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ABSTRACT

Recent progress in graph signal processing (GSP) has addressed a
number of problems, including sampling and filtering. Proposed
methods have focused on generic graphs and defined signals with
certain characteristics, e.g., bandlimited signals, based on the graph
Fourier transform (GFT). However, the effect of GFT properties
(e.g., vertex localization) on the behavior of such methods is not as
well understood. In this paper, we propose novel GFT visualization
tools and provide some examples to illustrate certain GFT properties
and their impact on sampling or wavelet transforms.

Index Terms— Graph signal processing, graph Fourier trans-
form, visualization, filtering, sampling.

1. INTRODUCTION

Significant recent progress has been made in developing graph signal
processing (GSP) methods for a number of basic problems such as
graph signal filtering or sampling [1, 2]. Most of these approaches
start by selecting a graph operator, typically the graph Laplacian or
the adjacency matrix, and using the eigenvectors of this operator as
elementary graph signal frequencies. In addition to the Laplacian
and adjacency matrices, which were already studied in the context
of spectral graph theory [3], some new graph operators have been
proposed recently. Examples include operators designed to address
graph signal stationarity [4] or graph irregularity [5], or leading to
orthogonal basis for directed graphs [6].

Letting the variable λ denote the graph frequency. A given graph
with n nodes will have n, not necessarily distinct, discrete frequen-
cies (λ0, λ1, . . . , λn−1), each corresponding to an eigenvalue of its
corresponding graph Laplacian, assuming a GFT based on the graph
Laplacian. Then, U⊺, the transpose matrix of orthogonal eigenvec-
tors1, is usually called the graph Fourier transform (GFT) [1, 2].

The key observation in our work is that once an operator has
been defined, e.g., the combinatorial graph Laplacian for undirected
graphs, much of the recent literature has focused on developing
methods that make use of that operator and are generic, in the sense
of being suitable for any graph within a certain class (e.g., any undi-
rected graph). Thus, basic GSP techniques are often designed so
that exact knowledge of the distribution of eigenvalues and exact
values of the eigenvectors are not required. For example, a popular
design of wavelet transforms for graph signals [7] is based on defin-
ing a bandpass filter g(λ). Exact knowledge of the eigenstructure
of the graph is not required as long as g(λ) can be approximated
by a polynomial. As another example, most methods proposed to
date for graph signal sampling (e.g., [8, 9]) set up the problem by

1Unless otherwise stated we will only consider undirected graphs here.

selecting a sampling rate (a fraction of graph nodes to be observed)
and then optimizing node selection. These decisions are made under
the assumption that graph signals will be smooth in some sense,
e.g., bandlimited. The choice of sampling rate a priori does not
require knowledge of the eigenstructure of the graph. While this
leads to a mathematically meaningful definition of which signals
can be reconstructed (e.g., bandlimited signals) other characteristics
of these signals (such as their localization) are often unclear.

Clearly, it is desirable to design algorithms, such as those dis-
cussed above, that can be applied to generic graphs. However, there
is an inherent risk in not having sufficient knowledge about the fre-
quency characteristics of the graph. In particular, working with sig-
nal models that can be interpreted and related to actual observed be-
havior becomes essential when considering specific application do-
mains. In this paper we argue that current methods fall short in this
regard and that not enough attention has been devoted to developing
a more specific understanding of graph signal frequencies. For ex-
ample, a given g(λ) may have a pass band containing a relatively
small number of discrete frequencies. Similarly, a given sampling
rate may partition the range of frequencies in such a way that some
subsets of nodes may be “over-represented” due to the localization
properties of graph frequencies. These and similar issues arise due
to the irregular nature of graph topologies, which in turn leads to
irregular distribution of discrete frequencies on the real line, and lo-
calization (and even compact support) of some of the elementary
frequencies. This is in contrast with elementary frequencies in con-
ventional signal processing, which are evenly spaced and are not
localized in time (or space).

Our main goals in this paper are twofold. First, we introduce a
series of novel graph frequency visualization tools, which are also
being made available online2. For relatively small size graphs these
tools make it possible, for the first time, to observe specific char-
acteristics of all graph frequencies, including their spread and ver-
tex domain localization properties. While our proposed tools re-
quire computing the GFT, which may not be practical in some cases,
and visualization may be difficult for large graphs, these ideas can
be the basis to develop suitable techniques for larger graphs. Sec-
ond, by presenting several examples of GFTs plotted using our tools,
we show some key differences between GFTs that our visualization
techniques can highlight, including localization of GFT eigenvec-
tors, sampling, and localization of SGWT atoms, as a few examples.

Our work was initially inspired by techniques used to represent
eigenstates in dynamical systems (e.g., [10]). While the importance
of eigenvector (graph frequency) structure in graph signal processing
is undeniable, surprisingly little effort has been devoted to visualiza-
tion. One exception is [11], which uses visualization examples to

2https://github.com/STAC-USC/GraSP/
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make the case that ordering frequencies on the eigenvalues of the
Laplacian may not be adequate. Our approach also suggests that a
better understanding of the implications of such an ordering is re-
quired. Unlike [11] our focus is primarily visualization, with the
goal of providing insights about existing methods.

The rest of this paper is organized as follows. In Section 2 we in-
troduce basic notation and motivate the need for visualization tools.
In Section 3, we present our proposed visualization tools and provide
simple examples comparing results for different graph operators. In
Section 4, we show experimental results illustrating the irregular be-
havior of frequencies in an example graph. These results suggest that
a more detailed understanding of graph frequencies is important, be-
fore GSP methods can be applied in specific applications. Finally
we conclude this paper in Section 5.

2. MOTIVATION

2.1. Basic definitions

We consider weighted undirected graphs G = (V,E ,W), where V is
the vertex set and E is the edge set of the graph. The entry wi,j ≥ 0
in the weight matrix W represents the weight of edge (i, j) ∈ E ,
and wi,j = 0 if (i, j) ∉ E . The graph Laplacian matrix is defined
as L = D −W, where D is the diagonal degree matrix with di,i =
∑n

j=1wi,j . Based on the definition of Laplacian matrix, for a given
graph signal x ∈ Rn, the Laplacian quadratic form

x⊺Lx = ∑
(i,j)∈E

wi,j(xi − xj)2 (1)

measures the variation of x on the graph.
The graph Fourier transform (GFT) is an important tool in graph

signal processing [1, 12, 2]. One possible definition of the GFT
would be to choose U the matrix of eigenvectors of the graph Lapla-
cian: L = UΛU⊺. Based on this definition, the GFT basis functions
u0, . . . ,un−1 are mutually orthogonal unit norm vectors that corre-
spond to the smallest to the largest variations on the graph:

u0 = argmin
∥f∥=1

f⊺Lf , uk = argmin
f⊥u0,...,uk−1,∥f∥=1

f⊺Lf .

Each of these basis vectors corresponds to a graph frequency, i.e,
the corresponding eigenvalue λ0, λ1, . . . , λn−1, where λ0 = 0 corre-
sponds to the constant eigenvector, u0 = n−1/21, similar to the DC
frequency for conventional signal processing.

2.2. Filtering

A significant amount of research effort has been devoted to devel-
oping transformations for graph signals. As a representative exam-
ple, consider spectral graph wavelet transforms (SGWTs) [7], one
of the earliest and most widely used approaches. This approach is
based on designing a bandpass prototype g(λ) (with g(0) = 0) and
a scaling function h(λ) (with h(0) ≠ 0). Multiple scaled versions
of g(λ), gt(λ) = g(tλ) combined with h(λ) can be shown to form
a frame, whose multi-resolution properties mimic those of wavelet
transforms for conventional signals. SGWTs can be implemented in
the frequency domain, by computing x̃ = U⊺x, the GFT of a sig-
nal x, and then scaling each of the frequencies by the corresponding
filter weights f(λi) before computing the inverse GFT. In order to
avoid computing the GFT, which could be costly for large graphs,
it is possible to compute the SGWT in the vertex domain by using
filters g(λ) that can be approximated by polynomials of λ. If the

filters are polynomial the transformation can be applied directly in
the vertex domain.

Thus, assuming a polynomial design, one can construct a com-
plete SGWT without having any information about the eigenvalues
and eigenvectors of the graph. While not having to compute the GFT
is compelling in terms of complexity, we will show that this could
lead to undesirable results. For example, assume that for a specific
graph and graph signal we observe that a certain band, correspond-
ing to a scale t, gt(λ) has low energy. This could be due to the signal
not having energy in those specific frequencies, or it may be due to
that particular passband not containing many discrete frequencies to
begin with.

2.3. Sampling

As a second example, consider graph signal sampling [8, 9]. Some
approaches require computing the GFT (e.g., [8]), while for others
(e.g., [9]) this is not needed. In either case, we face the question of
deciding what the sampling rate should be, i.e., if the graph has n
nodes we need to choose k < n, the number of nodes to be sam-
pled. This question is more straightforward for conventional signal
sampling. k allows us to quantify the frequency content of signals
of interest. Since frequencies are equally spaced and all basis vec-
tors are global (e.g., the DFT), it is easy to interpret the effect of
increasing the number of samples. In particular, since frequencies
are equally spaced, increasing the number of samples by one always
increases the maximum signal frequency by the same amount (i.e.,
1/N -th of the maximum frequency, if the signal has length N ).

This is not as straightforward for graph signals. Given that fre-
quencies are no longer evenly spaced, increasing the size of the
sampling set by 1 will increase the maximum signal frequency of
a signal that can be reconstructed, but this increase will not be the
same for each additional sampled node. As an example, consider two
cases where k1 and k2 samples, respectively, have already been se-
lected for sampling and we would like to choose an additional one.
Then, the respective increases in the size of the signal frequency
band would respectively be λk1+1 −λk1 and λk2+1 −λk2 , which are
not guaranteed to be equal. In fact, in some cases, if an eigenvalue
has multiplicity greater than one, say λk1+1 = λk1 there will be no
increase in the size of the signal band as the size of the sampling
set is increased. Moreover, since elementary graph frequencies can
be localized in the vertex domain, the choice of sampling rate can
also lead to localized sampling sets: for example, if the graph nodes
can be clustered, many nodes in one cluster could be added to the
sampling set, while only few will be added from another cluster.

3. PROPOSED VISUALIZATION TOOLS

In this section, we present our proposed visualization technique, and
discuss the design choices to be made. To give a concrete example,
we use the unweighted graph of Figure 1 and represent the GFT of
that graph based on its combinatorial Laplacian. Focusing on the
problem of displaying the GFT basis vectors, i.e., the columns of
U, we provide an overview of the visualization challenges and how
we tackle them. Note that each of these vectors is a graph signal by
itself, i.e., it associates a scalar value to each of the nodes.

3.1. Visualization challenges and design choices

Embedding Note that there is no “natural” way to plot a graph sig-
nal. Some graphs can be plotted in 2D space, i.e., each node is given



Fig. 1. Unweighted toy graph example, with 1D embedding.

horizontal and vertical coordinates, and the graph signal can be rep-
resented as a node attribute (see Figure 1). However, nodes are not
necessarily points in a metric space, and if they are, the dimension
of the space could be high. In order to achieve a compact representa-
tion, here we choose to map all graph nodes onto the real line via an
embedding. Clearly, information will be lost in the embedding, but
since our goal is to compare the GFT basis vectors, using the same
embedding for all of them will provide an easy and consistent way to
visualize them. Note that, although the embedding may not be that
robust in terms ordering individual nodes, it will generally preserve
clusters. It is the global structure associated to clusters that matters
most to understand graph frequencies and the GFT.

Frequency spacing Graph frequencies (the λk’s) are not equally
spaced. We decided to display each of the GFT basis vectors as a
signal on the real line, and to stack them all vertically. These are the
horizontal signals plotted on Figure 2. When doing so one option
is to make the vertical coordinate of each component uk a function
of the corresponding λk. This proved not to be practical for graphs
with very irregular frequency spacing, or when there are numerous
eigenvalues with multiplicity greater than one, since basis vectors
corresponding to similar (or identical) frequencies would be hard to
distinguish (see for example Figure 6(b)). Instead, we chose to use
the index of the component (k for a given uk) to space them (i.e.,
they are equispaced). Then, in order to convey the irregular spac-
ing of eigenvalues we plot them along the vertical right axis in their
original spacing and plot a line linking each component to the corre-
sponding graph frequency. Notice that in the case of a more general
graph signal linear transform, one has to associate a graph frequency
to each of the transform components. We will give an example of
such an association in the case of the SGWT in subsection 4.3.

Magnitude We had to decide on how to convey the magnitude of
the value associated to each node for a given GFT basis vector. That
is, denoting uk the k-th eigenvector, we are interested in plotting its
ith entry [uk]i in the position of the ith node in our embedding. To
do this, we first considered plotting this information as a signal with
each sample connected to the next using a black line. Unfortunately,
these black lines were too distracting, since many of the magnitudes

Fig. 2. Partial combinatorial Laplacian GFT of the unweighted toy graph in
Figure 1. Only the first 8 GFT basis vectors are shown here: {u0, . . . ,u7},
with ’amplitude_scale’ set to 1 (no overlap between GFT basis
vectors).

are actually very close to zero (see for example u5 on Figure 2).
To better see the support without the distracting influence of nodes
with zero magnitude, we use a shade of gray that corresponds to the
magnitude: highest magnitude is black, zero is a light gray, and lines
between two consecutive nodes in the embedding have a shade of
gray that is interpolated between the magnitudes (see Figure 2 for
an illustration). Moreover, since all zero or close to zero entries are
difficult to identify, we implemented two additional features to bet-
ter highlight the support of the signals. The most noticeable one in
Figure 2 are the dots. These are added each time the magnitude is
greater than some threshold parameter (see subsection 3.3), hence
showing the support of the signals. The second feature is the ver-
tical light gray bars: these show the embedding. In addition, these
vertical bars can be used to spot the entries that are not in the sup-
port of a GFT basis vector: a lack of dot around the intersection the
vertical bar and horizontal line of a GFT basis vector corresponds to
approximately zero magnitude.

Additional information for visualization Along with the basic
information described in the previous paragraph, we decided to add
visual elements to make explicit the presence of structure in the
graph. In particular, we included an option to plot cluster boundaries,
which are shown as thick black vertical bars in Figure 2. There are
additional visualization features that will be discussed in the follow-
ing sections. Two of these are of particular interest and are shown
in Figure 3: spectral bands represented by colored regions of the
plot, and highlighted entries using red circles (useful in the context
of sampling). We next illustrate these choices with an example, fol-
lowed by details about our implementation in Section 3.3.

3.2. Illustration on a Toy Graph

The function grasp_show_transform of the GraSP toolbox
[13] implements our proposed visualization technique3. In Figure 3

3Available since version 1.2.0.



Fig. 3. Combinatorial Laplacian GFT visualization using the graph of Fig-
ure 1. The visualization includes regularly spaced spectral bands between the
lowest graph frequency (0) and the maximum. The red circles correspond to
a sampling using [9] (cf. subsection 4.2 for details).

we show the visualization obtained for the graph Fourier trans-
form based on the combinatorial Laplacian of the unweighted graph
shown in Figure 1, and using the code in Figure 4. Additionally,
we show in Figure 2 a subset of the GFT basis vectors to better
illustrate key properties of the embedding and representation of the
magnitudes.

Several features are of importance. First and foremost, we can
see the stacked GFT basis vectors, appearing as irregularly sampled
times series thanks to the 1D embedding of nodes. Note the light
gray horizontal lines that depict for each of the basis vectors the
value 0, and the light gray vertical lines that identify each vertex
embedding. These pseudo-time series continue then to the right of
the figure until they are mapped on the right axis to the associated
graph frequency. We notice then the importance of this mapping due
to the irregular spacing of graph frequencies.

In Figure 3, the frequencies are then grouped into equal size
bands using colored backgrounds, leading to colored groups of GFT
basis vectors. This shows an effect of the irregular nature of graph
frequencies: even though the bands are of equal size, they do not
correspond the same number of GFT basis vector.

Next, the approximate support of the GFT basis vector is de-
picted using black dots: each time an entry has a large enough mag-
nitude a dot is added. Note that some of the GFT basis vector have
a very small support (e.g. u5). This is one property that makes GFT
basis vectors very different from Fourier modes in conventional sig-
nal processing. Making it possible to visualize this behavior is one
of the main motivations for our work.

Finally, the clusters are separated by thick black vertical lines,
and some of the entries of the GFT matrix are highlighted using red
circles in Figure 3. These highlighted entries can be used to represent
a specific sampling algorithm. Assuming that a sampling algorithm
selects one node to sample at each iteration, we represent the first
chosen node by highlighting the corresponding entry in the first GFT
basis vector, the second selected sample is shown in the second GFT
basis vector, and so on. Each additional node sampled allows for an
increase in bandwidth of the graph signal we can reconstruct.

3.3. Parameters of the GraSP implementation

The GraSP toolbox implements our proposed visualization tech-
nique in the function grasp_show_transform. This section
provides a description of visualization parameters and serves as a
reference of the implementation in version 1.2.0 of GraSP.

Embedding By default, grasp_show_transform uses the
second eigenvector of the random walk Laplacian, a typical choice
in the literature [14], to generate a 1D embedding of the vertices.
To override that choice, the parameter ’embedding’ can be used,
and can be set to either i) 0 (default) for an embedding equal to
the second eigenvector of the random walk Laplacian, ii) 1 for a
regular (equispaced) embedding based on the second eigenvector of
the random walk Laplacian, and iii) some n dimensional vector for
an arbitrary embedding.

Clusters The parameter ’clusters’ can be set as a vector giv-
ing the cluster id of each vertex. In that case, the resulting figure
will show thick vertical bars (see Figure 3) between clusters. Alter-
natively, a single integer value k will trigger the computation of k
clusters using an the embedding in kD based on the random walk
Laplacian eigenvectors.

Magnitude Normalization If the magnitude of the GFT basis
vectors is not constrained, the visualization can quickly become
hard to read with too much overlap between stacked GFT basis
vectors (magnitudes too large), or details too small to read (mag-
nitudes too small). To avoid this problem, we implemented three
normalization schemes for the GFT basis vectors to plot. The pa-
rameter ’amplitude_normalization’4 takes three possible
values: i) ’l2’ to have basis vectors of unit norm, `2(uk) = 1,∀k,
ii) ’max_abs’ (default) to have basis vectors of maximum unit am-
plitude, `∞(uk) = 1,∀k, and iii) ’overall_max_abs’ to have
the maximum amplitude over all modes equal to 1, maxk `∞(uk) = 1,
(same normalization factor for all modes). This constrains the mag-
nitude to a predefined range, and the various options above control
the relative amplitude normalization between GFT basis vectors.
Once the amplitudes are normalized, the value of the parameter
’amplitude_scale’ controls the overlap between the GFT
basis vectors: a value 1 means no overlap, and 1.5 a 50% overlap
(anything smaller 1 corresponds then to a gap between GFT basis
vectors).

Support Visualization Often the support of a GFT basis vector
spans the entire vertex set. However, in some cases the magni-
tude at a specific node may be so small that considering the node
to be in the support may be undesirable. To account for this, we
propose the parameter ’epsilon_support’ as a threshold on
the magnitude to decide whether a given vertex is in the approxi-
mate support of the mode. This is based on the values after nor-
malization (see ’amplitude_normalization’ above), and by
default the threshold is 0.05 (e.g. 5% of the the maximum mag-
nitude of the mode for ’max_abs’). Moreover, the parameter
’support_scatter_size’ controls the size of the dots shown
for the vertices in the support of the modes (default value: 36).

4Amplitude refers here to the maximum magnitude over vertices of a
mode.



grasp_start_opt_3rd_party(’usc_graphs’);
load(’toy_graph.mat’);
toy_graph = grasp_eigendecomposition(toy_graph);
sampling_sets = gsp_sampling(toy_graph);

5 clusters = [ones(12, 1) ; 2 * ones(8, 1) ; 3 * ones(7, 1)];
grasp_show_transform(gcf, toy_graph,...

’clusters’, clusters,...
’embedding’, 0,...
’bands’, max(toy_graph.eigvals) / 8 * [(0:7)’ (1:8)’],...

10 ’highlight_entries’, sampling_sets);

Fig. 4. Matlab code to generate Figure 3 using GraSP version 1.2.0. embedding is set to 0 to automatically compute the embedding from the second
eigenvector of the random walk Laplacian. gsp sampling is a generic function that returns a matrix S such that [S]li is one whenever i is the the lth
sampled vertex (and 0 otherwise). See subsection 4.2 for details.

Bands A bandpass filter is a filter that attenuates the graph signal
spectral components outside of its band. Given such a filter, in order
to visualize its effect on the GFT basis vectors, we added the possi-
bility to highlight a band, i.e., a given interval of frequencies. The
parameter ’bands’ can be set to a matrix with 2 columns, one for
the beginning of the band, and one with the end of the band, for as
many bands as rows in the matrix. Each band is then colored sim-
ilarly to what we observe on Figure 3 (shown here with 8 bands of
equal size and spanning the entire spectrum). Additionally, colors
can be set using the parameter ’bands_colors’ and providing a
matrix with 3 columns (RGB channels) and as many rows as there
are bands to plot.

Vertical Alignment of GFT Basis Vectors As described ear-
lier, we decided to represent each of the GFT basis vectors eq-
uispaced along the vertical direction. However, we also imple-
mented the scheme where each mode is aligned vertically with its
graph frequency, for reference. This is set using the parameter
’graph_signal_y_scheme’ set to ’freq’ (this parameter
default value is ’regular’ for equispaced modes). This can serve
as a reference and may also be useful in instances where informa-
tion about specific basis vectors is not as important and thus overlap
could be acceptable.

Alternative Transform grasp_show_transform displays
by default the GFT of the graph given as argument. To visualize
another linear transform given by a matrix H of size M × N , one
can set the parameter ’transform_matrix’ to H. The columns
of H∗ are then used instead of the GFT basis vectors. We will call
these columns the atoms of the linear transform5. Note that H is
effectively an analysis transform. For example, in the case of the
SGWT discussed in subsection 4.3, the transform is defined as the
orthogonal projection on the set of localized and scaled wavelet
atoms. This defines a transform matrix that given an input graph
signal x, outputs the set of wavelet coefficients Hx.

Custom Frequencies When providing a custom graph transform
matrix using ’transform_matrix’, the atoms of the transform
are not naturally associated with a set of graph frequencies, since the
atoms of the transform may not overlap with the GFT basis vectors.
For example, the SGWT uses bandpass filters, and we may be in-
terested in mapping each SGWT atom to some graph frequency that

5Note that in case of using an inner product for graph signals Q ≠ I (i.e.,
not the dot product), then the atoms are given by the columns of the matrix
Q−1H∗. See [5] for details.

depends on the band of the filter. For this purpose, the parameter
’graph_frequencies’ can be set to a vector of frequencies,
with as many entries as there are distinct frequencies. In subsec-
tion 4.3, we use the frequency of maximum response of the bandpass
filter to map each atom to a graph frequency.

Sampling and Highlighted Entries In the context of sampling
on graphs, one can be interested in understanding the relation be-
tween the spectrum of a graph and the nodes sampled (see subsec-
tion 4.2 for details). To achieve this we created an option to high-
light some of the entries of the transform matrix. The parameter
’highlight_entries’ can be set to a matrix of 0/1 values of
the same size as the transform matrix, where the (l, i) entry is one
when the corresponding entry in the transform matrix needs to be
highlighted (red circles on Figure 3). In the case of the GFT, this
would highlight the entry [ul]i.

Verbosity Similar to several other functions in the GraSP toolbox,
verbosity of the function grasp_show_transform can be set
using the parameter ’verbose’. By default it is set to true as it
prints important information.

Future Features GraSP being an actively developed toolbox, its
features can change overtime. Documentation is however provided
for each function, and we encourage the interested reader to look at
the source code for documentation of the various parameters of any
function in the toolbox, including grasp_show_transform.

4. EXPERIMENTAL RESULTS

In this section, we use again our toy graph, but this time we are giv-
ing weights to the edges. More precisely, this graph consists of nodes
in 2D and we choose the edge weights using a Gaussian kernel:

Wij = exp(d(i, j)
2

2σ2
) ,

where we chose σ = 1.5 and d(i, j) is the Euclidean distance be-
tween i and j. This setting allows us to highlight important proper-
ties we wish to study.

Before delving into the visualization, notice how the nodes are
grouped into three natural clusters in Figure 6(a): the cluster A with
an embedding with large values is mapped to right hand side of Fig-
ure 5, the cluster C with an embedding with the smallest values is
mapped to the left hand side of Figure 5, and finally the cluster B is
mapped to middle section of Figure 5.



(a) Combinatorial Laplacian GFT (b) Normalized Laplacian GFT
Fig. 5. GFT visualization for (a) the combinatorial Laplacian approach and (b) the normalized Laplacian approach.

4.1. GFT

For this first experiment, we want to highlight a key difference be-
tween the classical Fourier transform and the GFT: the GFT basis
vectors can be exactly (or approximately) compactly supported. In-
deed, as the literature shows [15, 16, 17, 18, 19], uncertainty princi-
ples for GFT basis vectors allow them to be localized in the vertex
domain.

The GFT based on the combinatorial Laplacian for the weighted
toy graph shows such a property. In Figure 5(a), cluster A is not in
the support of GFT basis vectors associated to the highest frequen-
cies in the spectrum. In other words, with such a GFT, an ideal high
pass filter that filters out any frequency below 1.5 (purple band and
below) is actually removing all energy that the signal has on any
of the cluster A nodes. Therefore, such a high pass filter is mostly
useful to describe high variations on cluster C (a couple of nodes in
cluster B have some energy in the support).

This example also shows that a signal that has energy that is
completely localized in cluster A cannot exhibit frequencies greater
than a certain threshold. This does not mean that the signal is ban-
dlimited in the conventional sense, it just means that signals with
energy only in that cluster can only achieve a certain maximum fre-
quency. Here, Figure 5(a) shows that the spectral band of such a
signal is actually smaller than that of a signal localized in cluster
C. In general, this case shows that if we have x̂(k) = ⟨x,uk⟩ ≃ 0,
this could correspond to two distinct cases: either x is orthogonal to
uk, or x is localized on some vertices that are not in the support of
uk. Strictly speaking, of course, both are instances of orthogonality,
but in the latter case we get information about localization: no sig-
nal compactly supported in that region would have any energy along
that basis vector.

On the other hand, for this example, the normalized Laplacian
approach in Figure 5(b) does not show such behavior, and most of
the GFT basis vectors have support across most of the nodes. Note
that this simple experiment cannot be used to generalize. A more
thorough study needs to be performed to draw any conclusion on the
topic of combinatorial versus normalized Laplacian with respect to
GFT basis vector support.

4.2. Sampling

Our visualization technique can also be leveraged to understand sam-
pling schemes. Typical algorithms for sampling set selection choose
k out of the n nodes in order to optimize interpolation to the n
nodes from data observed on the chosen k. In this formulation,
k can be viewed as the largest frequency index for a bandlimited
signal that could be reconstructed from k samples. Assuming a
greedy procedure such as [9] is used, we can use the parameter
’highlight_entries’ that highlights [uk]i if the (k + 1)th

sampled node is i, for all k ∈ {0, . . . , n − 1}.
We implemented this using the sampling method in [20, 9] and

show the results in Figure 5. These results show that the difference
in sampling behavior depending on which Laplacian is selected. In
particular, when the combinatorial Laplacian is used and the graphs
have clusters with different densities, we can see that the samples are
not uniformly distributed across the clusters. Indeed we can see that
the nodes on the left of the GFT plot (corresponding to the denser
cluster C in the graph), continue to be sampled even after the other
two clusters have been completely sampled. Since edge weights are
a function of distance between node, and we expect better interpo-
lation if nodes are close, this is a sensible result: data from nodes
in the dense cluster is easier to interpolate, and thus nodes in that
cluster are given lower priority for sampling.

4.3. SGWT

In this experiment, we are interested in studying the support of the
SGWT atoms across scales and nodes in the graph. More precisely
SGWT atoms are formally defined as the impulse response of band-
pass filters [7]:

gm,i = Gmδi,

where Gm = gm(L) = g(tmL) is the matrix of a bandpass filter
whose band is defined by the function g and the scaling factor tm.
We are interested in the support of the atoms gm,i, and in particular
whether we can see differences in support at coarse and fine scales.

In the classical setting, a wavelet atom is merely a scaled and
translated version of a mother wavelet [21]. Two observations are



(a) Embedding (b) Combinatorial Laplacian
Fig. 6. (a) Embedding used in Figure 5 and in (b) which is the same as Figure 5(a) with GFT basis vectors aligned vertically with their graph frequency
instead of equispaced GFT basis vectors. Notice how cluster A is mapped to the left section of (b) and Figure 5, cluster B to the right section, and cluster C to
the middle section.

important here: i) the scale of the wavelet completely defines the size
of the support of said wavelet, and ii) the translation operator does
not change the magnitude of the Fourier coefficient of the scaled
wavelet. In other words, the scale completely defines the support in
both the direct and spectral domains. However, as we saw in sub-
section 4.1 for the GFT, some spectral bands may have a localized
support. As such, the impulse responses of the bandpass graph filter
Gm have varying support, especially for the combinatorial Lapla-
cian approach: depending on which node the atom is centered on,
the support of the atom may have varying size on the graph.

This is validated with Figure 7(a), where the sets of atoms
{gm,i}m,i for each scale are stacked, from coarsest scale on the
bottom to finest scale on top. Within each scale, the ordering of
the nodes is based on the 1D embedding: if node i is assigned
to a real value ei in the 1D embedding, then the corresponding
atom will be plotted above all nodes j assigned embedding lo-
cations ej such that ej < ei. Finally, the values are normalized
using ’overall_max_abs’ to maintain the relative amplitude
difference between atoms.

Two observations are of importance in Figure 7(a). First, as ex-
pected, most atoms of cluster B are vanishing. This finest scale cor-
responds to a high pass filter where the support is limited to cluster
C. Therefore, the filter impulse response on those nodes of cluster
A is close to zero. This property is not shared by the nodes of the
cluster C (top left corner of the figure), where many of the atoms
have several nodes in their support. Given these observation, it is
clear that the study of the SGWT decomposition of a graph signal
needs to take into account the support of the atoms themselves: a
zero in the decomposition may correspond to either the signal being
orthogonal to the atom, or the atom itself being zero in the vertices
where the signal is localized.

The second observation is more significant. Indeed, even in the
coarsest wavelet scale (second row of atoms from the bottom in Fig-
ure 7(a)), some atoms have zero support. This is the case for most
atoms centered in cluster C. This property needs some thorough in-

vestigation, however, we can already identify some explanation us-
ing the GFT. In Figure 8(a), we plotted, for each scale, the output of
the corresponding bandpass filter gm applied to the GFT (each row
corresponds to Gmuk with uk a GFT basis vector). For cluster C, it
is quite clear that most of the nodes of the cluster have almost zero
magnitude on this filtered GFT basis. In other words, since we have:

gm,i =∑
k

⟨δi, gm(λk)uk⟩,

and gm(λk)uk is vanishing on nodes i in cluster C, then the gm,i

are also vanishing. Therefore, the property of non consistent support
for a given scale can happen for coarser and finer scales alike.

To end this section, we observe that the SGWT based on the
normalized Laplacian is slightly better with more consistent support
size, but it still shows some issues (see Figure 7(b)). It should be
noted that spectrum adapted tight graph wavelets [22] tackle part
of the issue, where some bands defined by the SGWT may actu-
ally correspond to a very small set of graph frequencies6, but it does
not solve the issue of localized GFT basis vectors, which is the root
cause of some of the vanishing SGWT atom.

5. CONCLUSION

In this paper we have described a new set of visualization tools for
graph signal processing, and their implementation in the GraSP
Matlab toolbox. While it is well known that the GFT differs sig-
nificantly from transforms for signals in regular domain, our goal is
to encourage further research into this behavior, and into tools for
graph signal representation that can be used in practice, by making
it easier to visualize graph signal frequency information.

6This issue is not arising clearly here since the graph frequency distribu-
tion is not skewed as much as with other graphs (see Figure 5(a)).



(a) (b)
Fig. 7. SGWT atoms using 7 wavelet scales (and 1 scaling function) for (a) the combinatorial Laplacian approach and (b) the normalized Laplacian approach.
Atoms are sorted from bottom to top by scale first (coarsest to finest) and then by node embedding. Highlighted entries correspond to the ith node of the atom
gi,k . Each atom is mapped to the frequency of maximum spectral response of its associated bandpass filter gk(λ). The associated band is obtained by keeping
all frequencies such that gk(λ) ≥ 1.2.



(a) (b)
Fig. 8. TODO.



6. REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processing
on graphs,” IEEE Signal Process. Mag., vol. 30, no. 3, pp.
83–98, 2013.

[2] A. Ortega, P. Frossard, J. Kovačević, JMF Moura, and P. Van-
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