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Abstract 

Headed studs are commonly used as shear connectors to transfer longitudinal shear force at the interface between 

steel and concrete in composite structures (e.g., bridge decks). Code-based equations for predicting the shear 

capacity of headed studs are summarized. An artificial neural network (ANN)-based analytical model is proposed 

to estimate the shear capacity of headed steel studs. 234 push-out test results from previous published research 

were collected into a database in order to feed the simulated ANNs. Three parameters were identified as input 

variables for the prediction of the headed stud shear force at failure, namely the steel stud tensile strength and 

diameter, and the concrete (cylinder) compressive strength. The proposed ANN-based analytical model yielded, 

for all collected data, maximum and mean relative errors of 3.3 % and 0.6 %, respectively. Moreover, it was 

illustrated that, for that data, the neural network approach clearly outperforms the existing code-based equations, 

which yield mean errors greater than 13 %. 

 

Keywords: Shear Connectors; Headed Studs; Push-Out Test; Shear Capacity; Artificial Neural Networks; 

Analytical Model; Steel-Concrete Structures. 

 

1. Introduction 

Steel-concrete composite structures make an effective utilization of concrete in the 

compression zone and steel in the tension counterpart, offering several advantages. The 
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primary one is the high strength-to-weight ratio as compared to conventional reinforced 

concrete (RC) structures. They also offer greater flexural stiffness, speedier and more flexible 

construction, ease of retrofitting and repair, and higher durability (Shanmugam and Lakshmi 

2001, He et al.2010, Lin et al. 2014). In steel-concrete composite structures, shear connectors 

(e.g., angles, channel sections, headed studs, perforated ribs) are essential in all composite 

members in order to guarantee the effectiveness of their behavior in terms of strength and 

deformability. Those connectors, located in the steel-concrete interface, must be able to 

effectively transfer the stresses occurring between both materials (Lam and El-Lobody 2005, 

Colajanni et al. 2014, He et al. 2014).  

The load-slip performance of shear connectors has been established from push-out tests, 

first devised in Switzerland in the early 1930s (Roš 1934). Following the development of the 

electric drawn arc stud welding apparatus in the early 1950s, the headed stud connector became 

one of the most popular shear connector types owing to their simple and quick installation and 

superior ductility when compared with other types of connectors. The latter was attested by 

extensive experimental investigations in North America between 1951 and 1959 at the 

University of Illinois (Newmark et al. 1951, Viest 1956) and Lehigh University (Thurlimann 

1959). Newmark et al. (1951) tested the behavior of shear connectors by beam and push-out 

experiments, having shown that the stud was a perfectly flexible connector in a wide variety of 

scenarios (a large number of variables were assessed). Viest (1956) conducted 12 push-out 

tests and observed three types of failure: (i) steel-driven, where the stud reaches its yield point 

and fails, (ii) concrete-driven, where the concrete surrounding the headed stud crushes, and (iii) 

https://hal.archives-ouvertes.fr/hal-02074833
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mixed failures, which are a combination of the former. Furthermore, he proposed one of the 

first formulas to assess the shear strength of headed studs. Thurlimann (1959), Driscoll and 

Slutter (1961), and Slutter and Driscoll (1965) tested a series of beam and push-out specimens, 

which proved that stud connectors had a higher shear strength in beams than in push-out 

specimens, meaning the results from push-out tests could be taken as a conservative 

approximation of the actual strength in beams; moreover, a formula was obtained to calculate 

the shear resistance of stud connectors as function of the concrete strength and stud diameter. 

Chinn (1965) and Steele (1967) developed push-out tests on lightweight composite slabs. 

Davies (1967) tested twenty ‘half-scale’ push-out specimens to study the effects of varying the 

number, spacing and pattern of the welded studs, and proved that the ‘standard’ specimen with 

two welded stud connectors arranged across steel flanges exhibits superior performance 

throughout their loading. Mainstone and Menzies (1967) carried out tests on 83 push-out 

specimens covering the behavior of headed anchors under both static and fatigue loads. 

Johnson et al. (1969) measured the shear performance of studs and developed a calculation 

model based on push-out tests. Menzies (1971) performed some push-out tests about the effect 

of concrete strength and density on the static and fatigue capacities of stud connectors. Ollgaard 

et al. (1971) guessed the shear resistance of the stud to be only dependent on concrete strength 

and Young’s modulus, and on the stud diameter. Oehlers & Coughlan (1986), Oehlers (1989), 

and Oehlers & Bradford (1999) analyzed 116 specimens failing through the shank, and 

proposed formulas to calculate the elastic shear stiffness, the slip at 50 % of the ultimate load 

(assumed to be the limit of the linear load-slip response), and the ultimate load. Oehlers & 

https://hal.archives-ouvertes.fr/hal-02074833
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Bradford (1995) indicated that short steel studs experimentally show a lower shear strength 

than the long counterpart. The variation with stud length has been recognized in some national 

standards (e.g., BSI 1979). More recently, extensive experimental research on the shear 

behavior of stud connectors under static, cyclic (Gattesco and Giuriani 1996) or fatigue (Dogan 

and Roberts 2012) loading has been carried out. Parameters like (i) concrete strength and types 

(Valente and Cruz 2009, Kim et al. 2015, Han et al. 2017), (ii) stud diameter (Badie et al. 2002, 

Shim et al. 2004), (iii) biaxial loading effect (Xu et al. 2015), (iv) quantity of studs (Xue et al. 

2008, 2012), and (v) the boundary and loading conditions (Lin et al. 2014), were assessed in 

those studies. An and Cederwall (1996) employed push-out tests and concluded that the 

concrete compressive strength significantly affects the stud shear capacity. Topkaya et al. 

(2004) tested 24 specimens in order to describe the behavior of headed studs at early concrete 

ages. Shim et al. (2004) and Lee et al. (2005) investigated the static and fatigue behavior of 

large stud shear connectors up to 30 mm in diameter, which were beyond the limitation of 

current design codes. A new stud system fastened with high strength pins was experimentally 

investigated by Mahmood et al. (2009). Xue et al. (2012) investigated the different behaviors 

between single-stud and multi-stud connectors. Marko et al. (2013) studied the different 

behaviors between bolted and headed stud shear connectors.   

According to the aforementioned research, the shear bearing capacity of studs depends on 

many factors, including the material and diameter of the stud itself, and properties of the 

surrounding concrete slab. These factors are all included in several design codes (e.g., AISC 

1978, BSI 1978, CEN 2005b, AASHTO 2014, MC-PRC and GAQSIQ-PRC 2003). Tables 

https://hal.archives-ouvertes.fr/hal-02074833
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providing allowable horizontal shear load of headed studs as function of the stud diameter and 

concrete strength appeared in the AISC Specification (1961). The effects of a metal deck on 

the shear strength of headed studs was added in the AISC Specification (1978), and the one 

from 1993 (AISC 1993) adopted Ollgaard's formula (1971) to compute the shear strength of 

headed steel studs. In Europe, the draft of Eurocode 4 (CEC 1985) proposed key reliability 

studies that account for the resistance of stud connectors, later undertaken by Roik et al. (1989), 

followed by Stark and van Hove (1991), using a procedure (Bijlaard et al. 1988, CEN 1998) 

that was later updated and implemented within EN 1990 (CEN 2005a). Based on results of 75 

push-out tests, those studies demonstrated that a partial factor γv = 1.25 was appropriate for 

stud diameters between 15.9 and 22 mm, and mean compressive cylinder strengths between 

16.6 and 59 MPa, which broadly corresponded to the concrete strength classes C12/15 and 

C50/60 given in the draft Eurocode 4 (CEC 1985) and Eurocode 2 (CEC 1984) at the time. 

However, last versions of Eurocode 4 (CEN 2004b, CEN 2005b) cover a wider range of 

concrete strength classes (C20/25 to C60/75) and stud diameters (16 to 25 mm). As for the 

Eurocode 2 (CEN 2004a), it allows classes between C12/15 and C90/105.   

While some numerical and theoretical investigations have showed that specifications in 

AASHTO (2014) and Eurocode 4 (CEN 2004b) usually overestimate headed stud shear capacity 

(Nguyen and Kim, 2009), Pallarés and Hajjar (2010) and Han et al. (2015) have attested that 

Eurocode 4 (CEN 2004b) is conservative. In order to effectively (accurately and efficiently) 

estimate the shear capacity of headed steel studs, this paper proposes the use of artificial neural 

networks (also referred in this manuscript as ANN or neural nets). The proposed ANN was 

https://hal.archives-ouvertes.fr/hal-02074833


 

 

 

Abambres M, He J (2019). Shear Capacity of Headed Studs in  

Steel-Concrete Structures: Analytical Prediction via Soft Computing, hal-02074833  

© 2019 by Abambres M, He J (CC BY 4.0) 

 

 

 

6 

 

designed based on 234 push-out test results available to date in the literature (see section 2). The 

focus of this study was not to understand the mechanics underlying the shear behavior of headed 

studs, but to propose an analytical ANN-based model that can be then easily implemented in any 

computer language by any interested practitioner or researcher. 

2. Data Gathering 

Determining shear connector behavior in a steel-concrete joint is usually achieved by using 

push-out tests. Their setup is made of a steel profile that is connected to two concrete slabs 

through the shear connectors, welded to profile flanges as shown in Fig. 1(a). Several push-out 

tests have been conducted on headed steel studs. The 234-point dataset (available in Developer 

2018a) used to feed the ANN software employed in this work was assembled from the 

following experimental results: Viest (1956), Driscoll and Slutter (1961), Slutter and Driscoll 

(1965), Ollgaard et al. (1971), Menzies (1971), Hawkins (1973), Oehler and Johnson (1987), 

Hiragi et al. (2003),  Shim  et al. (2004), Zhou et al. (2007), Xue et al. (2008, 2012), Pallarés 

and Hajjar (2010), and Wang (2013). 

Through an extensive data analysis on the aforementioned experimental results, it was decided 

to make the shear capacity of a headed steel stud dependent on the following three variables: (i) 

stud shank diameter, (ii) concrete cylinder compressive strength, and (iii) steel stud tensile strength, 

since those were the major parameters affecting the shear failure of headed steel studs. Way less 

relevant parameters were found to be the yield stress of both materials, the connector length and 

arrangement (spacing, pattern), the weld quality and dimensions, and the friction properties and 

https://hal.archives-ouvertes.fr/hal-02074833


 

 

 

Abambres M, He J (2019). Shear Capacity of Headed Studs in  

Steel-Concrete Structures: Analytical Prediction via Soft Computing, hal-02074833  

© 2019 by Abambres M, He J (CC BY 4.0) 

 

 

 

7 

 

orientation of the steel-concrete interface during concreting. For instance, shear capacity is slightly 

influenced by stud length when the length-to-diameter ratio is larger than 4. In this study, all 

selected stud specimens have a length-to-diameter ratio greater than 4. Fig. 1 depicts the input (in 

green) and target/output (in red) variables considered in all ANN simulations, and Tab. 1 defines 

those variables, their position in the ANN layout, and shows some stats on their values. One recalls 

that the dataset considered in ANN simulations is available in Developer (2018a). 

 

Steel Plate

Stud: f u d

Concrete: f c'

 

(a) (b) 

Fig. 1. Input (in green) and target (in red) variables: (a) push-out test specimen, (b) headed stud.  

 

 

Tab. 1. Variables (and some stats on their values) considered for ANN simulations. 

Input variables 
ANN 

input node 
Values 

min max average 

Geometry d (mm) Steel Stud Shank Diameter 1 9.5 30 20.4 

Material 
fc’ (MPa) 

Concrete (cylinder)  
Compressive Strength 

2 18.3 109.3 44.6 

fu (MPa) Steel Stud Tensile Strength 3 305.7 595 448.4 

Target variable 
ANN  

output node 

Values 

min max average 

Stud 
Strength 

Pu (kN) Shear Force at Failure 1 26.2 415 156.1 

 

4Pu 

https://hal.archives-ouvertes.fr/hal-02074833
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3. Artificial Neural Networks 

3.1 Brief Introduction 

One of the six disciplines of Artificial Intelligence (AI) that allows machines to act humanly 

is Machine Learning (ML), which aims to ‘teach’ computers how to perform tasks by providing 

examples of how they should be done (Hertzmann and Fleet 2012). The world is quietly being 

reshaped by ML, being the Artificial Neural Network (also referred in this manuscript as ANN 

or neural net) its first-born (McCulloch and Pitts 1943), most effective (Hern 2016), and most 

employed (Wilamowski and Irwin 2011, Prieto et. al 2016) technique, virtually covering any 

field of knowledge. Concerning functional approximation, ANN-based solutions often 

outperform those provided by traditional approaches, like the multi-variate nonlinear 

regression, besides not requiring knowledge on the function shape being approximated (Flood 

2008). 

The general ANN structure consists of several nodes grouped in L vertical layers (input 

layer, hidden layers, and output layer) and connected between layers, as illustrated in Fig. 2. 

Associated to each node (or neuron) in layers 2 to L is a linear or nonlinear transfer function, 

which receives an input and transmits an output. All ANNs implemented in this work are called 

feedforward, since data feeding the input layer flows in the forward direction only, as 

exemplified in Fig. 2 (see the black arrows). 

For a more thorough introduction on ANNs, the reader should refer to Haykin (2009) or 

Wilamowski and Irwin (2011). 

https://hal.archives-ouvertes.fr/hal-02074833
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Fig. 2. Example of a feedforward ANN with node structure 3-2-1. 

3.2 Learning 

Learning is nothing else than determining network unknown parameters through some 

algorithm in order to minimize network’s performance measure, typically a function of the 

difference between predicted and target (desired) outputs. When ANN learning is iterative in 

nature, it consists of three phases: (i) training, (ii) validation, and (iii) testing. From previous 

knowledge, examples or data points are selected to train the network, grouped in the so-called 

training dataset. During an iterative learning, while the training dataset is used to tune network 

unknowns, a process of cross-validation takes place by using a set of data completely distinct 

from the training counterpart (the validation dataset), so that the generalization performance of 

the network can be attested. Once ‘optimum’ network parameters are determined, typically 

associated to a minimum of the validation performance curve (called early stop – see Fig. 3), 

many authors still perform a final assessment of model’s accuracy, by presenting to it a third 

fully distinct dataset called ‘testing’. Heuristics suggests that early stopping avoids overfitting, 

i.e. the loss of ANN’s generalization ability.  

https://hal.archives-ouvertes.fr/hal-02074833
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Fig. 3. Assessing ANN’s generalization ability via cross-validation. 

 

3.3 Implemented ANN features 

The mathematical behavior of any ANN depends on many user specifications, having been 

implemented 15 ANN features in this work (including data pre/post processing ones). For those 

features, one should bear in mind that the implemented ANNs should not be applied outside the 

input variable ranges used for network training – they might not give good approximations in 

extrapolation problems. Since there are no objective rules dictating which method per feature 

guarantees the best network performance for a specific problem, an extensive parametric analysis 

(composed of nine parametric sub-analyses) was carried out to find ‘the optimum’ net design.  A 

description of all methods/formulations implemented for each ANN feature (see Tabs. 2-4) 

can be found in previous published works (e.g., Abambres et al. 2018, Abambres and He 2018)   
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Tab. 2. Adopted ANN features (F) 1-5. 

FEATURE 
METHOD 

F1 F2 F3 F4 F5 

Qualitative 
Var Represent 

Dimensional 
Analysis 

Input Dimensionality 
Reduction 

% 
Train-Valid-Test 

Input 
Normalization 

1 Boolean Vectors Yes Linear Correlation 80-10-10 Linear Max Abs 

2 Eq Spaced in ]0,1] No Auto-Encoder 70-15-15 Linear [0, 1] 

3 - - - 60-20-20 Linear [-1, 1] 

4 - - Ortho Rand Proj 50-25-25 Nonlinear 

5 - - Sparse Rand Proj - Lin Mean Std 

6 - - No - No 

 

Tab. 3. Adopted ANN features (F) 6-10. 

FEATURE 
METHOD 

F6 F7 F8 F9 F10 

Output  
Transfer 

Output  
Normalization 

Net  
Architecture 

Hidden  
Layers 

Connectivity 

1 Logistic Lin [a, b] = 0.7[φmin, φmax] MLPN 1 HL Adjacent Layers 

2 - Lin [a, b] = 0.6[φmin, φmax] RBFN 2 HL Adj Layers + In-Out 

3 Hyperbolic Tang Lin [a, b] = 0.5[φmin, φmax] - 3 HL Fully-Connected 

4 - Linear Mean Std - - - 

5 Bilinear No - - - 

6 Compet - - - - 

7 Identity - - - - 

 

– the reader might need to go through it to fully understand the meaning of all variables 

reported in this manuscript. The whole work was coded in MATLAB (The Mathworks, Inc. 

2017), making use of its neural network toolbox when dealing with popular learning algorithms 

(1-3 in Tab. 4). Each parametric sub-analysis (SA) consists of running all feasible combinations 

(also called ‘combos’) of pre-selected methods for each ANN feature, in order to get performance 

results for each designed net, thus allowing the selection of the best ANN according to a certain 

https://hal.archives-ouvertes.fr/hal-02074833
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criterion. The best network in each parametric SA is the one exhibiting the smallest average relative 

error (called performance) for all learning data.  

Tab. 4. Adopted ANN features (F) 11-15. 

FEATURE 
METHOD 

F11 F12 F13 F14 F15 

Hidden  
Transfer 

Parameter  
Initialization 

Learning 
Algorithm 

Performance 
Improvement 

Training  
Mode 

1 Logistic Midpoint (W) + Rands (b) BP NNC Batch 

2 Identity-Logistic Rands BPA - Mini-Batch 

3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online 

4 Bipolar Randnr (W) + Rands (b) ELM - - 

5 Bilinear Randsmall mb ELM - - 

6 Positive Sat Linear Rand [-Δ, Δ] I-ELM - - 

7 Sinusoid SVD CI-ELM - - 

8 Thin-Plate Spline MB SVD - - - 

9 Gaussian - - - - 

10 Multiquadratic - - - - 

11 Radbas - - - - 

 

3.4 Network Performance Assessment 

Several types of results were computed to assess network outputs, namely (i) maximum 

error, (ii) % errors greater than 3%, and (iii) performance, which are defined next. All 

abovementioned errors are relative errors (expressed in %) based on the following definition, 

concerning a single output variable and data pattern, 

100
qp qLp

qp

qp

d y

d
e

−
=

                               ,   (1) 

https://hal.archives-ouvertes.fr/hal-02074833
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where (i) dqp is the qth desired (or target) output when pattern p within iteration i (p=1,…, Pi) 

is presented to the network, and (ii) yqLp is net’s qth output for the same data pattern. Moreover, 

denominator in eq. (1) is replaced by 1 whenever |dqp| < 0.05 – dqp in the nominator keeps its 

real value.  This exception to eq. (1) aims to reduce the apparent negative effect of large relative 

errors associated to target values close to zero. Even so, this trick may still lead to (relatively) 

large solution errors while groundbreaking results are depicted as regression plots (target vs. 

predicted outputs).     

 
3.4.1 Maximum Error 

This variable measures the maximum relative error, as defined by eq. (1), among all output 

variables and learning patterns. 

 

3.4.2 Percentage of Errors > 3% 

This variable measures the percentage of relative errors, as defined by eq. (1), among all 

output variables and learning patterns, that are greater than 3%. 

 

3.4.3 Performance 

In functional approximation problems, network performance is defined as the average 

relative error, as defined in eq. (1), among all output variables and data patterns being evaluated 

(e.g., training, all data).  
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3.5 Parametric Analysis Results  

Aiming to reduce the computing time by cutting in the number of combos to be run – note that 

all features combined lead to hundreds of millions of combos, the whole parametric simulation was 

divided into nine parametric SAs, where in each one feature 7 only takes a single value. This 

measure aims to make the performance ranking of all combos within each ‘small’ analysis more 

‘reliable’, since results used for comparison are based on target and output datasets as used in ANN 

training and yielded by the designed network, respectively (they are free of any postprocessing that 

eliminates output normalization effects on relative error values). Whereas (i) the 1st and 2nd SAs 

aimed to select the best methods from features 1, 2, 5, 8 and 13 (all combined), while adopting a 

single popular method for each of the remaining features (F3: 6, F4: 2, F6: {1 or 7}, F7: 1, F9: 1, F10: 

1, F11: {3, 9 or 11}, F12: 2, F14: 1, F15: 1 – see Tabs. 2-4) – SA 1 involved learning algorithms 1-3 

and SA 2 involved the ELM-based counterpart, (ii) the 3rd – 7th SAs combined all possible methods 

from features 3, 4, 6 and 7, and concerning all other features, adopted the methods integrating the 

best combination from the aforementioned SAs 1-2, (iii) the 8th SA combined all possible methods 

from features 11, 12 and 14, and concerning all other features, adopted the methods integrating the 

best combination (results compared after postprocessing) among the previous five sub-analyses, 

and lastly (iv) the 9th SA combined all possible methods from features 9, 10 and 15, and concerning 

all other features, adopted the methods integrating the best combination from the previous analysis. 

Summing up the ANN feature combinations for all parametric SAs, a total of 219 combos were 

run for this work.   

https://hal.archives-ouvertes.fr/hal-02074833
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ANN feature methods used in the best combo from each of the abovementioned nine parametric 

sub-analyses, are specified in Tab. 5 (the numbers represent the method number as in Tabs 2-4). 

Tab. 6 shows the corresponding relevant results for those combos, namely (i) maximum error, (ii) 

% errors > 3%, (iii) performance (all described in section 3, and evaluated for all learning data), 

(iv) total number of hidden nodes in the model, and (v) average computing time per example 

(including data pre- and post-processing). All results shown in Tab. 6 are based on target and output 

datasets computed in their original format, i.e. free of any transformations due to output 

normalization and/or dimensional analysis.  The microprocessors used in this work have the 

following features: OS: Win10Home 64bits, RAMs: 48/128 GB, Local Disk Memory: 1 TB, 

CPUs: Intel® Core™ i7 8700K @ 3.70-4.70 GHz / i9 7960X @ 2.80-4.20 GHz. 

 

Tab. 5. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA). 

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

1 1 2 6 2 2 1 1 1 1 1 3 2 3 1 3 

2 1 2 6 2 5 7 1 2 1 1 9 2 5 1 3 

3 1 2 6 2 2 1 1 1 1 1 3 2 3 1 3 

4 1 2 6 3 2 1 2 1 1 1 3 2 3 1 3 

5 1 2 6 4 2 1 3 1 1 1 3 2 3 1 3 

6 1 2 6 4 2 7 4 1 1 1 3 2 3 1 3 

7 1 2 6 3 2 7 5 1 1 1 3 2 3 1 3 

8 1 2 6 3 2 7 5 1 1 1 1 5 3 1 3 

9 1 2 6 3 2 7 5 1 3 3 1 5 3 1 3 
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Tab. 6. Performance results for the best design from each parametric sub-analysis: (a) ANN, (b) NNC. 

SA 

ANN 

Max Error 
(%) 

Performance 
All Data                                   

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 5.4 1.1 5.6 12 6.71E-05 

2 48.5 1.7 14.5 110 7.27E-05 

3 4.2 1.1 3.8 12 5.79E-05 

4 6.5 1.1 3.8 12 5.51E-05 

5 7.7 1.1 5.6 12 5.23E-05 

6 9.3 1.2 8.1 12 6.25E-05 

7 8.8 1.3 7.7 12 9.17E-05 

8 5.8 1.2 8.1 12 7.70E-05 

9 3.3 0.6 0.4 12 5.64E-05 

(a) 

SA 

NNC 

Max Error 
(%) 

Performance 
All Data                                   

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 - - - - - 

2 - - - - - 

3 - - - - - 

4 - - - - - 

5 - - - - - 

6 6.7 0.9 3.8 12 7.54E-05 

7 2.6 0.6 0.0 12 9.67E-05 

8 2.5 0.3 0.0 12 8.78E-05 

9 - - - - - 

(b) 

 

3.6 Proposed ANN-Based Model 

The proposed model is the one, among the best ones from all parametric SAs, exhibiting the 

lowest maximum error (SA 9). That model is characterized by the ANN feature methods {1, 2, 6, 

3, 2, 7, 5, 1, 3, 3, 1, 5, 3, 1, 3} in Tabs. 2-4. Aiming to allow implementation of this model by any 

user, all variables/equations required for (i) data preprocessing, (ii) ANN simulation, and (iii) data 

postprocessing, are presented in 3.6.1-3.6.3, respectively. The proposed model is a single MLPN 

with 5 layers and a distribution of nodes/layer of 3-4-4-4-1. Concerning connectivity, the network 
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is fully-connected, and the hidden and output transfer functions are all Logistic and Identity, 

respectively. The network was trained using the Levenberg-Marquardt algorithm (1500 epochs). 

After design, the average network computing time concerning the presentation of a single example 

(including data pre/postprocessing) is 5.64x10-5 s – Fig. 4 depicts a simplified scheme of some of 

network key features. Lastly, all relevant performance results concerning the proposed ANN are 

illustrated in 3.6.4. The obtained ANN solution for every data point can be found in Developer 

(2018a). 

 

Fig. 4 Proposed 3-4-4-4-1 fully-connected MLPN – simplified scheme. 

 

 

It is worth recalling that, in this manuscript, whenever a vector is added to a matrix, it means 

the former is to be added to all columns of the latter (valid in MATLAB). 

 

3.6.1 Input Data Preprocessing 

For future use of the proposed ANN to simulate new data Y1,sim (3 x Psim matrix), concerning 

Psim patterns, the same data preprocessing (if any) performed before training must be applied 

to the input dataset. That preprocessing is defined by the methods used for ANN features 2, 3 
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and 5 (respectively 2, 6 and 2 – see Tab. 2). Next, the necessary preprocessing to be applied to 

Y1,sim, concerning features 2, 3 and 5, is fully described.  

 

Dimensional Analysis and Dimensionality Reduction 

Since no dimensional analysis (d.a.) nor dimensionality reduction (d.r.) were carried out, 

one has 

   1, 1, 1,. . . .
   

after after

sim sim simd r d a
Y Y Y= =  

.   (2)

 

Input Normalization 

After input normalization, the new input dataset {𝑌1,𝑠𝑖𝑚}𝑛
𝑎𝑓𝑡𝑒𝑟

 is defined as function of the 

previously determined {𝑌1,𝑠𝑖𝑚}𝑑.𝑟
𝑎𝑓𝑡𝑒𝑟

, and they have the same size, reading 

   ( )1, 1, .

0 1 9.5 30

0 1 18.3 109.3

0 1 305.7 595

 = (:,1) + .IN x  -P INP

INP

INP INP

I

 (:,3) ./

(:,2) - (:,1)

(:,4) - (:,NP INP 3)

after after

sim simn d r
rab den

den

Y Y

rab

 
 
 


=

=

 

=
 

,   (3) 

where one recalls that operator ‘.x’ multiplies component i in vector rab by all components in 

row i of subsequent term (analogous definition holds for ‘./’).  
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3.6.2 ANN-Based Analytical Model 

Once determined the preprocessed input dataset {Y1,sim}n
after(3 x Psim matrix), the next step is 

to present it to the proposed ANN to obtain the predicted output dataset {Y5,sim}n
after (1 x Psim 

vector), which will be given in the same preprocessed format of the target dataset used in 

learning. In order to convert the predicted outputs to their ‘original format’ (i.e., without any 

transformation due to normalization or dimensional analysis), some postprocessing is needed, as 

described in detail in 3.6.3. Next, the mathematical representation of the proposed ANN is given, 

so that any user can implement it to determine {Y5,sim}n
after

 , thus eliminating all rumors that ANNs 

are ‘black boxes’. 

 ( )
 ( )
 ( )

   ( )

1 2

3 1 3

1,

1,

1,

5,

2 3 2

4 1 4 2 4 2 3 4 3

1 5 2 5 2 3 5 3 4 5 41,

2 2 2

3 3

4 4

5 5

afterT

n

afterT T

n

after

sim

sim

sim

s

T T T

n

after afterT T T T

ni nm sim

Y W b

Y W W Y b

Y W W Y W Y b

W

Y

W Y W Y

Y

W

Y

Y Y Y b









−

− −

− − −

− − − −

= +

= + +

= + + +

= + + + +

 

, (4) 

where 

2 3 4

5 5

1
( )

1

( )

s
s

e

s s

  

 

−
= = = =

+

= =

 

.  (5) 

Arrays Wj-s and bs are stored online in Developer (2018b), aiming to avoid an overlong article 

and ease model’s implementation by any interested reader. 
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3.6.3 Output Data Postprocessing 

In order to transform the output dataset obtained by the proposed ANN, {Y5,sim}n
after (1 x 

Psim vector),  to its original format (Y5,sim), i.e. without the effects of dimensional analysis and/or 

output normalization (possibly) taken in target dataset preprocessing prior training, one has 

   5, 5, 5,. .
 =  = 

after

sim sim simd

after

na
Y Y Y  

,   (6) 

since no output normalization nor dimensional analysis were carried out.  

 

3.6.4 Performance Results 

Finally, results yielded by the proposed ANN, in terms of performance variables defined in 

sub-section 3.4, are presented in this section in the form of several graphs: (i) a regression plot 

(Fig. 5) where network target and output data are plotted, for each data point, as x- and y- 

coordinates respectively – a measure of linear correlation is given by the Pearson Correlation 

Coefficient (R); (ii) a performance plot (Fig. 6), where performance (average error) values are 

displayed for several learning datasets; and (iii) an error plot (Fig. 7), where values concern all 

data (iii1) maximum error and (iii2) % of errors greater than 3%.  
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Fig. 5. Regression plot for the proposed ANN. 

 

Fig. 6. Performance plot (mean errors) for the proposed ANN. 
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Fig. 7. Error plot for the proposed ANN. 

4. ANN-based vs. Existing Code-based Models 

The shear capacity of headed steel studs depends on many factors, including the material 

and diameter of the stud and properties of the surrounding concrete slab. These factors are all 

included in several design codes. The collected test results and ANN predictions have been 

used to assess the design equations given by Eurocode 4 (CEN 2005b), AASHTO (2014), and 

GB50017 (MC-PRC and GAQSIQ-PRC 2003). 

In AASHTO (2014), the shear strength (Pu) of one stud shear connector embedded in a 

reinforced concrete deck can be calculated by 

'0.5u sc s c c sc s uP A E f A f =                                  

,   (7)
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where (i) As is the stud shank cross-sectional area, (ii) fc′ is the cylinder-based compressive 

strength of concrete, (iii) fu is the tensile strength of the stud steel, (iv) Ec is the concrete 

Young’s modulus, and (v) ϕsc=0.85 is the resistance safety factor. 

As provided in Eurocode 4 (CEN 2005b), the stud shear strength (Pu) is determined by 

2 '0.29 / 0.8 /u c c v s u vP d E f A f  = 
                      

,   (8)

 

where (i) d is the stud shank diameter, (ii) γv=1.25 is the material safety factor, (iii) α is the 

aspect ratio factor given by  

0.2 1 , if 3 4

1.0 , if >4

sc sc

sc

h h

d d

h

d





 
= +   

 

=

 

,   (9)

 

being hsc the length of the stud shank (the remaining variables have been previously defined). 

The Chinese Code GB50017 (MC-PRC and GAQSIQ-PRC 2003) requires the design shear 

strength of a headed stud (Pu) to be computed as 

0.43 0.7u s c c s uP A E f A f=                                              

,   (10)

 

where fc is the cube-based compressive strength of concrete, and γ ≥1.25 is the ratio of the 

minimum tensile strength to the yield stress of the stud steel (the remaining variables have 

been previously defined). 

Fig.8 compares the shear capacity of headed steel studs as yielded by the aforementioned 

code-based models (Pu_code) to those obtained experimentally (Pu_exp), concerning the 234 push-

out test results collected for this work (test- and ANN-based results available in Developer 
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2018a). The average ratios Pu_code / Pu_exp for codes AASHTO, Eurocode 4 and GB50017 are 

0.84, 0.63 and 0.87, with standard deviations of 0.03, 0.02 and 0.02, respectively. It can be 

found that all those design models underestimate the shear capacity of the stud connector. For 

comparison, the average ratio Pu_ANN / Pu_exp for the proposed ANN is 1.00, with a standard 

deviation of 0.009. The major improvement of the proposed ANN-based analytical model (see 

sub-section 3.6), as compared to the existing code-based equations, becomes quite clear in Fig. 

8, where the predicted and experimental shear capacities are represented by the x- and y-axis, 

respectively.  
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Fig. 8. Comparison between and predicted shear capacities for 234 headed steel studs. 

5. Discussion 

Regardless the high quality of the predictions yielded by the proposed model, the reader 

should not blindly accept it as accurate for any other instances falling inside the input domain 

of the design dataset. Any analytical approximation model must undergo extensive validation 

before it can be taken as reliable (the more inputs, the larger the validation process). Models 

proposed meanwhile are part of a learning process towards excellence. 
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6. Conclusions 

This paper describes how artificial neural networks (ANN) can be used to predict the shear 

capacity of headed steel stud connectors in steel-concrete structures. It proposes an analytical 

model for that purpose, designed from a 234-point database of push-out test results available 

in the literature. Three governing (geometrical and material) parameters were identified as 

input variables, and the shear force at failure was considered as the target/output variable for 

the ANN simulations. The proposed ANN-based analytical model yielded maximum and mean 

relative errors of 3.3% and 0.6% concerning all the 234 push-out test results previously 

collected. Fig. 8 shows that the ANN-based approach clearly outperforms the existing code-

based equations assessed in this work, for the data used (made available at Developer 2018a) 

– latter models exhibit mean errors greater than 13%.  

The focus of this study was not to assess the mechanics underlying the behaviour of headed 

studs, but parametric studies by means of accurate and robust ANN-based models make it 

possible to evaluate and improve existing mechanical models. 

Contributions 

He J. developed sections 1, 2 and 4; Abambres M. developed sections 3 and 5 (ANN-

related); Remaining sections had equal contributions from both authors. 
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