Miguel Abambres
email: abambres@netcabo.pt

Marília Marcy

Graciela Doz

Potential of Neural Networks for Structural Damage Localization

Keywords: Structural Health Monitoring, Damage Localization, Steel Beams, Dynamic Properties, Natural Frequencies, Artificial Neural Networks

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Fabrication technology and structural engineering states-of-art have led to a growing use of slender structures in construction industry. Those structures (or structural members) are more Gerdau 2018) with a length of 2.155 m and free-free boundary conditions. Sixty-four distinct beams (also called examples or data points in this manuscript) were simulated in ANSYS (ANSYS, Inc 2018) FEA software to obtain a 3-input and 1-output dataset for ANN design. The three first natural frequencies (Hz) of the beam are the input (independent) variablessee Tab. 1, whereas the damage location is the output (dependent) variable. The latter is given by the longitudinal distance (m) from beam's edge to the mid-point of local cross-section reduction that defines the damage (see Fig. 1(a)). For the 13 undamaged beams, the damage location adopted is non-null, randomly taken below 0.005 m, an approach typically providing better ANN-based approximations, according to authors' experience. Tab. 1. Three first natural frequencies (ANN input variables): numerical vs. test [START_REF] Brasiliano | Identificação de Sistemas e Atualização de Modelos Numéricos com Vistas à Avaliação[END_REF] Timoshenko beam FEs of type BEAM188 (ANSYS, Inc 2018), characterized by six degrees of freedom per node, were employed in all numerical models. For validation purposes, the first two models were used to predict the three first natural frequencies of two beams tested by [START_REF] Brasiliano | Identificação de Sistemas e Atualização de Modelos Numéricos com Vistas à Avaliação[END_REF] (also reported in [START_REF] Marcy | Locating damages in beams with artificial neural network[END_REF]. These beams are characterized by the material and geometrical properties mentioned before, being one undamaged/intact and the other not. The latter was divided into 33 equal longitudinal elements and a 10 mm reduction of its cross-section (shortening of both flanges) was performed in elements 18 and 19, as illustrated in Fig. 1. Tab. 1 presents the validation results in terms of natural frequencies, as well as the corresponding numerical modal shapes. The maximum error of 3.9 % indicates the suitability of the FE model for the present study. Once validated the numerical model, 50 other damage scenarios were simulated, varying damage extent and/or location.

Artificial Neural Networks

Introduction

Machine learning, one of the six disciplines of Artificial Intelligence (AI) without which the task of having machines acting humanly could not be accomplished, allows us to "teach" computers how to perform tasks by providing examples of how they should be done [START_REF] Hertzmann | Machine Learning and Data Mining[END_REF]. When there is abundant data (also called examples or patterns) explaining a certain phenomenon, but its theory richness is poor, machine learning can be a perfect tool. The world is quietly being reshaped by machine learning, being the Artificial Neural Network (also referred in this manuscript as ANN or neural net) its (i) oldest [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF] and (ii) most powerful [START_REF] Hern | Google says machine learning is the future. So I tried it myself[END_REF] technique. ANNs also lead the number of practical applications, virtually covering any field of knowledge (Wilamowski andIrwin 2011, Prieto et. al 2016). In its most general form, an ANN is a mathematical model designed to perform a particular task, based in the way the human brain processes information, i.e. with the help of its processing units (the neurons). ANNs have been employed to perform several types of real-world basic tasks.

Concerning functional approximation, ANN-based solutions are frequently more accurate than those provided by traditional approaches, such as multi-variate nonlinear regression, besides not requiring a good knowledge of the function shape being modelled [START_REF] Flood | Towards the next generation of artificial neural networks for civil engineering[END_REF].

The general ANN structure consists of several nodes disposed in L vertical layers (input layer, hidden layers, and output layer) and connected between them, as depicted in Fig. 2. Associated to each node in layers 2 to L, also called neuron, is a linear or nonlinear transfer (also called activation) function, which receives the so-called net input and transmits an output (see Fig. 5).

All ANNs implemented in this work are called feedforward, since data presented in the input layer flows in the forward direction only, i.e. every node only connects to nodes belonging to layers located at the right-hand-side of its layer, as shown in Fig. 2. ANN's computing power makes them suitable to efficiently solve small to large-scale complex problems, which can be attributed to their (i) massively parallel distributed structure and (ii) ability to learn and generalize, i.e, produce reasonably accurate outputs for inputs not used during the learning (also called training) phase.

Learning

Each connection between 2 nodes is associated to a synaptic weight (real value), which, together with each neuron's bias (also a real value), are the most common types of neural net unknown parameters that will be determined through learning. Learning is nothing else than determining network unknown parameters through some algorithm in order to minimize network's performance measure, typically a function of the difference between predicted and target (desired) outputs. When ANN learning has an iterative nature, it consists of three phases: (i) training, (ii) validation, and (iii)

testing. From previous knowledge, examples or data points are selected to train the neural net, grouped in the so-called training dataset. Those examples are said to be "labelled" or "unlabeled", whether they consist of inputs paired with their targets, or just of the inputs themselveslearning is called supervised (e.g., functional approximation, classification) or unsupervised (e.g., clustering), whether data used is labelled or unlabeled, respectively. During an iterative learning, while the training dataset is used to tune network unknowns, a process of cross-validation takes place by using a set of data completely distinct from the training counterpart (the validation dataset), so that the generalization performance of the network can be attested. Once "optimum" network parameters are determined, typically associated to a minimum of the validation performance curve (called early stop see Fig. 3), many authors still perform a final assessment of model's accuracy, by presenting to it a third fully distinct dataset called "testing". Heuristics suggests that early stopping avoids overfitting, i.e. the loss of ANN's generalization ability. One of the causes of overfitting might be learning too many input-target examples suffering from data noise, since the network might learn some of its features, which do not belong to the underlying function being modelled [START_REF] Haykin | Neural networks and learning machines[END_REF].

Implemented ANN features

The "behavior" of any ANN depends on many "features 2017), making use of its neural network toolbox when dealing with popular learning algorithms (1-3 in Tab. 4). Each parametric sub-analysis (SA) consists of running all feasible combinations (also called "combos") of pre-selected methods for each ANN feature, in order to get performance results for each designed net, thus allowing the selection of the best ANN according to a certain criterion. The best network in each parametric SA is the one exhibiting the smallest average relative error (called performance) for all learning data.

It is worth highlighting that, in this manuscript, whenever a vector is added to a matrix, it means the former is to be added to all columns of the latter (valid in MATLAB). The most widely used form of dimensional analysis is the Buckingham's π-theorem, which was implemented in this work as described in [START_REF] Bhaskar | Qualitative physics using dimensional analysis[END_REF].

Input Dimensionality Reduction (feature 3)

When designing any ANN, it is crucial for its accuracy that the input variables are independent and relevant to the problem [START_REF] Gholizadeh | Assessment of load carrying capacity of castellated steel beams by neural networks[END_REF][START_REF] Kasun | Dimension reduction with extreme learning machine[END_REF]. There are two types of dimensionality reduction, namely (i) feature selection (a subset of the original set of input variables is used), and (ii) feature extraction (transformation of initial variables into a smaller set). In this work, dimensionality reduction is never performed when the number of input variables is less than six. The implemented methods are described next.

Linear Correlation

In this feature selection method, all possible pairs of input variables are assessed with respect to their linear dependence, by means of the Pearson correlation coefficient RXY, where X and Y denote any two distinct input variables. For a set of n data points (xi, yi), RXY is defined by

()() () () 1 2 2 1 1 (,) () () n i i i XY n n i i i i x x y y Cov X Y R Var X Var Y x x y y = = = - - = = - -    , (1)
where (i) Var(X) and Cov(X, Y) are the variance of X and covariance of X and Y, respectively, and

(ii) 𝑥̅ and 𝑦 ̅ are the mean values of each variable. In this work, cases where |𝑅 𝑋𝑌 | ≥ 0.99 indicate that one of the variables in the pair must be removed from the ANN modelling. The one to be removed is the one appearing less in the remaining pairs (𝑋, 𝑌) where |𝑅 𝑋𝑌 | ≥ 0.99. Once a variable is selected for removal, all pairs (𝑋, 𝑌) involving it must be disregarded in the subsequent steps for variable removal.

Auto-Encoder

This feature extraction technique uses itself a 3-layer feedforward ANN called auto-encoder (AE).

After training, the hidden layer output (y2p) for the presentation of each problem's input pattern (y1p) is a compressed vector (Q2 x 1) that can be used to replace the original input layer by a (much)

Q epochs Q   =    . (2)
Concerning the learning algorithm used for all AEs, no L2 weight regularization was employed, which was the only default specification not adopted in 'trainAutoencoder(…)'. Training Mode

1 Logistic Midpoint (W) + Rands (b) BP NNC Batch 2 Identity-Logistic Rands BPA - Mini-Batch 3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online 4 Bipolar Randnr (W) + Rands (b) ELM - - 5 Bilinear Randsmall mb ELM - - 6 Positive Sat Linear Rand [-Δ, Δ] I-ELM - - 7 Sinusoid SVD CI-ELM - - 8 Thin-Plate Spline MB SVD - - - 9 Gaussian - - - - 10 Multiquadratic - - - - 11 Radbas - - - -

Orthogonal and Sparse Random Projections

This is another feature extraction technique aiming to reduce the dimension of input data Y1 (Q1

x P) while retaining the Euclidean distance between data points in the new feature space. This is attained by projecting all data along the (i) orthogonal or (ii) sparse random matrix A (Q1 x Q2, Q2

< Q1), as described by [START_REF] Kasun | Dimension reduction with extreme learning machine[END_REF]. 1) For each variable q (row) in the complete input dataset, compute its minimum and maximum values.

2) Select all patterns (if some) from the learning dataset where each variable takes either its minimum or maximum value. Those patterns must be included in the training dataset, regardless what pt is. However, if the number of patterns "does not reach" pt, one should add the missing amount, providing those patterns are the ones having more variables taking extreme (minimum or maximum) values.

3) In order to select the validation patterns, randomly select pv / (pv + ptt) of those patterns not belonging to the previously defined training dataset. The remainder defines the testing dataset.

It might happen that the actual distribution pt-pv-ptt is not equal to the one imposed a priori (before step 1), which is due to the minimum required training patterns specified in step 2.

Input Normalization (feature 5)

The progress of training can be impaired if training data defines a region that is relatively narrow in some dimensions and elongated in others, which can be alleviated by normalizing each input variable across all data patterns. The implemented techniques are the following:

Linear Max Abs [START_REF] Lachtermacher | Backpropagation in time-series forecasting[END_REF] proposed a simple normalization technique given by  

1 1 1 (,:) { } (,:) max (,:) n Yi Y i Yi = , (3)
where {Y1}n (i, :) and Y1 (i, :) are the normalized and non-normalized values of the i th input variable for all learning patterns, respectively. Notation ":" in the column index, indicate the selection of all columns (learning patterns).

Linear [0, 1] and[-1, 1] A linear transformation for each input variable (i), mapping values in

Y1(i,:) from [a*, b*]=[min(Y1(i,:)), max(Y1(i,:))] to a generic range [a, b], is obtained from () () () () 1 1 ,: * { ,: * }) * (n Y i a Y a a b b i a - - - = + . (4) Ranges [a, b]=[0, 1] and [a, b]=[-1, 1] were considered.

Nonlinear

Proposed by [START_REF] Pu | Application of artificial neural networks to evaluation of ultimate strength of steel panels[END_REF], although in the context of output normalization, the only nonlinear normalization method implemented for input data reads

  () () () () 1 1 1 , , , () 10 n t Y i j Y i j sign Y i j C i = + , (5)
where (i) Y1(i, j) is the non-normalized value of input variable i for pattern j, (ii) t is the number of digits in the integer part of Y1(i, j), (iii) sign(…) yields the sign of the argument, and (iv) C(i) is the average of two values concerning variable i, C1(i) and C2(i), where the former leads to a minimum normalized value of 0.2 for all patterns, and the latter leads to a maximum normalized value of 0.8 for all patterns.

Linear Mean Std [START_REF] Tohidi | Inelastic lateral-torsional buckling capacity of corroded web opening steel beams using artificial neural networks[END_REF] proposed the following technique

  () () () () 1 1 1 ,: 1 ,:
,: ,:

Yi n Yi Yi Y i   - = , (6)
where 𝜇 𝑌 1(𝑖,:) and 𝜎 𝑌 1 (𝑖,:) are the mean and standard deviation of all non-normalized values (all patterns) stored by variable i.

Output Transfer Functions (feature 6)

Logistic

The most usual form of transfer functions is called Sigmoid. An example is the logistic function given by 1 ()

1 s s e  - = + . (7
)

Hyperbolic Tang

The Hyperbolic Tangent function is also of sigmoid type, being defined as . (8)

Bilinear

The implemented Bilinear function is defined as ,0 () 0, 0

ss s s    =    . (9)

Identity

The Identity activation is often employed in output neurons, reading () s s  = . (10)

Output Normalization (feature 7)

Normalization can also be applied to the output variables so that, for instance, the amplitude of the solution surface at each variable is the same. Otherwise, training may tend to focus (at least in the earlier stages) on the solution surface with the greatest amplitude (Flood and Kartam 1994a).

Normalization ranges not including the zero value might be a useful alternative since convergence issues may arise due to the presence of many small (close to zero) target values [START_REF] Mukherjee | Prediction of buckling load of columns using artificial neural networks[END_REF].

Four normalization methods were implemented. The first three follow eq. (4 method implemented is the one described by eq. (6).

Network Architecture (feature 8)

Multi-Layer Perceptron Network (MLPN)

This is a feedforward ANN exhibiting at least one hidden layer. Fig. 2 depicts a 3-2-1 MLPN (3 input nodes, 2 hidden neurons and 1 output neuron), where units in each layer link only to some nodes located ahead. At this moment, it is appropriate to define the concept of partially-(PC) and fully-connected (FC) ANNs. In this work a FC feedforward network is characterized by having each node connected to every node in a different layer placed forwardany other type of network is said to be PC (e.g., the one in Fig. 2). According to [START_REF] Wilamowski | Neural Network Architectures and Learning algorithms[END_REF], PC MLPNs are less powerful than MLPN where connections across layers are allowed, which usually lead to smaller networks (less neurons).

Fig. 4 represents a generic MLFN composed of L layers, where l (l = 1,…, L) is a generic layer and "ql" a generic node, being q = 1,…, Ql its position in layer l (1 is reserved to the top node). Fig. 5 represents the model of a generic neuron (l = 2,…, L), where (i) p represents the data pattern presented to the network, (ii) subscripts m = 1,…, Qn and n = 1,…, l-1 are summation indexes representing all possible nodes connecting to neuron "ql" (recall Fig. 4), (iii) bql is neuron's bias, and (iv) w mnql represents the synaptic weight connecting units "mn" and "ql". Neuron's net input for the presentation of pattern p (Sqlp) is defined as

Q 1 1 1 , n l lp m n q mnp mnp mnp mnql ql mnql mnql w b w w S y y y - = = = +   , (11
)
where ym1p is the value of the m th network input concerning example p. The output of a generic neuron can then be written as (l = 2,…, L)

() l qlp qlp yS  = , (12
)
where φl is the transfer function used for all neurons in layer l.

Radial-Basis Function Network (RBFN)

Although having similar topologies, RBFN and MLPN behave very differently due to distinct hidden neuron modelsunlike the MLPN, RBFN have hidden neurons behaving differently than output neurons. According to [START_REF] Xie | Comparison between traditional neural networks and radial basis function networks[END_REF], RBFN (i) are specially recommended in functional approximation problems when the function surface exhibits regular peaks and valleys, and (ii) perform more robustly than MLPN when dealing with noisy input data. Although traditional RBFN have 3 layers, a generic multi-hidden layer (see Fig. 4) RBFN is allowed in this work, being the generic hidden neuron's model concerning node "l1l2" (l1 = 1,…,Ql2, l2 = 2,…, L-1) presented in Fig.

6

. In this model, (i) 𝑣 𝑙 1 𝑙 2 𝑝 and 𝜉 𝑙 1 𝑙 2 (called RBF center) are vectors of the same size (𝜉 𝑧𝑙 1 𝑙 2 denotes de z component of vector 𝜉 𝑙 1 𝑙 2 , and it is a network unknown), being the former associated to the presentation of data pattern p, (ii) 𝜎 𝑙 1 𝑙 2 is called RBF width (a positive scalar) and also belongs, along with synaptic weights and RBF centers, to the set of network unknowns to be determined through learning, (iii) 𝜑 𝑙 2 is the user-defined radial basis (transfer) function (RBF), described in eqs.

(20)-(23), and (iv) 𝑦 𝑙 1 𝑙 2 𝑝 is neuron's output when pattern p is presented to the network. In ANNs not involving learning algorithms 1-3 in Tab. 4, vectors 𝑣 𝑙 1 𝑙 2 𝑝 and 𝜉 𝑙 1 𝑙 2 are defined as (two versions of

𝑣 𝑙 1 𝑙 2 𝑝
where implemented and the one yielding the best results was selected)

1 2 2 2 1 2 2 2 1 2 2 2 1 2 1 2 2 2 2 1 2 1 2 1 2 1 2 1 1 2 2 1 2 1 2 1(1) 1(1) (1) (1) (1) (1) 1(1) (1) (1)
l p z l l l Q l p Q l l l l l l p z l p Q l p l l l l zl l Q l l v w w w v y y y y y y     - - - - - - - - - - - - -   =     =     =   , (13)
whereas the RBFNs implemented through MATLAB neural net toolbox (involving learning algorithms 1-3 in Tab. 4) are based on the following definitions

1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2 1(1) (1) (1) 1(1) (1) (1)
...

l l p l l l p z l p Q l p l l l l l z l l l Q l l l v w w w y y y  - - - - - - - -   =     =   . (14
)
Lastly, according to the implementation carried out for initialization purposes (described in 3.3.12), (i) RBF center vectors per hidden layer (one per hidden neuron) are initialized as integrated in a matrix (termed RBF center matrix) having the same size of a weight matrix linking the previous layer to that specific hidden layer, and (ii) RBF widths (one per hidden neuron) are initialized as integrated in a vector (called RBF width vector) with the same size of a hypothetic bias vector.

Hidden Nodes (feature 9)

Inspired by several heuristics found in the literature for the determination of a suitable number of hidden neurons in a single hidden layer net [START_REF] Aymerich | Prediction of fatigue strength of composite laminates by means of neural networks[END_REF][START_REF] Rafiq | Neural network design for engineering applications[END_REF][START_REF] Xu | Novel approach for determining the optimal number of hidden layer neurons for FNN's and its application in data mining[END_REF], each value in hntest, defined in eq. (15), was tested in this work as the total number of hidden nodes in the model, i.e. the sum of nodes in all hidden layers (initially defined with the same number of neurons). The number yielding the smallest performance measure for all patterns (as defined in 3.4, with outputs and targets not postprocessed), is adopted as the best solution. The aforementioned hntest is defined by

() () () 1 1 1 1 2 1 1 1 2 2 = [

Connectivity (feature 10)

For this ANN feature, three methods were implemented, namely (i) adjacent layersonly connections between adjacent layers are made possible, (ii) adjacent layers + input-outputonly connections between (ii1) adjacent and (ii2) input and output layers are allowed, and (iii) fullyconnected (all possible feedforward connections).

Hidden Transfer Functions (feature 11)

Besides functions (i) Logisticeq. (7), (ii) Hyperbolic Tangenteq. (8), and (iii) Bilineareq. (9), defined in 3.3.6, the ones defined next were also implemented as hidden transfer functions.

During software validation it was observed that some hidden node outputs could be infinite or NaN (not-a-number in MATLABe.g., 0/0=Inf/Inf=NaN), due to numerical issues concerning some hidden transfer functions and/or their calculated input. In those cases, it was decided to convert infinite to unitary values and NaNs to zero (the only exception was the bipolar sigmoid function, where NaNs were converted to -1). Other implemented trick was to convert possible Gaussian function's NaN inputs to zero.

Identity-Logistic

In [START_REF] Gunaratnam | Effect of representation on the performance of neural networks in structural engineering applications[END_REF], issues associated with flat spots at the extremes of a sigmoid function were eliminated by adding a linear function to the latter, reading . (17)

Positive Saturating Linear

In MATLAB neural net toolbox, the so-called Positive Saturating Linear transfer function, ranging in [0, 1], is defined as

1, 1 () , 0 1 0, 0 s s s s s     =       . (18
)

Sinusoid

Concerning less popular transfer functions, reference is made in [START_REF] Bai | Sparse extreme learning machine for classification[END_REF]

() () 2 1 2 1 2 2 ln , l l l p l l s s s s v   = = - , (20)
(ii) the next function is employed as Gaussian-type function when learning algorithms 4-7 are used (see Tab. 4) ()

2 1 2 1 2 1 2 2 0.5 2 , s l l l p l l l l s s v e    - = = - , (21)
(iii) the Multiquadratic function is given by ()

2 1 2 1 2 1 2 2 2 , l l l p l l l l s s s v    = = - + , (22)
and (iv) the Gaussian-type function (called "radbas" in MATLAB toolbox) used by RBFNs trained with learning algorithms 1-3 (see Tab. 4), is defined by ()

2 1 2 1 2 1 2 2 , l l l p l l l l s s s v e    - = = - , (23)
where || … || denotes the Euclidean distance in all functions.

Parameter Initialization (feature 12)

The initialization of (i) weight matrices (Qa x Qb, being Qa and Qb node numbers in layers a and b being connected, respectively), (ii) bias vectors (Qb x 1), (iii) RBF center matrices (Qc-1 x Qc, being c the hidden layer that matrix refers to), and (iv) RBF width vectors (Qc x 1), are independent and in most cases randomly generated. For each ANN design carried out in the context of each parametric analysis combo, and whenever the parameter initialization method is not the "Mini-Batch SVD", ten distinct simulations varying (due to their random nature) initialization values are carried out, in order to find the best solution. The implemented initialization methods are described next.

Midpoint, Rands, Randnc, Randnr, Randsmall

These are all MATLAB built-in functions. Midpoint is used to initialize weight and RBF center

Rand [-lim, lim]

This function is based on the proposal in [START_REF] Waszczyszyn | Neural Networks in the Analysis and Design of Structures[END_REF], and generates random numbers with uniform distribution in [-lim, lim], being lim layer-dependent and defined by

1/ , < = 0.5 , = a Q b Q b L lim b L    , (24
)
where a and b refer to the initial and final layers integrating the matrix being initialized, and L is the total number of layers in the network. In the case of a bias or RBF width vector, lim is always taken as 0.5.

SVD

Although [START_REF] Deng | A fast SVD-Hidden-nodes based extreme learning machine for large-scale data Analytics[END_REF] proposed this method for a 3-layer network, it was implemented in this work regardless the number of hidden layers.

Mini-Batch SVD

Based on [START_REF] Deng | A fast SVD-Hidden-nodes based extreme learning machine for large-scale data Analytics[END_REF], this scheme is an alternative version of the former SVD. Now, training data is split into min{Qb, Pt} chunks (or subsets) of equal size Pti = max{floor(Pt / Qb), 1}

floor rounds the argument to the previous integer (whenever it is decimal) or yields the argument itself, being each chunk aimed to derive Qbi = 1 hidden node.

Learning Algorithm (feature 13)

The most popular learning algorithm is called error back-propagation (BP), a first-order gradient method. Second-order gradient methods are known to have higher training speed and accuracy [START_REF] Wilamowski | How to not get frustrated with neural networks[END_REF]. The most employed is called Levenberg-Marquardt (LM). All these traditional schemes were implemented using MATLAB toolbox (The Mathworks, Inc 2017).

Back-Propagation (BP, BPA), Levenberg-Marquardt (LM)

Two types of BP schemes were implemented, one with constant learning rate (BP) -'traingd' in MATLAB, and another with iteration-dependent rate, named BP with adaptive learning rate (BPA) -'traingda' in MATLAB. The learning parameters set different than their default values are:

(i) Learning Rate = 0.01 / cs 0.5 , being cs the chunk size, as defined in 3.3.15.

(ii) Minimum performance gradient = 0.

Concerning the LM scheme -'trainlm' in MATLAB, the only learning parameter set different than its default value was the abovementioned (ii).

Extreme Learning Machine (ELM, mb ELM, I-ELM, CI-ELM)

Besides these traditional learning schemes, iterative and time-consuming by nature, four versions of a recent, powerful and non-iterative learning algorithm, called Extreme Learning Machine (ELM),

were implemented (unlike initially proposed by the authors of ELM, connections across layers were allowed in this work), namely: (batch) ELM (Huang et al. 2006a), Mini-Batch ELM (mb ELM) [START_REF] Liang | A fast and accurate online Sequential learning algorithm for Feedforward networks[END_REF], Incremental ELM (I-ELM) [START_REF] Huang | Universal approximation using incremental constructive feedforward networks with random hidden nodes[END_REF]), Convex Incremental ELM (CI-ELM) [START_REF] Huang | Convex incremental extreme learning machine[END_REF].

Performance Improvement (feature 14)

A simple and recursive approach aiming to improve ANN accuracy is called Neural Network Composite (NNC), as described in [START_REF] Beyer | Neural Network Based Response Surface Methods -A Comparative Study, 5th German LS-DYNA Forum[END_REF]. In this work, a maximum of 10 extra ANNs were added to the original one, until maximum error is not improved between successive NNC solutions. Later in this manuscript, a solution given by a single neural net might be denoted as ANN, whereas the other possible solution is called NNC. suitable learning rate to be used in learning algorithms such as the BP, is ηonline /√𝑐𝑠, where cs is the chunk size and ηonline is the online learning ratetheir proposal was adopted in this work. Based on the proposal of [START_REF] Liang | A fast and accurate online Sequential learning algorithm for Feedforward networks[END_REF], the constant chunk size (cs) adopted for all chunks in mini-batch mode reads cs = min{mean(hn) + 50, Pt}, being hn a vector storing the number of hidden nodes in each hidden layer in the beginning of training, and mean(hn) the average of all values in hn.

Network Performance Assessment

Several types of results were computed to assess network outputs, namely (i) maximum error, (ii) % errors greater than 3%, and (iii) performance, which are defined next. All abovementioned errors are relative errors (expressed in %) based on the following definition, concerning a single output variable and data pattern,

100 qp qLp qp qp dy d e - = , (25)
where (i) dqp is the q th desired (or target) output when pattern p within iteration i (p=1,…, Pi) is presented to the network, and (ii) yqLp is net's q th output for the same data pattern. Moreover, denominator in eq. (25) is replaced by 1 whenever |dqp| < 0.05dqp in the nominator keeps its real value. This exception to eq. (25) aims to reduce the apparent negative effect of large relative errors associated to target values close to zero. Even so, this trick may still lead to (relatively) large solution errors while groundbreaking results are depicted as regression plots (target vs. predicted outputs).

Maximum Error

This variable measures the maximum relative error, as defined by eq. (25), among all output variables and learning patterns.

Percentage of Errors > 3%

This variable measures the percentage of relative errors, as defined by eq. (25), among all output variables and learning patterns, that are greater than 3%.

Performance

In functional approximation problems, network performance is defined as the average relative error, as defined in eq. (25), among all output variables and data patterns being evaluated (e.g., training, all data).

Software Validation

Several benchmark datasets/functions were used to validate the developed software, involving lowto high-dimensional problems and small to large volumes of data. Due to paper length limit, validation results are not presented herein but they were made public online [START_REF] Researcher | Annsoftwarevalidation-report[END_REF].

Parametric Analysis Results

Aiming to reduce the computing time by cutting in the number of combos to be runnote that all features combined lead to hundreds of millions of combos, the whole parametric simulation was divided into nine parametric SAs, where in each one feature 7 only takes a single value. This measure aims to make the performance ranking of all combos within each "small" analysis more "reliable", since results used for comparison are based on target and output datasets as used in ANN training and yielded by the designed network, respectively (they are free of any postprocessing that eliminates output normalization effects on relative error values). Whereas (i) the 1 st and 2 nd SAs aimed to select the best methods from features 1, 2, 5, 8 and 13 (all combined), while adopting a single popular method for each of the remaining features (F3: 6, F4: 2, F6: {1 or 7}, F7: 1, F9: 1, F10: 1, F11: {3, 9 or 11}, F12:

2, F14: 1, F15: 1see Tabs. 2-4) -SA 1 involved learning algorithms 1-3 and SA 2 involved the ELMbased counterpart, (ii) the 3 rd -7 th SAs combined all possible methods from features 3, 4, 6 and 7, and concerning all other features, adopted the methods integrating the best combination from the aforementioned first SA, (iii) the 8 th SA combined all possible methods from features 11, 12 and 14, and concerning all other features, adopted the methods integrating the best combination (results compared after postprocessing) among the previous five sub-analyses, and lastly (iv) the 9 th SA combined all possible methods from features 9, 10 and 15, and concerning all other features, adopted the methods integrating the best combination from the previous analysis.

ANN feature methods used in the best combo from each of the abovementioned nine parametric sub-analyses, are specified in Tab. 5 (the numbers represent the method number as in Tabs 2-4). Tab.

6 shows the corresponding relevant results for those combos, namely (i) maximum error, (ii) % errors > 3%, (iii) performance (all described in section 3, and evaluated for all learning data), (iv) total number of hidden nodes in the model, and (v) average computing time per example (including data pre-and post-processing). All results shown in Tab. 6 are based on target and output datasets computed in their original format, i.e. free of any transformations due to output normalization and/or dimensional analysis. The microprocessor used in this work has the following features: OS: Win10 Home-64bits, RAM: 8GB, Local Disk Memory: 128GB, CPU: Intel® Core™ i5 6200U (dual-core) @ 2.30 GHz.

Tab. 5. ANN features (F) methods used in the best combo from each parametric sub-analysis (SA).

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 1 1 2 6 2 1 1 1 1 1 1 3 2 3 1 3 2 1 2 6 2 3 7 1 2 1 1 9 2 7 1 3 3 1 2 6 3 1 1 1 1 1 1 3 2 3 1 3 4 1 2 6 2 1 1 2 1 1 1 3 2 3 1 3 5 1 2 6 1 1 1 3 1 1 1 3 2 3 1 3 6 1 2 6 2 1 7 4 1 1 1 3 2 3 1 3 7 1 2 6 4 1 7 5 1 1 1 3 2 3 1 3 8 1 2 6 4 1 7 5 1 1 1 3 2 3 1 3 9 1 2 6 4 1 7 5 1 3 3 3 2 3 1 3
Overall, to obtain satisfactory results, 219 ANN feature combinations were run in the parametric analysis of this problem. In 3.7, the best ANN-based model obtained is proposed to efficiently and effectively solve the real-world problem addressed. In sub-section 3.7.4, the performance results of the proposed ANN are also based on target and output datasets computed in their original format.

Proposed ANN-Based Model

The proposed ANN is the one, among the ones simulated during the parametric analysis, exhibiting the lowest maximum error. In this case, that model was yielded by SA 9 and is characterized by the ANN feature methods {1,2,6,4,1,7,5,1,3,3,3,2,3,1,[3][4] Aiming to allow implementation of this model by any user, all variables/equations required for (i) data preprocessing, (ii) ANN simulation, and (iii) data postprocessing, are presented in 3.7.1-3.7.3, respectively. The proposed ANN is a MLPN with 5 layers and a distribution of nodes/layer given by 3-4-4-4-1.

Concerning connectivity, the network is fully-connected (across layer connections allowed), and the hidden and output transfer functions are all Hyperbolic Tangent and Identity, respectively. The network was trained using the LM algorithm (1500 epochs). After design, the network computing time concerning the presentation of a single example (including data pre/postprocessing) is 1.34x10 -3 s -Fig. 7 depicts a simplified scheme of some of network key features. Lastly, all relevant performance results concerning the proposed ANN are illustrated in 3.7.4. It is worth recalling that, in this manuscript, whenever a vector is added to a matrix, it means the former is to be added to all columns of the latter (this is valid in MATLAB).

Input Data Preprocessing

For future use of the proposed ANN to simulate new data Y1,sim (3 x Psim vector) concerning Psim patterns, the same data preprocessing (if any) performed before training must be applied to the input dataset. That preprocessing is defined by the methods used for ANN features 2, 3 and 5 (respectively 2, 6 and 1see Tab. 2), which should be applied after all (eventual) qualitative variables in the input dataset are converted to numerical (using feature 1's method). Next, the necessary preprocessing to be applied to Y1,sim, concerning features 2, 3 and 5, is fully described.

Dimensional Analysis and Dimensionality Reduction

Since neither dimensional analysis (d.a.) nor dimensionality reduction (d.r.) were carried out,

 

 

Y Y     =     , (27)
where ".x" multiplies component i in the l.h.s vector by all components in row i of Y1,sim.

ANN-Based Analytical Model

Once determined the preprocessed input dataset {Y1,sim}n after (3 x Psim matrix), the next step is to present it to the proposed ANN to obtain the predicted output dataset {Y5,sim}n after (1 x Psim vector), which will be given in the same preprocessed format of the target dataset in learning.

In order to convert the predicted outputs to their "original format" (i.e., without any transformation due to normalization or dimensional analysisthe only transformation visible will be the (eventual) qualitative variables written in their numeric representation), some postprocessing is needed, as described in detail in 3.7.3. Next, the mathematical representation of the proposed ANN is given, so that any user can implement it to determine {Y5,sim}n after , thus eliminating all rumors that ANNs are "black boxes".

  ()   ()   ()     () 12
n i n m sim Y W b Y W W Y b Y W W Y W Y b W Y W Y W Y Y W Y Y Y Y b     - - - - - - - - - - = + = + + = + + + = + + + + , (28)
=                     , (30
                  =       , (31
W W W - - - = = =                     4
W b -= =                         . (33
)
Vectors and matrices presented in eqs. (30)-(33) can also be found in Authors (2018b), aiming to ease their implementation by any interested reader.

Output Data Postprocessing

In order to transform the output dataset obtained by the proposed ANN, {Y5,sim}n after , to its original format (Y5,sim), i.e. without the effects of dimensional analysis and/or output normalization (possibly) taken in target dataset preprocessing prior training, the postprocessing addressed next must be performed.

Non-normalized (just after dimensional analysis) and Original formats

Once obtained {Y5,sim}n after , the following relations hold for its transformation to its nonnormalized format {𝑌 5,𝑠𝑖𝑚 } 𝑑.𝑎. 𝑎𝑓𝑡𝑒𝑟 (just after the dimensional analysis stage), and for latter's transformation to its original format 𝑌 5,𝑠𝑖𝑚 (with no influence of preprocessing)

    , (35) meaning that no structural damage exists whenever the output yielded by eq. (34) is negative.

Performance Results

Results yielded by the proposed ANN can be found either (i) online in Authors (2018a), where the target and ANN output values are provided together with the corresponding input dataset, or (ii) in terms of performance variables defined in sub-section 3.4, as presented next in the form of several graphs: (ii1) a regression plot (Fig. 8) where network target and output data are plotted, for each data point, as x-and y-coordinates respectivelya measure of linear correlation is given by the Pearson Correlation Coefficient (R), as defined in eq. (1); (ii2) a performance plot (Fig. 9), where performance values are displayed for several datasets; and (ii3) an error plot (Fig. 10), where values concern the maximum error and the % of errors greater than 3%, for all data.

It´s worth highlighting that all graphical results just mentioned are based on target and output datasets computed in their original format, i.e. free of any transformations due to output normalization and/or dimensional analysis.

Further Testing: Prediction of Experimental Results

Aiming to test the proposed analytical model to the prediction of experimental results, three test results taken from Marcy et.al (2014) Regardless the high quality of the predictions yielded by the proposed model, the reader should not blindly accept it as accurate for any other instances falling inside the input domain of the design dataset. Any analytical approximation model must undergo extensive validation before it can be taken as reliable (the more inputs, the larger the validation process). Models proposed meanwhile are part of a learning process towards excellence.

Since it was proved that the approach taken works well for structural members, authors' next step (in the very near future) is to apply similar procedures to entire bridge or building structures, this time based on much larger datasets in order to provide an analytical solution with high credibility concerning its generalization capability, i.e. its capacity of giving good results for a large amount of examples (i) within the ranges considered for the input variables, and (ii) not considered during ANN development.

Fig. 1 .

 1 Fig. 1. Damaged beam tested by Brasiliano (2005): (a) experimental layout and damage location details, and (b) undamaged and damaged cross-sections.

Fig. 2 .

 2 Fig. 2. Example of a feedforward neural network.

Fig. 3 .

 3 Fig. 3. Cross-validation -assessing network's generalization ability.

Tab. 4 .

 4 Implemented ANN features (F) 11-15.

 Four distributions of data (methods) were implemented, namely pt-pv-ptt = {80-10-10,70-15- 15, 60-20-20, 50-25-25}, where pt-pv-ptt represent the amount of training, validation and testing examples as % of all learning data (P), respectively. Aiming to divide learning data into training, validation and testing subsets according to a predefined distribution pt-pv-ptt, the following algorithm was implemented (all variables are involved in these steps, including qualitative ones after converted to numericsee 3.3.1):

), where (i) [a, b] = 70% [φmin, φmax], (ii) [a, b] = 60% [φmin, φmax], and (iii) [a, b] = 50% [φmin, φmax], being [φmin, φmax] the output transfer function range, and [a, b] determined to be centered within [φmin, φmax] and to span the specified % (e.g., (b-a) = 0.7 (φmax -φmin)). Whenever the output transfer functions are unbounded (Bilinear and Identity), it was considered [a, b] = [0, 1] and [a, b] = [-1, 1], respectively. The fourth normalization

Fig. 4 .

 4 Fig. 4. Generic multi-layer feedforward network.

Fig. 5 .

 5 Fig. 5. Generic neuron placed anywhere in the MLPN of Fig. 4 (l = 2,…, L).

 Q1 and QL are the number of input and output nodes, respectively, (ii) P and Pt are the number of learning and training patterns, respectively, and (iii) F13 is the number of feature 13's method (see Tab. 4).

Fig. 6 .

 6 Fig. 6. Generic hidden neuron l1l2 placed anywhere in the RBFN of Fig. 4 (l2 = 2,…, L-1).

 matrices only (not vectors). All columns of the initialized matrix are equal, being each entry equal to the midpoint of the (training) output range leaving the corresponding initial layer noderecall that in weight matrices, columns represent each node in the final layer being connected, whereas rows represent each node in the initial layer counterpart. Rands generates random numbers with uniform distribution in [-1, 1]. Randnc (only used to initialize matrices) generates random numbers with uniform distribution in [-1, 1], and normalizes each array column to 1 (unitary Euclidean norm). Randnr (only used to initialize matrices) generates random numbers with uniform distribution in [-1, 1], and normalizes each array row to 1 (unitary Euclidean norm). Randsmall generates random numbers with uniform distribution in [-0.1, 0.1].

 Depending on the relative amount of training patterns, with respect to the whole training dataset, that is presented to the network in each iteration of the learning process, several types of training modes can be used, namely (i) batch or (ii) mini-batch. Whereas in the batch mode all training patterns are presented (called an epoch) to the network in each iteration, in the mini-batch counterpart the training dataset is split into several data chunks (or subsets) and in each iteration a single and new chunk is presented to the network, until (eventually) all chunks have been presented. Learning involving iterative schemes (e.g., BP-or LM-based) might require many epochs until an "optimum" design is found. The particular case of having a mini-batch mode where all chunks are composed by a single (distinct) training pattern (number of data chunks = Pt , chunk size = 1), is called online or sequential mode. Wilson and Martinez (2003) suggested that if one wants to use mini-batch training with the same stability as online training, a rough estimate of the

Tab. 6 .

 6 Performance results for the best design from each parametric sub-analysis: (a) ANN, (b) NNC.

Fig. 7 .

 7 Fig. 7. Proposed 3-4-4-4-1 fully-connected MLPNsimplified scheme.

 normalization nor dimensional analysis were carried out. Moreover, since no negative output values are physically possible for the problem addressed herein, the ANN prediction should be defined as

Fig. 8 .

 8 Fig. 8. Regression plot for the proposed ANN (see output variable in Fig. 1(a)).

 were considered, as shown in Tab. 7. Only tests I and III regard damaged members. The errors (smaller than 1%) displayed in Tab. 7 attest once again the capability of the proposed ANN-based analytical model.

Fig. 9 .

 9 Fig. 9. Performance plot for the proposed ANN.

Fig. 10 .

 10 Fig. 10. Error plot for the proposed ANN.

 aimed to assess the potential of Artificial Neural Network (ANN) models in the prediction of damage localization in structural members, as function of their dynamic propertiesthe three first natural frequencies were used. Based on 64 numerical examples from damaged (mostly) and undamaged steel channel beams, an ANN-based analytical model was proposed as a highly accurate and efficient damage localization estimator. The proposed model yielded maximum errors of 0.2 and 0.7 % concerning 64 numerical and 3 experimental data points, respectively.

 results.

			Undamaged Beam		Damaged Beam
	Vibration Mode	Test (Hz)	FEA (Hz)	Error FEA vs Test (%)	Test (Hz)	FEA (Hz)	Error FEA vs Test (%)
		43.66 42.54	2.6	39.59	41.14	3.9
		120.11 117.04	2.6	117.31 117.19	0.1
		235.01 229.00	2.6	222.88 222.22	0.3

 ", having been implemented 15 ANN features in this work (including data pre/post processing ones). For those features, it is important to

bear in mind that no ANN guarantees good approximations via extrapolation (either in functional approximation or classification problems), i.e. the implemented ANNs should not be applied outside the input variable ranges used for network training. Since there are no objective rules dictating which method per feature guarantees the best network performance for a specific problem, an extensive parametric analysis (composed of nine parametric sub-analyses) was carried out to find 'the optimum' net design. A description of all implemented methods, selected from state of art literature on ANNs (including both traditional and promising modern techniques), is presented next -Tabs. 2-4 show all features and methods per feature. The whole work was coded in MATLAB (The Mathworks, Inc.

3.3.1 Qualitative Variable Representation (feature 1)

	A qualitative variable taking n distinct "values" (usually called classes) can be represented in any
	of the following formats: one variable taking n equally spaced values in]0,1], or 1-of-n encoding
	(boolean vectors -e.g., n=3: [1 0 0] represents class 1, [0 1 0] represents class 2, and [0 0 1] represents
	class 3). After transformation, qualitative variables are placed at the end of the corresponding (input or
	output) dataset, in the same original order.			
			Tab. 2. Implemented ANN features (F) 1-5.	
		F1	F2	F3	F4	F5
	FEATURE METHOD	Qualitative Var Represent	Dimensional Analysis	Input Dimensionality Reduction	% Train-Valid-Test	Input Normalization
	1	Boolean Vectors	Yes	Linear Correlation	80-10-10	Linear Max Abs
	2	Eq Spaced in]0,1]	No	Auto-Encoder	70-15-15	Linear [0, 1]
	3	-	-	-	60-20-20	Linear [-1, 1]
	4	-	-	Ortho Rand Proj	50-25-25	Nonlinear
	5	-	-	Sparse Rand Proj	-	Lin Mean Std
	6	-	-	No	-	No
	3.3					

.2 Dimensional Analysis (feature 2)

Acknowledgements

The 2 nd and 3 rd authors wish to acknowledge the support given by the Brazilian National Council for Scientific and Technological Development (CNPq) and the University of Brasília.

There are no conflicts of interest to disclose.