorable case for hPE) leading to a less accurate estimation
by hPE. Moreover, as expected, the MISE increases with σ2 and φ (corr in the
axis) and decreases with the sample size.

4.3. Comparison among estimators

In this section, we compare hPE to the classical projection estimator (PE) and to
the kernel estimator by examining their evaluated MISEs. In order to summarize
the results, we plot the MISE Percentage Increase (MPI) when using hPE with
respect to the compared estimator (CE):

MPI := 100 ∗ (MISE(CE)−MISE(hPE))/MISE(hPE)

A value of MPI = 100 ∗ x is equivalent to MISE(CE) = (x + 1) MISE(hPE).
So MPI is positive when hPE has a better performance than the compared
estimator CE.

As for the comparison between hPE and the classical projection estimator,
Figure 3 (top) shows MPI, for the usual sample sizes, in the MA(1) case. For
all the considered values of the innovations variance σ2 and of the parameter θ,
MPI is positive, meaning that hPE has always smaller MISE than the classical
PE.
Two phenomena have to be explained here. Firstly, the MPI increases with
n. This is due to the fact that the truncation index k̂n of hPE reaches very
often, as shown in Figure 1, the right order of the development. Contempora-
neously kn - that also appears in the classical PE - increases with the sample
size. Secondly, for n larger than 80, MPI usually increases with θ: infact, the
first two estimated Fourier coefficients are estimations of quantities respectively
proportional to 1+θ2 and 2θ and the following estimated Fourier coefficients are
estimations of 0. So, when θ is larger, the threshold γn (the quadratic mean of
the estimated Fourier coefficients) is likely to be greater than all the estimated
Fourier coefficients but the two first ones.

Let us consider now the AR(1) case. The behaviour of MPI is illustrated in
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Figure 3 (down). We recall that the MISE of hPE has the form:

E‖ϕ̂n − ϕ‖2 = E

 k̂n∑
j=0

(ϕ̂j,n − ϕj)2

+ E

∑
j>k̂n

ϕ2
j

 .

If k̂n = kn, the difference between the MISEs of the classical PE and of hPE is
zero. If k̂n < kn, such a difference is given by:

MISE(PE)−MISE(hPE) = E

 kn∑
j=k̂n+1

(ϕ̂j,n − ϕj)2

− E

 kn∑
j=k̂n+1

ϕ2
j

 . (7)

Contrary to the previous MA case, MPI decreases with increasing φ (corr in
Figures). Actually, if φ is small the information “lost” by hPE with respect to

classical PE, that is E
(∑kn

j=k̂n+1
ϕ2
j

)
, is not important since ϕj is proportional

to φj , and the MPI is clearly positive. If φ is large, the truncation index of hPE
k̂n remains small and - since the Fourier coefficients ϕj are big even for j larger

than k̂n - the negative term E
(∑kn

j=k̂n+1
ϕ2
j

)
in (7) is larger. This quantity is

hardly compensated by the “gain” of variance E
(∑kn

j=k̂n+1
(ϕ̂j,n − ϕj)2

)
which

does not depend on the value of φ.

To compare hPE to a kernel spectral density estimator, we estimate the den-
sity through the function spectrum in R (see R Development Core Team 2015),
that uses the modified Daniell kernel by default reporting a bandwidth taken
from Bloomfield (2000, p.191). To generate the weights in the linear smoother
(see also Shumway and Stoffer 2008), R allows for a repeated use (by the ar-
gument spans that we set equal to (7,5,8)) of the Daniell kernel so that the
resulting kernel will be approximately normal, see Bloomfield (2000, p.195).
In the comparison between hPE and kernel spectral density estimator, we can
observe the same phenomena than those observed for the comparison between
hPE and classical PE. The main result remains that the hPE, for all the con-
sidered cases, has a smaller MISE than the kernel estimator, as Figure 4 shows.

5. Discussion

We consider the nonparametric functional estimation problem that is related
to the methodology of thresholding projection and we propose a generalization
of the estimation developped in Bosq and Blanke (2007). This estimator has
good asymptotic properties but it depends on unknown decreasing parameters
of the mixing coefficient sequence, and - as already said - there is not exist an
estimator for α−mixing coefficients so far in literature. Moreover, the threshold
embedded in its construction depends on a constant that needs to be chosen by
the user and on the sample size. The estimator hPE, that we propose in this
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Fig 3. MISE percentage increase (MPI) of classical PE versus hPE in the MA(1) case (top)
and AR(1) case (down), with n = 50 (left) and n = 150 (right)
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Fig 4. MISE percentage increase (MPI) of the kernel estimator versus hPE in the MA(1)
case (top) and AR(1) case (down), with n = 50 (left) and n = 150 (right)
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work, addresses these two issues by reducing drastically the dependence from
unknown parameters and by increasing the data-driven feature. Moreover, we
show that hPE holds good asymptotic properties too, similarly to the estimator
in Bosq and Blanke (2007). However, above all, we propose a new data driven
choice for the threshold γn appearing in hPE definition. Our proposal aims
to keep the most part of the available information descarding the estimated
Fourier coefficients expected to be smaller than the quadratic mean of the first
kn estimated ones. So, just like for the other compared estimators, the user only
has to choose a unique sequence of numbers (the - maximum - dimension of
the projection space in the case of the - thresholding - projection estimator, or
the bandwidth in the case of the kernel estimator), and nothing else. When the
function to estimate is the spectral density, the proposed estimator is shown -
by simulations - to reduce often drastically the MISE in comparison with that
of the classical projection estimator and the kernel estimator.

Our estimator takes advantage of the fact that it is composed by the estimated
Fourier coefficients with the highest absolute values. To this goal, we consider
the quadratic mean of the estimated Fouries coefficients as a summary of their
sample distribution. Then we keep in the construction of the estimator all the
estimated Fourier coefficients larger, in absolute value, than this quadratic mean.
Of course, to summarize a distribution we could use another location parameter,
such as the mean, the trimmed mean, the median and so on, that could be used
instead of the quadratic mean (as shown in Blanke et al., 2012). This could lead
to many associated estimators analogous to the one we present in this work.

Finally, this new data driven choice for the threshold γn could allow to con-
struct a goodness-of-fit test following Munk et al. (2011) that extends the test
proposed for dependent α-mixing data with k fixed by Ignaccolo (2004).

Appendix: proofs

5.1. Proof of Proposition 3.1

A result from Bosq (1996, Theorem 1.3, p.25) will be used in this proof and the
following ones.

Lemma 5.1. (Bosq’s inequality)Let Yt an α−mixing centred real-valued
process such that sup1≤t≤n ‖Yt‖∞ ≤ b. Then ∀q ∈ IN ∩

[
1; n2

]
, ∀ε > 0,

IP

(∣∣∣∣∣ 1n
n∑
i=1

Yi

∣∣∣∣∣ > ε

)
≤ 4 exp

(
−ε2q

8b2

)
+ 22q

√
1 +

4‖Yt‖∞
ε

α

(⌊
n

2q

⌋)
(8)

where bxc is the integer part of x.

Now, for the case (A), let us consider c > 0 and show that for n large enough
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j=0 ϕ̂j,n

2

kn+1 > c
√

log(n)
nβ

almost surely. We have

P

√∑kn
j=0 ϕ̂j,n

2

kn + 1
> c

√
log(n)

nβ

 ≥ P

(
|ϕ̂j0,n| > c

√
(kn + 1) log(n)/nβ

)

≥ 1− P
(
|ϕ̂j0,n| ≤ c

√
(kn + 1) log(n)/nβ

)
But kn = o

(
nβ

log(n)

)
then (kn + 1) log(n)/nβ → 0 and for n large enough,

c
√

(kn+1) log(n)
nβ

<
|ϕj0 |

2 6= 0. It follows that P

(√∑kn
j=0 ϕ̂j,n

2

kn+1 > c
√

log(n)
nβ

)
≥

1− P
(
|ϕ̂j0,n − ϕj0 | ≥

|ϕj0 |
2

)
.

From Bosq’s inequality, for q = 1, 2, . . . , bn/2c, P

(√∑kn
j=0 ϕ̂j,n

2

kn+1 > c
√

log(n)
nβ

)
≥

1 − (Aq + Bq) with Aq = 4 exp

(
−ϕ2

j0
q

64M2

)
and Bq = 22q

√
1 + 16M

|ϕj0 |
α
(⌊

n−kn
2q

⌋)
.

With q =
⌊
nβ
⌋
, it exists λ > 0, λ′ > 0 such that Aq ∼

+∞
4 exp

(
−λnβ

)
and

Bq ∼
+∞

λ′n−δ(1−β)+β . δ > 1+β
1−β entails that

√∑kn
j=0 ϕ̂j,n

2

kn+1 > c
√

log(n)
nβ

is true

almost surely for n large enough with the lemma of Borel-Cantelli.
In the case (G) we have

P

√∑kn
j=0 ϕ̂j,n

2

kn + 1
> c

√
log2Γ(n)

n

 ≥ 1− P
(
|ϕ̂j0,n| ≤ c

√
(kn + 1) log2Γ(n)/n

)

For n large enough, P

(√∑kn
j=0 ϕ̂j,n

2

kn+1 > c

√
log2Γ(n)

n

)
≥ 1−P

(
|ϕ̂j0,n − ϕj0 | ≥

|ϕj0 |
2

)
.

Analogously to the case (A), from Bosq’s inequality, for q = 1, 2, . . . , bn/2c, we
have

P

√∑kn
j=0 ϕ̂j,n

2

kn + 1
> c

√
log2Γ(n)

n

 ≥ 1− (A′q +B′q)

with A′q = 4 exp

(
−ϕ2

j0
q

64M2

)
and B′q = 22q

√
1 + 16M

|ϕj0 |
α
(⌊

n−kn
2q

⌋)
. With q =⌊

n
log2Γ−1(n)

⌋
, for n large enough, ∀λ > 0, λ′ > 0, ε ∈]0; 1[, A′q ≤ 4 exp (−λn1−ε)

and B′q ≤ λ′ n
1−log2(Γ−1)(n)b/(2+ε)

log2Γ−1(n)
. This entails that

√∑kn
j=0 ϕ̂j,n

2

kn+1 > c

√
log2Γ(n)

n

almost surely for n large enough with the lemma of Borel-Cantelli.
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5.2. Proof of Proposition 3.2

Let introduce the event An as

An =

kn⋃
j=0

{|ϕ̂j,n| ≥ γn} .

An interesting property of An is described in the following Lemma (for its proof
see Bosq and Blanke 2007, p. 82).

Lemma 5.2. Let ϕ ∈ H such that ∃j0 ∈ N : ϕj0 6= 0.
Then, for n large enough,

An holds a.s.

In the following, we consider the event Cn =

{
γn = c

√
log(n)
nβ

}
in the case

(A) and Cn =

{
γn = c

√
log2Γ(n)

n

}
in the case (G), as well as the event Bn =

{An
⋂
Cn}. Since, for n large enough, Proposition 3.1 assures that Cn holds

almost surely, we have that Bn holds almost surely too.

Now, we start to analyze the behaviour of k̂n. If ∃ K such that ϕ ∈ G0(K),

IP(k̂n 6= K) = IP(k̂n < K) + IP(k̂n > K)

= IP
({
k̂n < K

}
∩Bn

)
+ IP

({
k̂n < K

}
∩Bcn

)
+IP

({
k̂n > K

}
∩Bn

)
+ IP

({
k̂n > K

}
∩Bcn

)
.

IP(Bcn) is larger than the second term and the fourth one since
{
k̂n < K

}
∩Bcn

and{
k̂n > K

}
∩Bcn are included in Bcn. Then

IP(k̂n 6= K) = IP
({
k̂n < K

}
∩Bn

)
+ IP

({
k̂n > K

}
∩Bn

)
+ 2IP (Bcn)

with 2IP(Bcn) which is the general term of a convergent series since Lemma 5.2
was obtained using Borel-Cantelli’s lemma. For n large enough, kn > K so

{
k̂n > K

}
∩Bn ⇒

kn⋃
j=K+1

{|ϕ̂j,n| > γn} .

Since ϕ is an element of G0(K), it follows that ∀j > K,ϕj = 0. So

kn⋃
j=K+1

{|ϕ̂j,n| > γn} =

kn⋃
j=K+1

{|ϕ̂j,n − ϕj | > γn}
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=

kn⋃
j=K+1


∣∣∣∣∣∣ 1

n− ν(j)

n−ν(j)∑
i=1

hj(Xi, . . . , Xi+ν(j))− IE
(
hj(Xi, . . . , Xi+ν(j))

)∣∣∣∣∣∣ > γn

 .

Now, introducing Yi,j = hj(Xi, . . . , Xi+ν(j)) − IE
(
hj(Xi, . . . , Xi+ν(j))

)
and re-

calling that ν(j) ≤ j ≤ kn by assumption, Bosq’s inequality with q ∈ IN
⋂[

1; n−ν(j)
2

]
entails that

IP
({
k̂n > K

}
∩Bn

)
= IP

 kn⋃
j=K+1


∣∣∣∣∣∣ 1

n− ν(j)

n−ν(j)∑
i=1

Yi,j

∣∣∣∣∣∣ > γn




≤ (kn − (K + 1))

[
4 exp

(
− γ2

nq

32M2

)
+ 22q

√
1 +

8M

γn
α

(⌊
n− kn

2q

⌋)]
≤ (kn − (K + 1))(A1,n +A2,n) (9)

where A1,n = 4 exp
(
− γ2

nq
32M2

)
and A2,n = 22q

√
1 + 8M

γn
α
(⌊

n−kn
2q

⌋)
.

Note that α
(⌊

n−ν(j)
2q

⌋)
that should appear in A2,n has been majorated by

α
(⌊

n−kn
2q

⌋)
. This majoration is true because for n large enough kn ≥ ν(j)

(since kn →∞) and α is a decreasing function.

Hereafter we distinguish the two cases related to the α-mixing process.

Case (A): arithmetically mixing

Let q =
⌊
nβ log(n)

⌋
where 0 < β < 1 (so that q ∈ IN

⋂[
1; n−ν(j)

2

]
for n large

enough).

Making explicit α, q and γn in the inequality (9), one has IP
({
k̂n > K

}
∩Bn

)
=

O
(
n1−c2 log(n)/32M2

)
+ O

(
n1+5β/4−δ(1−β)log(n)

1/2−δ
)

. Since by assumption

δ > 2+5β/4
1−β , then ∃ζ1 > 1 : IP

({
k̂n > K

}
∩Bn

)
= O

(
1
nζ1

)
.

Finally Borel-Cantelli’s lemma entails that k̂n ≤ K almost surely.
Now we want to show that k̂n ≥ K almost surely. For this goal, let us consider

the event
{
k̂n < K

}
.

Since γn → 0 and |ϕK | 6= 0, we deduce that, for n large enough, |ϕK |2 > γn and{
k̂n < K

}
∩Bn ⇒

{
|ϕ̂K,n| <

|ϕK |
2

}
so that

IP
({
k̂n < K

}
∩Bn

)
≤ IP

(
|ϕ̂K,n − ϕK | >

|ϕK |
2

)
.
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The previous inequality is equivalent to

IP
({
k̂n < K

}
∩Bn

)
≤ IP

∣∣∣∣∣∣ 1

n− ν(K)

n−ν(K)∑
i=1

Yi,K

∣∣∣∣∣∣ > |ϕK |2


where Yi,K = hK(Xi, . . . , Xi+ν(K)) − IE

(
hK(Xi, . . . , Xi+ν(K))

)
. Applying the

Bosq’s inequality with q ∈ IN ∩
[
1; n−ν(K)

2

]
one has

IP
({
k̂n < K

}
∩Bn

)
≤ 4 exp

(
− ϕ2

Kq

128M2

)
+ 22q

√
1 +

16M

|ϕK |
α

(⌊
n− ν(K)

2q

⌋)
.

Using again q =
⌊
nβ log(n)

⌋
and γn =

√
log(n)
nβ

(as precised in Section 2), one

has IP
({
k̂n < K

}
∩Bn

)
= O

(
exp

(
− ϕ2

Kn
β

128M2 log(n)
))

+O
(
nβ−δ(1−β)log(n)

1−δ
)

so that ∃ ζ2 > 1 such that IP
({
k̂n < K

}
∩Bn

)
= o

(
1
nζ2

)
since δ > 2+5β/4

1−β >
1+β
1−β .

In conclusion, ∃ ζ > 1 such that IP
({
k̂n 6= K

})
= o

(
1
nζ

)
(e.g. ζ = min(ζ1, ζ2)).

This entails that k̂n = K a.s. for n large enough.

Case (G): geometrically mixing

In this case, let q =
⌊

n
logΓ n

⌋
, Γ > 1 (so that q ∈ IN

⋂[
1; n−ν(j)

2

]
for n large

enough).
Let us consider the terms in the inequality (9): we have (kn− (K+1))A1,n =

O
(
n exp

(
− c2

32M2 logΓ n
))

= O
(
n1−c2 log(n)Γ−1/32M2

)
and for 0 < ε < 1,

(kn − (K + 1))A2,n = O
(
n9/4−b/(2+ε) logΓ−1(n)

)
. Hence ∃ ζ > 1 such that

(kn − (K + 1))A2,n = o
(

1
nζ

)
.

Borel-Cantelli’s lemma implies that k̂n ≤ K almost surely.

Now we want to show that k̂n ≥ K almost surely. Using the same ideas as

previously, we have that ∃ ζ > 1 such that IP
({
k̂n < K

}
∩Bn

)
= o

(
1
nζ

)
.

We conclude that k̂n ≥ K almost surely.
These results entail that k̂n = K almost surely in the (G) case too.

5.3. Proof of Theorem 3.3

Case (A): arithmetically mixing
We want to get a majoration for the quantity IE‖ϕ̂n−ϕ‖2 when the right order
of development of ϕ with respect to the projection basis is K. First, we remark
that 1Ik̂n=K + 1Ik̂n 6=K = 1, so that

IE‖ϕ̂n − ϕ‖2 = IE(‖ϕ̂n − ϕ‖21Ik̂n=K) + IE(‖ϕ̂n − ϕ‖21Ik̂n 6=K). (10)
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Denoting ϕ̂n,K :=
∑K
j=0 ϕ̂j,nej we have

IE(‖ϕ̂n − ϕ‖21Ik̂n=K) = IE‖ϕ̂n,K − ϕ‖2 =

K∑
j=0

(ϕ̂j,n − ϕj)2.

Now, to get a majoration of IE(‖ϕ̂n−ϕ‖21Ik̂n 6=K), we observe that ‖ϕ̂n−ϕ‖2 ≤
2‖ϕ̂n‖2+2‖ϕ‖2. But ‖ϕ̂n‖2 ≤ (kn+1)M2 and ‖ϕ‖2 ≤ (K+1)M2. So ‖ϕ̂n−ϕ‖2 ≤
2(kn +K + 2)M2 and

IE(‖ϕ̂n − ϕ‖21Ik̂n 6=K) ≤ IP(k̂n 6= K)O(kn).

Therefore the Equation (10) becomes

IE‖ϕ̂n − ϕ‖2 ≤ IE

 K∑
j=0

(ϕ̂j,n − ϕj)2

+ IP(k̂n 6= K)O(kn).

Proposition 3.2 entails that, for n large enough,

IP(k̂n 6= K) ≤ O
(
n1−c2 log(n)/32M2

)
+O

(
n1+5β/4−δ(1−β)log(n)

1/2−δ
)

so IP(k̂n 6= K)O(kn) = o
(

1
n

)
since we assumed δ >

3+ 5β
4

1−β , kn = o(n).

To obtain an upper bound for
∑K
j=0(ϕ̂j,n−ϕj)2, let define Yj,i := hj(Xi, . . . , Xi+µ(j))−

ϕj . Then we have

IE

 K∑
j=0

(ϕ̂j,n − ϕj)2

 =

K∑
j=0

1

n2

n∑
i=1

n∑
l=1

|cov(Yj,i, Yj,l)|.

Using the inequality in Rio (2000, p.9), we deduce that, for i 6= l,

|cov(Yj,i, Yj,l)| ≤ 2

∫ |l−i|−δ
0

Qj,i(u)Qj,l(u)du

where the functions Qj,i and Qj,l stand respectively for the quantile functions
associated to the variables Yj,i and Yj,l. So

|cov(Yj,i, Yj,l)| ≤ 8M2|l − i|−δ

and denoting C


(j, j) := 1
n2

n∑
i=1

n∑
l=1

|cov(Yj,i, Yj,l)| we have

C


(j, j) ≤ 1

n2

∑
(i,l)∈1...n, i 6=l

8M2|l − i|−δ +
1

n2

n∑
i=1

var(Yj,i).



Aubin and Ignaccolo/Hybrid projection estimation 23

Then, with r = |i− l| 6= 0,

C


(j, j) ≤ 16M2

n

n−1∑
r=1

r−δ +
1

n2

n∑
i=1

var(Yj,i)

and, using the inequality
∑n−1
r=1 r

−δ ≤ 1 +
∫ n−1

1
x−δdx, we get

C


(j, j) = O
(

1

n1−δ

)
+

1

n2

n∑
i=1

var(Yj,i).

Moreover, var(Yj,i) < 4M2, so 1
n2

∑n
i=1 var(Yj,i) = O

(
1
n

)
. Since 0 < β < 1

and δ >
2+ 5β

4

1−β we have δ > 2 and we conclude that

IE‖ϕn,K − ϕ‖2 =

K∑
j=0

C


(j, j) = O
(

1

n

)

that is nIE‖ϕ̂n − ϕ‖2 = O(1), and the proof is completed.

Case (G): geometrically mixing
The first difference with respect to the arithmetical case is in the majoration of
IP(k̂n 6= K). We deduce from Proposition 3.2 that IP(k̂n 6= K) ≤ o

(
1
n2

)
. This

entails that IE‖ϕ̂n − ϕ‖2 = o
(

1
n

)
.

Another difference is observed when majorationg C


(j, j). In fact, from Rio
(2000, p.9) we have

|cov(Yj,i, Yj,l)| ≤ 2

∫ a exp (−b|l−i|)

0

Qj,i(u)Qj,l(u)du ≤ 8M2a exp (−b|l − i|)

with the same previous notations. Hence

C


(j, j) ≤ 1

n2

n∑
i=1

n∑
l=1

8M2a exp (−b|l − i|) +
8M2a

n
≤ 8M2a

n

(
1 +

2

1− exp (−b)

)
and this inequality allows us to complete the proof, analogously to the case (A).

5.4. Proof of Proposition 3.4

If ϕ ∈ G1, respectively under the assumption δ > 2+5β/4
1−β for the arithmetical

case, for n large enough, then

k̂n > j a.s.

for all j such that ϕj 6= 0. This comes from the fact that such a j is smaller

than the true order of development and we showed in Proposition 3.2 that k̂n
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-

6
|ϕq |

qn(ε) q′n(ε′)

(1− ε′)γn

(1 + ε)γn

q

Fig 5. An example of qn(ε) and q′n(ε′)

is, for n large enough, almost surely larger than the true order of development.
This entails

lim inf
n→∞

k̂n > j a.s.;

since ϕ ∈ G1 there is an infinity of such j, so we conclude that, for n large
enough, k̂n →∞.

5.5. Proof of Theorem 3.5

First, we introduce a new parameter depending on the functional parameter ϕ:

q(η) := min {q ∈ N : |ϕj | ≤ η, ∀j > q} , η > 0

and denote qn(ε) and q′n(ε′) the integers q((1 + ε)γn) and q((1 − ε′)γn) for all
ε > 0 and ε′ ∈]0, 1[; an example is illustrated in Figure 5.
Note that q(η) is defined through the real values of the Fourier coefficients ϕj ,
and it is well defined because the sequence (ϕj)j∈IN converges to 0 when n→∞
since

∑∞
i=0 ϕ

2
j <∞ (ϕ ∈ H). Nevertheless, intuitively we can expect that k̂n will

take a value between qn(ε) and q′n(ε′): indeed the following property confirms
this intuition (almost surely for n large enough).

Lemma 5.3. For every ε > 0, ε′ ∈]0; 1[, if kn > qn(ε) and if, in the case (A),

δ > 2+5β/4
1−β then for n large enough, for both cases:

qn(ε) ≤ k̂n ≤ min (q′n(ε′), kn) a.s.
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Proof of Lemma 5.3 If qn(ε) = 0, the first inequality is obvious. If qn(ε) > 0,
by construction of qn(ε) and since kn > qn(ε) we have

IP
({
k̂n < qn(ε)

}
∩Bn

)
≤ IP

(
|ϕ̂qn(ε),n − ϕqn(ε)| > εγn

)
≤ IP

∣∣∣∣∣∣ 1

n− ν(qn(ε))

n−ν(qn(ε))∑
i=1

Yi,qn(ε)

∣∣∣∣∣∣ > εγn


with the previous notations.

Now, we use the Bosq’s inequality for both the cases (A) and (G).

Case (A): arithmetically mixing
With q =

⌊
nβ log(n)

⌋
,

IP
({
k̂n < qn(ε)

}
∩Bn

)
≤ O

(
n
c2ε2 log(n)

32M2

)
+O

(
n1+5β/4−δ(1−β)

)
.

But δ > 2+5β/4
1−β so we deduce that

∃ ζ > 1 : IP
({
k̂n < qn(ε)

}
∩Bn

)
= o

(
n−ζ

)
.

For n large enough, Bn is verified almost surely and the inequality

IP
(
k̂n < qn(ε)

)
≤ IP

({
k̂n < qn(ε)

}
∩Bn

)
+ IP (Bcn)

entails that the event
{
k̂n ≥ qn(ε)

}
is true almost surely for n large enough by

the lemma of Borel-Cantelli.
For the other inequality k̂n ≤ min(q′n(ε′), kn), we use once more the Bosq’s

inequality with q =
⌊
nβ log(n)

⌋
and obtain that

IP
({
k̂n > min(q′n(ε′), kn)

}
∩Bn

)
= O

(
n

1−
(
c2ε′2 log(n)

32M2

)
+ n1+5β/4−δ(1−β)

)
.

We conclude again with the lemma of Borel-Cantelli.

Case (G): geometrically mixing

Let q :=
⌊

n
logΓ n

⌋
in the Bosq’s inequality. For n large enough and the previous

notations,

IP
({
k̂n < qn(ε)

}
∩Bn

)
= O

(
n
−c2

32M2 logΓ−1(n)

)
+O

(
n

5
4−2b logΓ−1(n)

)
.

So
∃ ζ > 1 : IP

({
k̂n < qn(ε)

}
∩Bn

)
= O

(
n−ζ

)
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and k̂n ≥ qn(ε) almost surely for n large enough.

The last inequality k̂n ≤ min(q′n(ε′), kn) is shown analogously to the case

(A), taking q =
⌊

n
logΓ n

⌋
in the Bosq’s inequality. Hence the proof of Lemma 5.3

is completed.

The convergence rates for MISE(ϕ̂n) when ϕ ∈ G1 are based on the inequal-
ities provided by the following lemma.

Lemma 5.4. Let denote m2
ϕ := inf

j≥0
var(hj(X1, . . . , X1+ν(j))) and suppose m2

ϕ 6=
0.
If kn is large enough, then in the case (A), with δ > 1

m2
ϕ

(qn(ε) + 1)

n
+

∑
j>min(q′n(ε′),kn)

ϕ2
j ≤ IE‖ϕ̂n − ϕ‖2

and

IE‖ϕ̂n − ϕ‖2 ≤
5M2

δ − 1

(min (q′n(ε′), kn) + 1)

n
+

∑
j>qn(ε)

ϕ2
j + o

(
1

n

)
;

in the case (G),

m2
ϕ

(qn(ε) + 1)

n
+

∑
j>min(q′n(ε′),kn)

ϕ2
j ≤ IE‖ϕ̂n − ϕ‖2

and

IE‖ϕ̂n − ϕ‖2 ≤
5M2a

1− exp (−b)
(min (q′n(ε′), kn) + 1)

n
+

∑
j>qn(ε)

ϕ2
j + o

(
1

n

)
.

Proof of Lemma 5.4 Case (A): arithmetically mixing

First, let An :=
{
qn(ε) ≤ k̂n ≤ min(q′n(ε′), kn)

}
. Then, the mean integrated

square error is equal to

IE‖ϕ̂n − ϕ‖2 = IE

 k̂n∑
j=0

(ϕ̂j,n − ϕj)2 +
∑
j>k̂n

ϕ2
j

 (1IAn + 1IAn)


Note that

IE

∑
j>k̂n

ϕ2
j

(1IAn + 1IAn
) ≤ ∑

j>qn(ε)

ϕ2
j + ‖ϕ‖2IP(An).

But IP(An) = o
(

1
n

)
because the assumptions of Lemma 5.3 are fulfilled (δ >

2+5β/4
1−β for the case (A)), so

IE

∑
j>k̂n

ϕ2
j

(1IAn + 1IAn
) ≤ ∑

j>qn(ε)

ϕ2
j + o

(
1

n

)
.
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Analogously,

IE

 k̂n∑
j=0

(ϕ̂j,n − ϕj)21IAn

 ≤ min(q′n(ε′),kn)∑
j=0

IE

(
1

n

n∑
i=1

Yj,i

)2

.

Thanks to the inequality in Rio (2000, p. 9) with δ > 2+5β/4
1−β > 1,

IE

 k̂n∑
j=0

(ϕ̂j,n − ϕj)21IAn

 ≤ 4M2

n

min(q′n(ε′), kn) + 1

δ − 1
.

Moreover,

IE

 k̂n∑
j=0

(ϕ̂j,n − ϕj)21IAn

 ≤ 4(kn + 1)M2IP(An).

We deduce that

∃ζ > 1 : IE

 k̂n∑
j=0

(ϕ̂j,n − ϕj)21IAn

 = o

(
kn
nζ

)
and, for n large enough,

IE

 k̂n∑
j=0

(ϕ̂j,n − ϕj)21IAn

 <
M2

δ − 1

kn + 1

n
.

This last step completes the part of the proof dedicated to the upper bound.

For the lower bound, we have

IE

 k̂n∑
j=0

(ϕ̂j,n − ϕj)2

 ≥ IE

 k̂n∑
j=0

(ϕ̂j,n − ϕj)21IAn

 ≥ (qn(ε) + 1)m2
ϕ

n

and

IE

∑
j>k̂n

ϕ2
j

 ≥ IE

∑
j>k̂n

ϕ2
j1IAn

 ≥ ∑
j>min(q′n(ε′),kn)

ϕ2
j .

Case (G): geometrically mixing
The only difference with respect to the previous case arises from the following
inequality

IE

 k̂n∑
j=0

(ϕ̂j,n − ϕj)21IAn

 ≤ 4M2

n

amin(q′n(ε′), kn) + 1

1− exp (−b)
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where a
1−exp (−b) appears instead of 1

δ−1 (for the case (A)).

Hence the proof of Lemma 5.4 is completed.

From the previous inequalities in Lemma 5.4 it is possible to derive the con-
vergence rate of MISE(ϕ̂n) and conclude the proof of Theorem 3.5.
In both cases (A) and (G), the idea is to split the biggest term of the previous

inequalities, that is
∑

j>qn(ε)

ϕ2
j , in two parts. More precisely, we give an upper

bound for

kn∑
j=qn(ε)+1

ϕ2
j : in the case (A),

kn∑
j=qn(ε)+1

ϕ2
j ≤ c2kn(1 + ε)2 log(n)

nβ
,

while in the case (G),

kn∑
j=qn(ε)+1

ϕ2
j ≤ c2kn(1 + ε)2 log2Γ(n)

n
.
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densité. C. R. Math. Acad. Sci. Paris, 334 (7), 591–595.

[9] Bosq, D. (2005). Estimation suroptimale de la densité par projection. Cana-
dian Journal of Statistics, 33 (1), 21–37.

[10] Bosq, D. & Blanke, D. (2007). Inference and prediction in large dimensions.
Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester.



Aubin and Ignaccolo/Hybrid projection estimation 29

[11] Bosq D. & Lecoutre, J.P. (1987). Théorie de l’Estimation Fonctionnelle.
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jection adaptative: application a l’estimation de l’ordre d’une moyenne mo-
bile, C. R. Math. Acad. Sci. Paris, 346 (17-18), 999–1002.

[43] Tarter, M. & Lock, M.D. (1993). Model-free curve estimation. Monographs
on Statistics and Applied Probability, vol. 56, Chapman and Hall, New
York.

[44] Thompson, J.R. & Tapia, R.A. (1990). Nonparametric function estimation,
modeling, and simulation. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA.


