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Headed studs are commonly used as shear connectors to transfer longitudinal shear force at the interface between steel and concrete in composite structures (e.g., bridge decks). Code-based equations for predicting the shear capacity of headed studs are summarized. An artificial neural network (ANN)-based analytical model is proposed to estimate the shear capacity of headed steel studs. 234 push-out test results from previous published research were collected into a database in order to feed the simulated ANNs. Three parameters were identified as input variables for the prediction of the headed stud shear force at failure, namely the steel stud tensile strength and diameter, and the concrete (cylinder) compressive strength. The proposed ANN-based analytical model yielded, for all collected data, maximum and mean relative errors of 3.3 % and 0.6 %, respectively. Moreover, it was illustrated that, for that data, the neural network approach clearly outperforms the existing code-based equations, which yield mean errors greater than 13 %.

Introduction

Steel-concrete composite structures make an effective utilization of concrete in the compression zone and steel in the tension counterpart, offering several advantages. The mixed failures, which are a combination of the former. Furthermore, he proposed one of the first formulas to assess the shear strength of headed studs. Thurlimann (1959), [START_REF] Driscoll | Research on composite design at Lehigh University[END_REF], and [START_REF] Slutter | Flexural strength of steel-concrete composite beams[END_REF] tested a series of beam and push-out specimens, which proved that stud connectors had a higher shear strength in beams than in push-out specimens, meaning the results from push-out tests could be taken as a conservative approximation of the actual strength in beams; moreover, a formula was obtained to calculate the shear resistance of stud connectors as function of the concrete strength and stud diameter. [START_REF] Chinn | Push out Tests on Lightweight Composite Slabs[END_REF] and [START_REF] Steele | The use of nelson studs with lightweight aggregate concrete in composite construction[END_REF] developed push-out tests on lightweight composite slabs. [START_REF] Davies | Small-scale push-out tests on welded stud shear connectors[END_REF] tested twenty 'half-scale' push-out specimens to study the effects of varying the number, spacing and pattern of the welded studs, and proved that the 'standard' specimen with two welded stud connectors arranged across steel flanges exhibits superior performance throughout their loading. [START_REF] Mainstone | Shear connectors in steel-concrete composite beams for bridges[END_REF] carried out tests on 83 push-out specimens covering the behavior of headed anchors under both static and fatigue loads. [START_REF] Johnson | Stud shear connectors in hogging moment regions of composite beams[END_REF] measured the shear performance of studs and developed a calculation model based on push-out tests. [START_REF] Menzies | CP 117 and shear connectors in steel-concrete composite beams made with normaldensity or lightweight concrete[END_REF] performed some push-out tests about the effect of concrete strength and density on the static and fatigue capacities of stud connectors. [START_REF] Ollgaard | Shear strength of stud connectors in lightweight and normal weight concrete[END_REF] guessed the shear resistance of the stud to be only dependent on concrete strength and Young's modulus, and on the stud diameter. [START_REF] Oehlers | The shear stiffness of stud shear connections in composite beams[END_REF], [START_REF] Oehlers | Splitting induced by shear connectors in composite beams[END_REF], and [START_REF] Oehlers | Elementary behavior of composite steel and concrete structural members[END_REF] analyzed 116 specimens failing through the shank, and proposed formulas to calculate the elastic shear stiffness, the slip at 50 % of the ultimate load (assumed to be the limit of the linear load-slip response), and the ultimate load. Oehlers & than the long counterpart. The variation with stud length has been recognized in some national standards (e.g., BSI 1979). More recently, extensive experimental research on the shear behavior of stud connectors under static, cyclic [START_REF] Gattesco | Experimental study on stud shear connectors subjected to cyclic loading[END_REF] or fatigue [START_REF] Dogan | Fatigue performance and stiffness variation of stud connectors in steelconcrete-steel sandwich systems[END_REF] loading has been carried out. Parameters like (i) concrete strength and types [START_REF] Valente | Experimental analysis of shear connection between steel and lightweight concrete[END_REF][START_REF] Kim | Headed stud shear connector for thin ultrahigh performance concrete bridge deck[END_REF][START_REF] Han | Numerical analysis on shear stud in push-out test with crumb rubber concrete[END_REF]), (ii) stud diameter [START_REF] Badie | Large shear studs for composite action in steel bridge girders[END_REF][START_REF] Shim | Static behavior of large stud shear connectors[END_REF]), (iii) biaxial loading effect [START_REF] Xu | Experimental study on the biaxial loading effect on group stud shear connectors of steel-concrete composite bridges[END_REF], (iv) quantity of studs (Xue et al. 2008(Xue et al. , 2012)), and (v) the boundary and loading conditions (Lin et al. 2014), were assessed in those studies. [START_REF] An | Push-out tests on studs in high strength and normal strength concrete[END_REF] employed push-out tests and concluded that the concrete compressive strength significantly affects the stud shear capacity. [START_REF] Topkaya | Composite shear stud strength at early concrete ages[END_REF] tested 24 specimens in order to describe the behavior of headed studs at early concrete ages. [START_REF] Shim | Static behavior of large stud shear connectors[END_REF] and [START_REF] Lee | Static and fatigue behavior of large stud shear connectors for steelconcrete composite bridges[END_REF] investigated the static and fatigue behavior of large stud shear connectors up to 30 mm in diameter, which were beyond the limitation of current design codes. A new stud system fastened with high strength pins was experimentally investigated by [START_REF] Mahmood | Push-off tests on pin-connected shear studs with composite steel-concrete beams[END_REF]. Xue et al. (2012) investigated the different behaviors between single-stud and multi-stud connectors. [START_REF] Marko | Bolted shear connectors vs. headed studs behavior in push-out tests[END_REF] studied the different behaviors between bolted and headed stud shear connectors.

According to the aforementioned research, the shear bearing capacity of studs depends on many factors, including the material and diameter of the stud itself, and properties of the surrounding concrete slab. These factors are all included in several design codes (e.g., AISC 1978, BSI 1978, CEN 2005b, AASHTO 2014, MC-PRC and GAQSIQ-PRC 2003). Tables providing allowable horizontal shear load of headed studs as function of the stud diameter and concrete strength appeared in the AISC Specification (1961). The effects of a metal deck on the shear strength of headed studs was added in the AISC Specification (1978), and the one from 1993 (AISC 1993) adopted Ollgaard's formula (1971) to compute the shear strength of headed steel studs. In Europe, the draft of Eurocode 4 (CEC 1985) proposed key reliability studies that account for the resistance of stud connectors, later undertaken by [START_REF] Roik | Harmonisation of the European Construction Codes -Eurocode 2, 4 and 8/Part 3 -Report on Eurocode 4 Clause 6.3.2[END_REF], followed by Stark and van Hove (1991), using a procedure [START_REF] Bijlaard | Procedure for the Determination of Design Resistance From Tests[END_REF], CEN 1998) that was later updated and implemented within EN 1990(CEN 2005a). Based on results of 75 push-out tests, those studies demonstrated that a partial factor γv = 1.25 was appropriate for stud diameters between 15.9 and 22 mm, and mean compressive cylinder strengths between 16.6 and 59 MPa, which broadly corresponded to the concrete strength classes C12/15 and C50/60 given in the draft Eurocode 4 (CEC 1985) and Eurocode 2 (CEC 1984) at the time.

However, last versions of Eurocode 4 (CEN 2004b, CEN 2005b) cover a wider range of concrete strength classes (C20/25 to C60/75) and stud diameters (16 to 25 mm). As for the Eurocode 2 (CEN 2004a), it allows classes between C12/15 and C90/105. While some numerical and theoretical investigations have showed that specifications in AASHTO (2014) and Eurocode 4 (CEN 2004b) usually overestimate headed stud shear capacity [START_REF] Nguyen | Finite element modeling of push-out tests for large stud shear connectors[END_REF], [START_REF] Pallarés | Headed steel stud anchors in composite structures, Part I: Shear[END_REF] and [START_REF] Han | Static behavior of stud shear connectors in elastic concrete-steel composite beams[END_REF] have attested that Eurocode 4 (CEN 2004b) is conservative. In order to effectively (accurately and efficiently) estimate the shear capacity of headed steel studs, this paper proposes the use of artificial neural networks (also referred in this manuscript as ANN or neural nets). The proposed ANN was designed based on 234 push-out test results available to date in the literature (see section 2). The focus of this study was not to understand the mechanics underlying the shear behavior of headed studs, but to propose an analytical ANN-based model that can be then easily implemented in any computer language by any interested practitioner or researcher.

Data Gathering

Determining shear connector behavior in a steel-concrete joint is usually achieved by using push-out tests. Their setup is made of a steel profile that is connected to two concrete slabs through the shear connectors, welded to profile flanges as shown in Fig. 1(a). Several push-out tests have been conducted on headed steel studs. The 234-point dataset (available in Developer 2018a) used to feed the ANN software employed in this work was assembled from the following experimental results: [START_REF] Viest | Investigation of stud shear connectors for composite concrete and steel T-beams[END_REF], [START_REF] Driscoll | Research on composite design at Lehigh University[END_REF], [START_REF] Slutter | Flexural strength of steel-concrete composite beams[END_REF], [START_REF] Ollgaard | Shear strength of stud connectors in lightweight and normal weight concrete[END_REF], [START_REF] Menzies | CP 117 and shear connectors in steel-concrete composite beams made with normaldensity or lightweight concrete[END_REF], [START_REF] Hawkins | The strength of stud shear connectors[END_REF], [START_REF] Oehler | The strength of stud shear connections in composite beams[END_REF], [START_REF] Hiragi | Pull-out and shear strength equations for headed studs considering edge distance[END_REF], [START_REF] Shim | Static behavior of large stud shear connectors[END_REF]), Zhou et al. (2007), Xue et al. (2008, 2012), [START_REF] Pallarés | Headed steel stud anchors in composite structures, Part I: Shear[END_REF][START_REF] Pallarés | Headed steel stud anchors in composite structures, Part I: Shear[END_REF][START_REF] Wang | Experimental research on mechanical behavior and design method of stud connectors[END_REF].

Through an extensive data analysis on the aforementioned experimental results, it was decided to make the shear capacity of a headed steel stud dependent on the following three variables: (i) stud shank diameter, (ii) concrete cylinder compressive strength, and (iii) steel stud tensile strength, since those were the major parameters affecting the shear failure of headed steel studs. Way less relevant parameters were found to be the yield stress of both materials, the connector length and arrangement (spacing, pattern), the weld quality and dimensions, and the friction properties and orientation of the steel-concrete interface during concreting. For instance, shear capacity is slightly influenced by stud length when the length-to-diameter ratio is larger than 4. In this study, all selected stud specimens have a length-to-diameter ratio greater than 4. [START_REF] Flood | Towards the next generation of artificial neural networks for civil engineering[END_REF].

The general ANN structure consists of several nodes grouped in L vertical layers (input layer, hidden layers, and output layer) and connected between layers, as illustrated in Fig. 2.

Associated to each node (or neuron) in layers 2 to L is a linear or nonlinear transfer function, which receives an input and transmits an output. All ANNs implemented in this work are called feedforward, since data feeding the input layer flows in the forward direction only, as exemplified in Fig. 2 (see the black arrows).

For a more thorough introduction on ANNs, the reader should refer to [START_REF] Haykin | Neural networks and learning machines[END_REF] or [START_REF] Wilamowski | The industrial electronics handbook: Intelligent Systems[END_REF]. 

Learning

Learning is nothing else than determining network unknown parameters through some algorithm in order to minimize network's performance measure, typically a function of the difference between predicted and target (desired) outputs. When ANN learning is iterative in nature, it consists of three phases: 

Implemented ANN features

The mathematical behavior of any ANN depends on many user specifications, having been 

Network Performance Assessment

Several types of results were computed to assess network outputs, namely (i) maximum error, (ii) % errors greater than 3%, and (iii) performance, which are defined next. All where (i) dqp is the q th desired (or target) output when pattern p within iteration i (p=1,…, Pi)

is presented to the network, and (ii) yqLp is net's q th output for the same data pattern. Moreover, denominator in eq. ( 1) is replaced by 1 whenever |dqp| < 0.05dqp in the nominator keeps its real value. This exception to eq. ( 1) aims to reduce the apparent negative effect of large relative errors associated to target values close to zero. Even so, this trick may still lead to (relatively) large solution errors while groundbreaking results are depicted as regression plots (target vs.

predicted outputs).

Maximum Error

This variable measures the maximum relative error, as defined by eq. ( 1), among all output variables and learning patterns.

Percentage of Errors > 3%

This variable measures the percentage of relative errors, as defined by eq. ( 1), among all output variables and learning patterns, that are greater than 3%.

Performance

In functional approximation problems, network performance is defined as the average relative error, as defined in eq. ( 1), among all output variables and data patterns being evaluated (e.g., training, all data).

Parametric Analysis Results

Aiming to reduce the computing time by cutting in the number of combos to be runnote that all features combined lead to hundreds of millions of combos, the whole parametric simulation was divided into nine parametric SAs, where in each one feature 7 only takes a single value. This measure aims to make the performance ranking of all combos within each 'small' analysis more 'reliable', since results used for comparison are based on target and output datasets as used in ANN training and yielded by the designed network, respectively (they are free of any postprocessing that eliminates output normalization effects on relative error values). Whereas (i) the 1 st and 2 nd SAs aimed to select the best methods from features 1, 2, 5, 8 and 13 (all combined), while adopting a single popular method for each of the remaining features (F3: 6, F4: 2, F6: {1 or 7}, F7: 1, F9: 1, F10:

1, F11: {3, 9 or 11}, F12: 2, F14: 1, F15: 1see Tabs. 2-4) -SA 1 involved learning algorithms 1-3 and SA 2 involved the ELM-based counterpart, (ii) the 3 rd -7 th SAs combined all possible methods from features 3, 4, 6 and 7, and concerning all other features, adopted the methods integrating the best combination from the aforementioned SAs 1-2, (iii) the 8 th SA combined all possible methods from features 11, 12 and 14, and concerning all other features, adopted the methods integrating the best combination (results compared after postprocessing) among the previous five sub-analyses, and lastly (iv) the 9 th SA combined all possible methods from features 9, 10 and 15, and concerning all other features, adopted the methods integrating the best combination from the previous analysis.

Summing up the ANN feature combinations for all parametric SAs, a total of 219 combos were run for this work. Tab. 5. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA).

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 1 1 2 6 2 2 1 1 1 1 1 3 2 3 1 3 2 1 2 6 2 5 7 1 2 1 1 9 2 5 1 3 3 1 2 6 2 2 1 1 1 1 1 3 2 3 1 3 4 1 2 6 3 2 1 2 1 1 1 3 2 3 1 3 5 1 2 6 4 2 1 3 1 1 1 3 2 3 1 3 6 1 2 6 4 2 7 4 1 1 1 3 2 3 1 3 7 1 2 6 3 2 7 5 1 1 1 3 2 3 1 3 8 1 2 6 3 2 7 5 1 1 1 1 5 3 1 3 9 1 2 6 3 2 7 5 1 3 3 1 5 3 1 3
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Proposed ANN-Based Model

The proposed model is the one, among the best ones from all parametric SAs, exhibiting the lowest maximum error (SA 9). That model is characterized by the ANN feature methods {1,2,6,3,2,7,5,1,3,3,1,5,3,1,[3][4] Aiming to allow implementation of this model by any user, all variables/equations required for (i) data preprocessing, (ii) ANN simulation, and (iii) data postprocessing, are presented in 3.6.1-3.6.3, respectively. The proposed model is a single MLPN with 5 layers and a distribution of nodes/layer of 3-4-4-4-1. Concerning connectivity, the network is fully-connected, and the hidden and output transfer functions are all Logistic and Identity, respectively. The network was trained using the Levenberg-Marquardt algorithm (1500 epochs).

After design, the average network computing time concerning the presentation of a single example (including data pre/postprocessing) is 5.64x10 -5 s -Fig. 4 depicts a simplified scheme of some of network key features. Lastly, all relevant performance results concerning the proposed ANN are illustrated in 3.6.4. The obtained ANN solution for every data point can be found in Developer (2018a). It is worth recalling that, in this manuscript, whenever a vector is added to a matrix, it means the former is to be added to all columns of the latter (valid in MATLAB).

Input Data Preprocessing

For future use of the proposed ANN to simulate new data Y1,sim (3 x Psim matrix), concerning Psim patterns, the same data preprocessing (if any) performed before training must be applied to the input dataset. That preprocessing is defined by the methods used for ANN features 2, 3 and 5 (respectively 2, 6 and 2see Tab. 2). Next, the necessary preprocessing to be applied to Y1,sim, concerning features 2, 3 and 5, is fully described.

Dimensional Analysis and Dimensionality Reduction

Since no dimensional analysis (d.a.) nor dimensionality reduction (d.r.) were carried out, one has 

    1, 1 , 1, . . . 
       = =    = , (3) 
where one recalls that operator '.x' multiplies component i in vector rab by all components in row i of subsequent term (analogous definition holds for './'). Once determined the preprocessed input dataset {Y1,sim}n after (3 x Psim matrix), the next step is to present it to the proposed ANN to obtain the predicted output dataset {Y5,sim}n after (1 x Psim vector), which will be given in the same preprocessed format of the target dataset used in learning. In order to convert the predicted outputs to their 'original format' (i.e., without any transformation due to normalization or dimensional analysis), some postprocessing is needed, as described in detail in 3.6.3. Next, the mathematical representation of the proposed ANN is given, so that any user can implement it to determine {Y5,sim}n after , thus eliminating all rumors that ANNs are 'black boxes'. , (6) since no output normalization nor dimensional analysis were carried out.

Performance Results

Finally, results yielded by the proposed ANN, in terms of performance variables defined in sub-section 3.4, are presented in this section in the form of several graphs: (i) a regression plot (Fig. 5) where network target and output data are plotted, for each data point, as x-and ycoordinates respectivelya measure of linear correlation is given by the Pearson Correlation Coefficient (R); (ii) a performance plot (Fig. 6), where performance (average error) values are displayed for several learning datasets; and (iii) an error plot (Fig. 7), where values concern all data (iii1) maximum error and (iii2) % of errors greater than 3%. 

ANN-based vs. Existing Code-based Models

The shear capacity of headed steel studs depends on many factors, including the material and diameter of the stud and properties of the surrounding concrete slab. These factors are all included in several design codes. The collected test results and ANN predictions have been used to assess the design equations given by Eurocode 4 (CEN 2005b), AASHTO (2014), and GB50017 (MC-PRC and GAQSIQ-PRC 2003).

In AASHTO (2014), the shear strength (Pu) of one stud shear connector embedded in a reinforced concrete deck can be calculated by ' 0.5

u sc s c c sc s u P A E f A f  = , (7) 
where (i) As is the stud shank cross-sectional area, (ii) fc′ is the cylinder-based compressive strength of concrete, (iii) fu is the tensile strength of the stud steel, (iv) Ec is the concrete Young's modulus, and (v) ϕsc=0.85 is the resistance safety factor.

As provided in Eurocode 4 (CEN 2005b), the stud shear strength (Pu) is determined by

2' 0.29 / 0.8 / u c c v s u v P d E f A f    = , (8) 
where (i) d is the stud shank diameter, (ii) γv=1.25 is the material safety factor, (iii) α is the aspect ratio factor given by 0

.2 1 , if 3 4 1.0 , if >4 sc sc sc h h d d h d     = +       = , (9) 
being hsc the length of the stud shank (the remaining variables have been previously defined).

The Chinese Code GB50017 (MC-PRC and GAQSIQ-PRC 2003) requires the design shear strength of a headed stud (Pu) to be computed as 0.43 0.7

u s c c s u P A E f A f  = , ( 10 
)
where fc is the cube-based compressive strength of concrete, and γ ≥1.25 is the ratio of the minimum tensile strength to the yield stress of the stud steel (the remaining variables have been previously defined). 

Discussion

Regardless the high quality of the predictions yielded by the proposed model, the reader should not blindly accept it as accurate for any other instances falling inside the input domain of the design dataset. Any analytical approximation model must undergo extensive validation before it can be taken as reliable (the more inputs, the larger the validation process). Models proposed meanwhile are part of a learning process towards excellence. 
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 1 Fig. 1. Input (in green) and target (in red) variables: (a) push-out test specimen, (b) headed stud.

Fig. 2 .

 2 Fig. 2. Example of a feedforward ANN with node structure 3-2-1.

  Fig. 3. Assessing ANN's generalization ability via cross-validation.

  might need to go through it to fully understand the meaning of all variables reported in this manuscript. The whole work was coded in MATLAB (The Mathworks, Inc. 2017), making use of its neural network toolbox when dealing with popular learning algorithms (1-3 in Tab. 4). Each parametric sub-analysis (SA) consists of running all feasible combinations (also called 'combos') of pre-selected methods for each ANN feature, in order to get performance results for each designed net, thus allowing the selection of the best ANN according to a certain criterion. The best network in each parametric SA is the one exhibiting the smallest average relative error (called performance) for all learning data.Tab. 4. Adopted ANN features (F) 11-15.

  abovementioned errors are relative errors (expressed in %) based on the following definition, concerning a single output variable and data pattern,
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Fig. 4

 4 Fig. 4 Proposed 3-4-4-4-1 fully-connected MLPNsimplified scheme.

  , the new input dataset {𝑌 1,𝑠𝑖𝑚 } 𝑛 𝑎𝑓𝑡𝑒𝑟 is defined as function of the previously determined {𝑌 1,𝑠𝑖𝑚 } 𝑑.𝑟 𝑎𝑓𝑡𝑒𝑟 , and they have the same size, reading
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  s and bs are stored online in Developer (2018b), aiming to avoid an overlong article and ease model's implementation by any interested reader. Abambres M, He J (2019). Shear Capacity of Headed Studs in Steel-Concrete Structures: Analytical Prediction via Soft Computing, hal-02074833 © 2019 by Abambres M, He J (CC BY 4transform the output dataset obtained by the proposed ANN, {Y5,sim}n after (1 x Psim vector), to its original format (Y5,sim), i.e. without the effects of dimensional analysis and/or output normalization (possibly) taken in target dataset preprocessing prior training, one has

Fig. 5 .

 5 Fig. 5. Regression plot for the proposed ANN.
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 6 Fig. 6. Performance plot (mean errors) for the proposed ANN.
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 7 Fig. 7. Error plot for the proposed ANN.
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 88 Fig.8 compares the shear capacity of headed steel studs as yielded by the aforementioned

  Abambres M, He J (2019). Shear Capacity of Headed Studs in Steel-Concrete Structures: Analytical Prediction via Soft Computing, hal-02074833 © 2019 by Abambres M, He J (CC BY 4.0)

© 2019 by Abambres M, He J (CC BY 4.0) 6

© 2019 by Abambres M, He J (CC BY 4.0) 8

© 2019 by Abambres M, He J (CC BY 4.0)

Conclusions

This paper describes how artificial neural networks (ANN) can be used to predict the shear capacity of headed steel stud connectors in steel-concrete structures. It proposes an analytical model for that purpose, designed from a 234-point database of push-out test results available in the literature. Three governing (geometrical and material) parameters were identified as input variables, and the shear force at failure was considered as the target/output variable for the ANN simulations. The proposed ANN-based analytical model yielded maximum and mean relative errors of 3.3% and 0.6% concerning all the 234 push-out test results previously collected. Fig. 8 shows that the ANN-based approach clearly outperforms the existing codebased equations assessed in this work, for the data used (made available at Developer 2018a) -latter models exhibit mean errors greater than 13%.

The focus of this study was not to assess the mechanics underlying the behaviour of headed studs, but parametric studies by means of accurate and robust ANN-based models make it possible to evaluate and improve existing mechanical models.

Contributions

He J. developed sections 1, 2 and 4; Abambres M. developed sections 3 and 5 (ANNrelated); Remaining sections had equal contributions from both authors.