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The recent implementation of a swap Monte Carlo algorithm (SWAP) for polydisperse mix-
tures bypasses computational sluggishness and closes the gap between experimental and simulation
timescales in physical dimensions d = 2 and 3. Here, we consider suitably optimized systems in
d = 2, 3, . . . , 8, to obtain insights into the performance and underlying physics of SWAP. We show
that the speedup obtained decays rapidly with increasing the dimension. SWAP nonetheless delays
systematically the onset of the activated dynamics by an amount that remains finite in the limit
d → ∞. This shows that the glassy dynamics in high dimensions d > 3 is now computationally
accessible using SWAP, thus opening the door for the systematic consideration of finite-dimensional
deviations from the mean-field description.

Introduction – A glass emerges when a supercooled
liquid passed its crystallization point becomes so slug-
gish that it falls out of equilibrium. Upon cooling or
increasing packing fraction, the dynamics of glass for-
mers exhibits a marked slowdown beyond the dynami-
cal onset, thus making this outcome inescapable [1, 2].
In mean-field descriptions, the structural relaxation time
exhibits a power-law divergence at the dynamical transi-
tion [3]. In any finite dimension, although activated pro-
cesses wash out this transition, the rapid growth of the
associated relaxation time nonetheless impedes equilibra-
tion of low-temperature or high-density liquids. Standard
simulation protocols, in particular, do not easily explore
the regime beyond the dynamic transition, because struc-
tural relaxation is already too sluggish.

The application of the swap Monte Carlo algorithm
(SWAP), which exchanges the identity of pairs of parti-
cles, to complex mixtures sidesteps this difficulty [4–6].
By considering systems with, for instance, a continuous
size polydispersity one can follow the equilibrium liq-
uid up to unprecedented high packing fractions or low
temperatures. Tuning the range and functional form
of polydispersity provides systems for which the sam-
pling efficiency of swap moves is maximal within the liq-
uid state, while remaining robust against crystallization
and fractionation [7], and keeping equilibrium proper-
ties unaffected. For properly chosen polydispersities in
d = 3 this procedure has recently provided a speedup
of at least 1010 compared to standard dynamics, match-
ing the experimental timescales [7, 8], and in d = 2 it
has given access to timescales that are truly cosmolog-
ical [9]. This computational progress has triggered the
exploration of new glass physics in computer simulations,
notably low-temperature anomalies [10, 11], the Gardner
transition [10, 12], the rheology of glasses [13], the ex-
tension of the jamming line [14], and the ultrastability of
vapor-deposited glasses [15].

The efficiency of SWAP has also triggered theoreti-
cal activity aimed at better understanding its physical

origin and its physical implications for the glass transi-
tion [16]. Ikeda et al. [17] present a replica calculation
of a mean-field glass model proposing that SWAP and
physical dynamics are ruled by distinct dynamical tran-
sitions. A qualitatively similar result is obtained by Sza-
mel who obtains two dynamical transitions for the two
dynamics [18]. Brito et al. [19] obtain a similar result,
and interpret the dynamical transition as an onset of me-
chanical rigidity that is again shifted by SWAP. Finally,
Berthier et al. [20] argue that the onset of thermal acti-
vation past the dynamical transition is also considerably
affected by SWAP. There is thus a general consensus that
SWAP can delay the (avoided) dynamical transition by
an amount that is system dependent, and can speedup
the dynamics even past the dynamical transition.

However, because dynamical transitions are avoided
in any finite d [21], other physical processes might also
explain the dramatic change in dynamics. In particu-
lar, structural imperfections closely tied to local geome-
try [22], which are putatively important in the dynamics
of low-dimensional glass formers, could impact SWAP ef-
ficiency. Distinguishing one contribution from the other
can be achieved by considering how SWAP performance
evolves with increasing d. A non-vanishing SWAP effi-
ciency in the limit of d→∞ or a perturbative correction
in 1/d would suggest that the mean-field dynamical tran-
sition is indeed shifted, while an exponential suppression
would suggest that nonperturbative features associated
with geometry dominate. Because numerical work on
SWAP has thus far only been concerned with physical
dimensions, d = 2 and 3, distinguishing between these
scenarios is not currently possible.

Resolving this question would not only shed light on
the physical origin of the glassy slowdown, but help de-
vise novel algorithms that further bypass it. Interest-
ingly, side-stepping the mean-field dynamical threshold
could also be key to general algorithmic improvements
in hard problems, such as statistical inference, high-
dimensional optimization and deep learning [23]. A fun-
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FIG. 1. Structural relaxation time of standard (open symbols)
and SWAP dynamics (solid symbols) for various particle size
distributions P (σ) with ∆ = 10% in d = 4: flat (circles),
1/σ3 (squares), and 1/σ4 (trigangles). For a given ∆ both
dynamics are unaffected by the functional form of P (σ).

damental grasp of the effectiveness of SWAP dynamics
could thus bolster advances far beyond the problem at
hand. More immediately, if one could generically push
the current limitations of high d simulations, crucial ques-
tions in glass physics could be tackled [21, 24, 25]. In
this work, we study the dynamics of suitably optimized
polydisperse mixtures of hard spheres in various spatial
dimensions, so as to systematically approach the mean-
field, d→∞ description, and provide microscopic insight
into the underlying physics and computational efficiency
across a broad range of dimensions.

Simulation Model– We consider size polydisperse sys-
tems with N hard spheres in a hypercubic box of con-
stant volume V , under periodic boundary conditions in
d = 2, 3 · · · , 8. We choose N = 2000 for d ≤ 6 and
N = 7000 in d = 8 [26] The size distribution function
has the form, P (σ) = K/σ3, with normalization con-
stant K for σ ∈ [σmin, σmax], where σmin and σmax are
the minimum and the maximum diameter values, respec-
tively. The average diameter σ̄ =

∫ σmax

σmin
P (σ)σdσ sets the

unit of length, and the standard deviation of the size dis-
tribution, ∆, quantifies the degree of polydispersity (see
Simulation details and model parameters in [27]). For a
fixed ∆, this specific choice of size distribution function
does not significantly affect the system dynamics. Fig-
ure 1, which explicitly compares the dynamics at fixed ∆
and various P (σ) in d = 4, confirms that ∆ is the most
relevant variable. Our analysis should therefore be rea-
sonably independent of the specifics of the model studied.

Standard and SWAP simulations are run for differ-
ent ∆ and d. Both dynamical protocols include basic
single-particle translational moves along a vector ran-
domly drawn within a d-dimensional hypercube of side
δ`; SWAP includes additional diameter exchanges be-

tween two randomly chosen particles, attempted with
probability p = 0.2 (setting p = 0 recovers standard dy-
namics). While 0 < p . 0.2 monotonically increases
sampling efficiency, for p & 0.2 efficiency saturates, and
hence additional swap moves wastefully slow down sim-
ulations [7]. For each volume fraction ϕ, the pressure P
is measured using pair correlations [28, 29], to compute
the unitless reduced pressure, Z = βP/ρ, for the number
density ρ = ϕ/V̄d with V̄d being the average volume of a
d-dimensional hypersphere.

Equilibration is assessed by the complete decay of the
self-part of the particle-scale overlap function

Q(t) =
1

N

N∑
i=1

Θ(a− |ri(t)− ri(0)|), (1)

where Θ is a step function and a = 0.3σ̄ is a micro-
scopic length chosen to be close to the typical particle
cage size; Q(t) thus represents the fraction of particles
with displacement smaller than a after t MC steps. The
associated structural relaxation time, τα, is defined such
that Q(τα) = e−1. We define the relaxation time for both
the standard (τ stdα ) and SWAP (τ swap

α ) dynamics. In all
dimensions studied, SWAP equilibrates systems far be-
yond what is computationally accessible with standard
Monte Carlo. After achieving equilibration with SWAP,
the system is evolved using standard dynamics.
Results– In physical dimensions, crystallization com-

petes with equilibration of deeply supercooled liq-
uids [30]. For instance, for ∆ . 8% in d = 3 crystalliza-
tion at high ϕ is unavoidable. For d > 3, by contrast,
crystallization does not interfere with the metastable
fluid phase even for arbitrarily low ∆. The nucleation
time at finite ∆ in d > 3 is thus as equally out of
computational reach as it is for monodisperse systems
(∆ = 0) [31–33]. In all d, however, size fractionation
may take place at high ∆ and ϕ. In d = 3, fractionation
appears at ∆ & 10%, which helps crystallization [34, 35].
In practice, this only happens when SWAP is used [20],
because composition fluctuations leading to fractionation
are then much faster. SWAP thus not only accelerates
the sampling of the metastable fluid, but also changes
the glass-forming ability of the system and forces the use
of ∆ > 20% in d = 3. In d = 4, by contrast, fraction-
ation only appears at ∆ & 15% for ϕ & 0.43, and is
further suppressed at higher ∆ (see Dynamic and static
observables in [27]). For each d, a ∆ window, within
which SWAP efficiency is reasonably good and fraction-
ation (with or without crystallization) does not interfere,
can thus be found. Qualitative and even quantitative as-
pects of the standard Monte Carlo dynamics are other-
wise not remarkably affected by changing ∆, as expected
from previous studies of naturally polydisperse systems,
such as colloidal suspensions [36].

A strong dependence of the SWAP dynamics on ∆ is
observed in the dynamically sluggish regime, beyond the
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FIG. 2. SWAP efficiency, τ stdα /τ swap
α , as a function of the

relaxation time of the standard dynamics (representing the
sluggishness) for different polydispersities ∆ in (a) d = 3, (b)
d = 4, (c) d = 5, and (d) d = 6. Sluggish dynamics at low ∆
cannot be reached in d = 3 because crystallization interferes.
In all d, SWAP performs better as ∆ increases, and saturates
at larger ∆.

onset of slow diffusion at ϕ0 (Fig. 2(a)-(d)). As an il-
lustration, we consider the evolution of the SWAP ef-
ficiency ratio, τ stdα /τ swap

α measured at a fixed τ stdα /τ0,
with τ0 ≡ τα(ϕ0). In Fig. 3(a), we specifically consider
τ stdα /τ0 = 5 × 103, but the results are qualitatively ro-
bust for τ stdα /τ0 > 1 (see Dynamic and static observables
in [27]). At low ∆, SWAP dynamics is indistinguish-
able from standard dynamics and its efficiency increases
monotonically. This efficiency, however, essentially satu-
rates beyond a certain ∆, resulting in its overall sigmoidal
growth. We empirically fit the results to a generalized lo-
gistic function, S(∆) = A exp(a∆)/(B + exp(b∆)), with
fit parameters A, a, b, and B, to quantify the crossover
polydispersity, ∆0, defined such that S(∆0) = 0.9A. We
obtain ∆0 ≈ 10% in d = 3, ≈ 7.5% in d = 4, and ≈ 7% in
d = 5 and ≈ 6.5% in d = 6. In d = 2 and 3, the trend is
almost hidden by crystallization, and had gone unnoticed
in previous work. The shrinking of ∆0 with increasing d
is nonetheless very clear. No theoretical framework for-
mally predicts the saturation with ∆ and the associated
scaling with dimension. Physically, we interpret these
results as follows. The amplitude of particle size fluctu-
ations, which help uncage particles in SWAP dynamics,

increase with ∆, which accounts for the initial growth of
efficiency with ∆. The diffusion of particle diameters be-
yond a typical size, however, itself becomes slower than
the structural relaxation when ∆ is large, because diam-
eter and position dynamics are intimately coupled [7].
Increasing ∆ thus no longer improves SWAP efficiency,
and this saturation develops earlier in larger d, where the
vibrational dynamics (or, loosely speaking, caging) itself
occurs over a length-scale decreasing with d.

The most remarkable feature of the efficiency results is
the weakening of SWAP performance with increasing d.
Fig. 3 (b) shows that the efficiency decays rapidly with
increasing d (nearly exponentially, at least up to d = 8)
for various τ stdα /τ0. The decay of SWAP performance
becomes more prominent when estimated beyond the ac-
cessible regimes of the standard dynamics, such as where
τ swap
α /τ0 = 5 × 103 – see Fig. 3 (c) (and Dynamic and

static observables in [27]).

In order to examine explicitly whether this strong sup-
pression is due to non-perturbative effects of not, we con-
sider how SWAP impacts the avoided mean-field dynam-
ical transition, ϕd. We estimate ϕd for both standard dy-
namics and SWAP by fitting the growth of the relaxation
time to the critical scaling form, τα ∝ (ϕd − ϕ)−γ [21]
(see Mode coupling analysis in [27]). As expected [37],
this scaling form captures the data increasingly well as
d increases. In d = 2, it does not have a good regime
of validity, but its validity eventually reaches up to three
decades in the computationally accessible regime. We
find that γ is fairly insensitive to both dimension [21] and
polydispersity [38]. Three features of the results are par-
ticularly noteworthy. First, collapsing τ stdα /τ0 by rescal-
ing ϕ/ϕstd

d clearly reveals that SWAP postpones the pu-
tative dynamical transition in all dimensions–Fig. 4(a).
Second, while ϕd monotonically grows with polydisper-
sity [39], its relative impact, (ϕswap

d − ϕstd
d )/ϕstd

d eventu-
ally plateaus on a scale consistent with the estimates for
∆0–see Fig. 4(b). This suggests that the shift of dynam-
ical transition is directly correlated with the SWAP effi-
ciency, as both quantities evolve similarly with ∆. Third,
the plateau height, h ≡ (ϕswap

d − ϕstd
d )/ϕstd

d at the maxi-
mum polydispersity considered in Fig. 4(b), decays to a
nonzero value (≈ 0.037) with correction that scales with
dimension as ∼ 1/d. Our results thus suggest that the
gain in SWAP efficiency survives in the limit d→∞, and
that perturbative corrections survive all the way down to
d = 3, independently of non-perturbative effects.

How can one explain the relatively rapid suppression of
swap efficiency despite the slow decay of the density gap
(ϕswap

d − ϕstd
d )/ϕstd

d to a nonzero value? While the rela-
tive increase of ϕd is qualitatively consistent with mean-
field treatments in d = 3 [17, 18], the saturation and the
asymptotic behavior of the gap with d were not antici-
pated. Plugging this result into the critical scaling forms
τα = A(ϕd−ϕ)−γ , we obtain an approximate expression
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bols) collapses for different d upon rescaling ϕ/ϕstd

d . The
gap between SWAP and standard dynamics shrinks and sat-
urates with increasing d. For d = 2 and 3, we set ∆ = 23%
and for d > 3, ∆ = 10%. (b) The relative gap between
the dynamical transition density between the two dynamics
(ϕsw
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d also saturates at high ∆, (inset) and the
saturation height asymptotically approaches a nonzero value
(≈ 0.037) as ∼ 1/d.

for the efficiency ratio

τ stdα /τ swap
α ≈ τ stdα (hϕstd

d )γ (2)

For a given value of τ stdα , the key contribution to the
efficiency gain therefore arises from the term (hϕstd

d )γ .
Because asymptotically ϕstd

d ∼ d 2−d [21], this gain de-
creases rapidly with increasing d – qualitatively consis-
tent with Figs. 3 (b, c) and Fig. 4(b). Because τα di-
verges upon approaching ϕd in high dimension, however,
one should always be able to identify sufficiently sluggish
systems for SWAP to speed up sampling. In intermediate
dimensions, the approach remains sufficiently productive
to obtain equilibrium configurations much beyond the

dynamical transition of the standard dynamics. Figure 3
(c) provides a rough estimates of how useful SWAP can
be in accessing regimes that are not accessible by the
standard dynamics in high dimensions. For instance, in
d = 8 a speed up of roughly 104 should remain compu-
tationally achievable.

Conclusion – We have shown that SWAP improves
sampling in dimensions d ≥ 2 by generically delaying
the dynamical transition that indicates the emergence
of activated dynamics in the standard dynamics. This
finding in itself does not directly reveal the microscopic
nature (dynamic or thermodynamic) of the standard dy-
namics in the regime ϕstd

d < ϕ < ϕswap
d , where SWAP

provides most of its dynamic speedup, but offers a plat-
form for assessing this question in the future. Because
the gap between the dynamical transition of the stan-
dard and the SWAP dynamics remains finite in the
limit d → ∞, SWAP can efficiently be used to study
pure glass physics in reasonably large dimensions, far
from the regime in which significant local structure [22]
or orientational ordering [40] might interfere. In other
words, although caging imperfections go away exponen-
tially quickly with increasing dimension, SWAP can still
break cages in high d. Even within this analysis, the
two-dimensional speedup is remarkably large, and tech-
niques specifically tailored to identify local structural
weaknesses, (e.g., [41–44]) might thus help obtain ad-
ditional microscopic insights. More generally, our obser-
vations suggest that the standard dynamical transition
might not be as strong an algorithmic constraint as pre-
viously conceived in problems ranging from physics to
information theory. If a proper sampling scheme can be
devised and exploited in those problems, other stunning
algorithmic advances might thus be within reach.

We thank S. Yaida, M. Ozawa and F. Zamponi for use-



5

ful discussions. J. K., L. B. and P. C. acknowledge sup-
port from the Simons Foundation grant (#454933, Lu-
dovic Berthier, # 454937, Patrick Charbonneau). Most
simulations were performed at Duke Compute Cluster
(DCC). J.K. thanks Tom Milledge for helping with the
usage of DCC. P.C. and J.K. also thanks Extreme Sci-
ence and Engineering Discovery Environment (XSEDE),
supported by National Science Foundation grant number
ACI-1548562, for computer time.

[1] L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and
W. van Saarloos, Dynamical Heterogeneities in Glasses,
Colloids, and Granular Media (Oxford University Press,
2011).

[2] J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
[3] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587

(2011).
[4] L. Berthier, D. Coslovich, A. Ninarello, and M. Ozawa,

Phys. Rev. Lett. 116, 238002 (2016).
[5] R. Gutiérrez, S. Karmakar, Y. G. Pollack, and I. Pro-

caccia, Europhys. Lett. 111, 56009 (2015).
[6] T. S. Grigera and G. Parisi, Phys. Rev. E(R) 63, 045102

(2001).
[7] A. Ninarello, L. Berthier, and D. Coslovich, Phys. Rev.

X 7, 021039 (2017).
[8] L. Berthier, P. Charbonneau, D. Coslovich, A. Ninarello,

M. Ozawa, and S. Yaida, Proc. Natl. Acad. Sci. 114,
11356 (2017).

[9] L. Berthier, P. Charbonneau, A. Ninarello, M. Ozawa,
and S. Yaida, arXiv preprint arXiv:1805.09035 (2018).

[10] C. Scalliet, L. Berthier, and F. Zamponi, Phys. Rev.
Lett. 119, 205501 (2017).

[11] L. Wang, A. Ninarello, P. Guan, L. Berthier, G. Szamel,
and E. Flenner, Nat. Comm. 10(26), 1 (2019).

[12] L. Berthier, P. Charbonneau, Y. Jin, G. Parisi,
B. Seoane, and F. Zamponi, Proc. Natl Acad. Sci. 113,
8397 (2016).

[13] M. Ozawa, L. Berthier, G. Biroli, A. Rosso, and G. Tar-
jus, Proc. Natl. Acad. Sci. 115, 6656 (2018).

[14] M. Ozawa, L. Berthier, and D. Coslovich, SciPost Phys.
3, 027 (2017).

[15] L. Berthier, P. Charbonneau, E. Flenner, and F. Zam-
poni, Phys. Rev. Lett. 119, 188002 (2017).

[16] M. Wyart and M. E. Cates, Phys. Rev. Lett. 119, 195501
(2017).

[17] H. Ikeda, F. Zamponi, and A. Ikeda, J. Chem. Phys.
147, 234506 (2017).

[18] G. Szamel, Phys. Rev. E 98, 050601(R) (2018).
[19] C. Brito, E. Lerner, and M. Wyart, Phys. Rev. X 8,

031050 (2018).
[20] L. Berthier, G. Biroli, J.-P. Bouchaud, and G. Tarjus,

arXiv:1805.12378 (2018).
[21] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and

F. Zamponi, Annu. Rev. Condens. Matter Phys. 8, 265
(2017).

[22] C. P. Royall, F. Turci, S. Tatsumi, J. Russo, and
J. Robinson, J. Phys.: Condens. Matter 30, 363001
(2018).

[23] L. Zdeborová and F. Krzakala, Adv. Phys. 65, 453
(2016).

[24] J. D. Eaves and D. R. Reichman, Proc. Natl. Acad. Sci.
106, 15171 (2009).

[25] S. Sengupta, S. Karmakar, C. Dasgupta, and S. Sastry,
J. Chem. Phys. 138, 12A548 (2013).

[26] Sufficiently far from a critical point, corrections to liquid
statics and dynamics due to system size scale with dimen-
sion as 1/L(d−2) or even faster, i.e., 1/Ld ∼ 1/N [45, 46].
In d > 3, one can thus simulate relatively small boxes and
still obtain reliable physical estimates in the supercooled
liquid regime. The only exceptions are certain dynamical
quantities that couple to the dynamical length, which
grows to some extent in the vicinity of the (avoided)
dynamical transition. Because the dynamical quantities
studied in this work do not couple strongly to this length,
no significant finite-size effects are expected.

[27] See Supplemental Material for detailed discussions on
simulation details and model parameters, dynamic and
static observables, and mode coupling analysis.

[28] A. Santos, S. B. Yuste, and M. L. de Haro, J. Chem.
Phys. 117, 5785 (2002).

[29] A. Santos, S. B. Yuste, and M. L. de Haro, J. Chem.
Phys. 123, 234512 (2005).

[30] C. Valeriani, E. Sanz, E. Zaccarelli, W. C. K. Poon, M. E.
Cates, and P. N. Pusey, J. Phys.: Condens. Matter 23,
194117 (2011).

[31] M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato,
Phys. Rev. E 74, 041127 (2006).

[32] J. A. van Meel, B. Charbonneau, A. Fortini, and P. Char-
bonneau, Phys. Rev. E 80, 061110 (2009).

[33] P. Charbonneau, A. Ikeda, J. A. van Meel, and
K. Miyazaki, Phys. Rev. E 81, 040501(R) (20010).

[34] B. A. Lindquist, R. B. Jadrich, and T. M. Truskett, J.
Chem. Phys. 148, 191101 (2018).

[35] D. Coslovich, M. Ozawa, and L. Berthier, J. Phys.: Con-
dens. Matter 30, 144004 (2018).

[36] G. L. Hunter and E. R. Weeks, Rep. Prog. Phys. 75,
066501 (2012).

[37] P. Charbonneau, Y. Jin, G. Parisi, and F. Zamponi,
Proc. Natl. Acad. Sci. 111, 15025 (2014).

[38] F. Weysser, A. M. Puertas, M. Fuchs, and T. Voigtmann,
Phys. Rev. E 82, 011504 (2010).

[39] I. Biazzo, F. Caltagirone, G. Parisi, and F. Zamponi,
Phys. Rev. Lett. 102, 195701 (2009).

[40] H. Tong and H. Tanaka, Phys. Rev. X 8, 011041 (2018).
[41] F. Turci, C. P. Royall, and T. Speck, Phys. Rev. X 7,

031028 (2017).
[42] J. E. Hallett, F. Turci, and C. P. Royall, Nat. Comm. 9,

3272 (2018).
[43] S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxi-

ras, and A. J. Liu, Nat. Phys. 12, 469 (2016).
[44] S. S. Schoenholz, E. D. Cubuk, E. Kaxiras, and A. J.

Liu, Proc. Natl. Acad. Sci. 114, 263 (2017).
[45] P. Charbonneau, A. Ikeda, G. Parisi, and F. Zamponi,

Phys. Rev. Lett. 107, 185702 (2011).
[46] B. Charbonneau, P. Charbonneau, Y. Jin, G. Parisi, and

F. Zamponi, J. Chem. Phys. 139, 164502 (2013).


	Bypassing sluggishness: SWAP algorithm and glassiness in high dimensions
	Abstract
	Acknowledgments
	References


