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Abstract

We prove that steep real-analytic elliptic equilibrium points are exponentially stable,
generalizing results which were known only under a convexity assumption. This proves the
general case of a conjecture of Nekhoroshev. This result is also an important step in our
proof that generically, both in a topological and measure-theoretical sense, equilibrium
points are super-exponentially stable.

1 Introduction

Let n > 1 be an integer, D C R"™ an open bounded convex domain and T" := R"/Z".
Consider a smooth Hamiltonian function H defined on the domain T" x D of the form

HO,I)=h(I)+ef(0,I), €>0, (0,I)=(01,...,0,,11,...,1,) € T" x D,
and its associated Hamiltonian system

{az(t) - 8]1'H(9(t)7 I(t)) - 8Iih(1(t)) + Ealif(a(t)71(t))a
)?

. 1< <n.
Ii(t) = —0p, H(0(t),1(t)) = —0p, f(0(1),1(1)) -

For ¢ = 0, the system is stable in the sense that the action variables I(t) of all solutions
are constant, and all solutions are quasi-periodic. Now for £ # 0 but sufficiently small, a
fundamental result of Nekhoroshev states that if the system is real-analytic and the integrable
part h satisfies a steepness condition (this condition will be defined later), then the action
variables I(t) of all solutions are almost constant for an interval of time which is exponentially
long with respect to the inverse of the perturbation. More precisely, the following estimates
hold true along all solutions:

if;ui(t) - 1) < R < Toep (1)) 1L1)

for some positive constants Ry, Tp, ¢, a and b. We refer to [Nek77] and [Nek79]. In the special
case where h is quasi-convex, improved values for the exponents a and b in (1.1) were obtained
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independently by Lochak on the one hand (see [Loc92], [LN92],[LNN94]) who introduced
a novel approach using periodic orbits, and by Poschel ([P6s93]) on the other hand, who
improved Nekhoroshev original construction. The method of periodic approximation have
been extended to the steep case in [BN12] following a strategy first proposed in [Nie07] but
without good values for the exponents; improved values for the exponents in the general steep
case were later obtained by Guzzo-Chierchia-Benettin in [GCB16].

The original work of Nekhoroshev left open the question of exponential stability in the
neighborhood of an elliptic equilibrium point. This corresponds to a Hamiltonian H defined in
a neighborhood of the origin in R?" whose expansion is, in Cartesian coordinates (z,y) € R?",
given by

H(z,y) =Y ajli(x,y) + Os(x,y), Li(w,y) = (2 +y;)/2.
j=1

It is well-known ([HZ94]) that if « is non-resonant up to order K, that is
EeZ, 0<lki|+ -+l <K=k -a#0

then there exists a symplectic transformation ®%, well-defined in a smaller neighborhood of
the origin, such that

Ho (bK(x?y) = o I(.%',y) + hm(I(xvy)) + OK+1(.%',y)

where A" is a polynomial of degree m = [K/2] (the integer part of K/2) in n variables, with
vanishing constant and linear terms. This transformation, usually called a Birkhoff normal
form up to order K, allows us to transform our perturbation problem for a linear system
to a perturbation problem for a non-linear system, and make the results of Nekhoroshev
potentially applicable. Yet the perturbation problem here is singular since the distance to
the equilibrium point represent the size of the perturbation, and one cannot introduce action-
angle coordinates; this was the reason why Nekhoroshev could only conjecture the result.
Working directly with Cartesian coordinates, the conjecture was solved in the convex case
independently by Niederman ([Nie98]) on the one hand, using Lochak method of periodic
approximation, and by Fasso-Guzzo-Benettin ([FGB98],|GFB98]) on the other hand, using
the Nekhoroshev-Pdéschel construction. Still using the method of periodic orbits, Poschel
simplified the proof in [P6s99] and made it clear that the period orbit method is intrinsic
and do not rely on a choice of coordinates (as opposed to [GFB98| for instance, which is
an improvement of [FGB98] based on a careful choice of Cartesian coordinates “close” to
singularities and action-angle coordinates “far” from singularities). The purpose of this paper
is to prove the general case of the conjecture of Nekhoroshev, using the extension of the
method of periodic approximation introduced in [BN12] and [Boull]; namely for a real-
analytic Hamiltonian of the form

H(z,y) = h(I(x,y)) + f(z,y)

provided that h is steep and f is small enough, the estimates (1.1) hold true, if we let
I(t) = I(z(t),y(y)). We refer to Theorem A below for a proper statement. For the sake of
completeness, our proof is completely constructive with explicit expressions of the constants
involved in our reasonings.

This work was initially developed because it is a key ingredient to prove the result of
[BFN19] where we show that generically, both in a topological and measure-theoretical sense,



any solution starting sufficiently close to the equilibrium point remains close to it for an
interval of time which is doubly exponentially large with respect to the inverse of the distance
to an equilibrium point. From a more practical point of view, the theorem developed in the
present paper admits useful applications in celestial mechanics where elliptic equilibria appear
in old and important problems. In [BFG98], the stability of Lagrange equilibrium points in
the restricted three body problem is studied at the light of Nekhoroshev’s theory and there
exists a set of masses which leads to a Birkhoff normal form which is not convex at order 4 but
steep at order 6 with the so-called 3-jet non degeneracy condition introduced by Nekhoroshev
([Nek77]). This property yields exponential stability of Lagrange points for all but a few
values of the masses provided a theorem about Nekhoroshev-stability of steep equilibrium
point is proved. This latter result is required and announced in [BFG98] for a futur work
but there is no published paper on this point up to our knowledge. Another occurrence of
the same phenomenon with a non-convex but steep Birkhoff normal form appears in [Pin13]
where the author study the secular planar planetary three body problem and the stability
theorem proved in the present paper yields a complete proof of Nekhoroshev stability for
nearly circular and coplanar trajectories in the planar planetary three body problem.

2 Main result

To state precisely our result, we introduce some notation.

e For vectors in C?", || .|| denotes the norm defined as
|z]] :== max /|22 + [zn4j1%, 2= (21, 1 Zn, Znt1s- -5 22n) (2.1)
1<j<n
and for vectors in C", ||. | denotes the usual Euclidean norm
| =02+ + L2 T=(1,... Iy,). (2.2)

It will be more convenient to use these different norms for vectors in C>” or in C”, and
we hope that this abuse of notations will not confuse the reader. For vectors in C", it
will be convenient to also use the sup norm |.| defined as

\I| .= max{|L],..., ||}, I=1,...,1p). (2.3)
This norm allows an easier comparison between z € C?" and
I(2) = (I1(2),.. . In(2)) € C", Ij(2) = (2 + 254)/2;

indeed, we have |I(z)| < ||z/|?/2 and the equality holds true if z € R?". Given R > 0,
we denote by
Br:={z€C™||z|| < R} (2.4)

and the associated real ball will be denoted by Br := Br N R?".

e Given r > 0, we define the domain D, to be the open ball centered at the origin in C™
of radius r2/2 with respect to the norm |. |:

D, :={I €C"||I| <r?/2}

and we let D, := D, NR™. This choice is motivated by the fact that if I : z € C*"
I(z) € C", then I(B,) C D, and I(B,) = D, NR", where B, and B, have been defined
in (2.4).



e We define || . ||, to be the sup norm for functions defined on B, or on D,. Extending the
norm || . || initially defined for vectors in C"™ and C?" (respectively in (2.1) and in (2.2))
to tensors in C" and C?", we extend the sup norm |. ||, for tensor-valued functions
defined on B, or on D,. The same notation || .||, will be used also for the real domains
B, and D,: this will not cause confusion as it will be clear from the context if it is the
complex or the real domains that are considered.

e We consider a Hamiltonian H of the form
H(z)=h(I(2))+ f(2), h:D,—C, f:B.,—C (%)
which is real analytic and such that
VAl < B, [IV%hll, < F, || Xl < (2.5)
where Xy is the Hamiltonian vector field associated to f

e The integrable Hamiltonian A is supposed to be steep on the domain D,, as defined
below.

Definition 1. A differentiable function h : D, — R is steep if there exist positive
constants C,6,p;, for any integer | € [1,n — 1], and k such that for all I € D,, we
have ||Vh(I)|| > k and, for all integer I € [1,n — 1], for all vector space A € R™ of
dimension 1, letting A = I + A the associated affine subspace passing through I and hy
the restriction of h to X\, the inequality

i Vhy(I') — Vhy(D] > CeP
X i, VAT = VR > ¢

holds true for all 0 < & < 6. We say that h is (r,k,C, 0, (p;)i=1,..n—1)-steep and, if all
the p; = p, we say that h is (r, k, C,0,p)-steep.

Let us point out that the definition of steepness that we use is not exactly the one given by
Nekhoroshev but it is obviously equivalent to it (see [Nek73] or [Nek77]). Indeed, Nekhoroshev
only requires steepness for subspaces A which are orthogonal to Vh(I), in which case Vhy(I) =
0; for subspaces A such that Vhy(I) # 0, the inequality in Definition 1 is clearly satisfied
(and one may even set p; = 0 in this case).

Theorem A. Let H(z) = h(I(2)) + f(2) be as in (x) satisfying (2.5), such that h is
(r,k,C,0, (p1)i=1,..n—1)-steep. Then there exist 7*,¢,¢ > 0, which depend only on n, E,
F, k, C and p; for 1 <1 <n—1 such that if

r <7*, re<¢min {52"a,r4na} (2.6)

where
a:=1+p+pip2+--+pip2...Pn1,

then for any solution z(t) of the Hamiltonian flow (x) with 2(0) = zo € B,/ we have

11(2(t) — I(20)| < &(re)7me, |t] < exp ((re)fﬁ) ,



We will prove in fact a slightly more general and more precise statement (but whose
formulation is also more cumbersome): there exist positive constants ¢y, ¢o, €3, ¢4, C5, Cg and
¢7, which depend only on n, E, F' and on the steepness constants x,C,p;, for 1 <1 <n —1,
such that for any solution z(t) with 2(0) = 2o € B, o, if

2a
re < min {51, o021 Gar AN G e } (2.7)
where a is as above and

al ::1+p2+p2p3+..-—|—p2p3...pn71,

then
L(=(t)) = I(20)| < &(re)mm,  |t] < or™(re) ™7 exp (G (re) " ma )

This statement obviously implies the statement of Theorem A.

3 Proof of the main result

The goal of this section is to prove Theorem A, following the method introduced in [BN12]
and [Boull]. This method, which uses only periodic approximations and compositions of
periodic averagings, has the advantage of being directly applicable in a neighborhood of an
elliptic equilibrium point where action-angle coordinates cannot be used.

Since the proof contains some technical statements, we first give in the next Section 3.1 a
long and complete heuristic description of the method that would hopefully make the reading
of the proof easier. We emphasize that Section 3.1 is included only for the convenience of the
reader and does not interfere with the proof strictly speaking.

3.1 Heuristic description and plan of the proof

Given an arbitrary initial condition zp and the associated solution z(t) (that is z(0) = zp) of
the Hamiltonian H = h+ f, our goal is to prove that the variation of the action I(z(t))—1(zo)
remains small (as a small power of €) for an interval of time which is exponentially large with
respect to the inverse of (some power of) €, ¢ being the size of the perturbation f. The proof
is based on an algorithm that, for 0 < 7 < n—1, reduces to a space of dimension n —j — 1 the
directions in which a fast drift (before an exponentially long interval of time) may be possible
at each step j, and that stops therefore after at most j = n — 1 steps. We now describe the
heuristics of this algorithm, which depends on a positive parameter ) > 1 and an integer
parameter m > 1.

For the step j = 0, we write H = Hy and given the parameter () > 1, we use Dirichlet’s
box principle to approximate the unperturbed frequency vg = Vh(I(z9)) by a periodic vector
wp, that is, a vector which is a real multiple of an integer vector (this corresponds to a
frequency vector which is maximally resonant, as the set of integer vectors k orthogonal to
wp forms a sub-module of maximal rank n — 1). Letting Tj be the period of wy, which is the
smallest positive number ¢ such that twy € Z", the parameter () controls the approximation
as follows:

oo = woll = s0 S (ToQ) ™, ol ™! < To S [lwoll Q™.

Then, on some small neighborhood V; of 2y, given the integer parameter m > 1 and assuming
certain compatibility conditions between m, so, Ty and €, it is possible to construct a resonant



normal form (with respect to wp) up to a remainder which is exponentially small in m: more
precisely, by a symplectic transformation ®q which is close to the identity, the transformed
Hamiltonian Hg o ®g can be written as a perturbation of h, but this time the perturbation
splits into two parts: a resonant part, which is still of order € but has the additional property
that its Hamiltonian flow commutes with the linear flow of frequency wg, and a non-resonant
part which is of order 27"e. As a consequence, we have the following partial stability result
for the solution of Hy o ®g starting at @ Y(29): the variation of the action variables in the
(one-dimensional) direction given by wq is small for an exponentially long interval of time
of order 2™, unless the solution escapes from the domain of the normal form 1} before. In
other words, we excluded at this step 7 = 0 the direction wq from the directions along which
a drift in the actions may appear before an exponentially long interval of time. Since ¥
is symplectic and close to the identity, the same holds true for the solution z(t) = zo(t) of
H = Hj, and we arrive at the following dichotomy: either the action variables have also small
variation in the direction transverse to wp for an exponentially long interval of time, or not.

In the first case, for an exponentially long interval of time with respect to m, the variation
of the action variables is small: the stability condition is satisfied and the algorithm stops.
Once the algorithm stops, one can determine the parameters () and m in order to fulfill the
compatibility conditions which essentially read as follows:

S0 5 1, mT0€ 5 S0, mT()SO 5 1.

Since sg ~ (ToQ) ! and Ty < Q™! (as ||[VA(I(20))|| = ||vo|| is of order one), these conditions
are satisfied if we choose m ~ @Q ~ £73% and ¢ < 1, and thus we obtain a result of exponential
stability with respect to m ~ e~3n. If h is convex or quasi-convex it is simple to see, due
to energy conservation, that this first case is automatic and it is not possible that the action
variables drifts transversely to wp, hence exponential stability is proved with one step of the
algorithm. But in general, the second case is possible and more work is needed to further
reduce the drifting possibilities of the actions going from the step 7 = 0 to the step 7 =1 of
the algorithm.

In the second case, setting HSL = Hy o &y and denoting by zar (t) the associated solution,
we can find a positive time #], which is shorter than 2™, such that the I(zg (£)) — I(2g (0))
has a small drift of order sy in the direction orthogonal to wg. Letting IIy be the projection
onto the orthogonal of wy, we can define a curve

0(t) = I(2g (0)) + Mo(I(zg (1)) — I(z9 (0)))

which takes values in an affine subspace of dimension n—1. One can then exploit the steepness
property to find a time y < tJ for which the vector Vh(yo(fo)) is linearly independent from
wp in a quantitative way:

Io(Vh(vo(to))) 2 55"

where p,_1 is the steepness index in dimension n — 1. Using Dirichlet’s box principle again
with the same parameter (), we can approximate the vector Ilo(Vh(vo(fg))) = v1 by another
periodic vector wy:

lor —wrill =51 S (MQ)™, ol ST S ol Q" S 5™ Q"

First observe that since v4 is orthogonal to wq, wq is almost orthogonal to wy and in particular it
is linearly independent from wy. Then since ||vo(f0)—1(z¢ (£0))]] = ||Ha (I(z5 (f0))—1 (25 (0)))]]



is small (as I(z (t) — I(z4 (0)) has only small variation in the direction given by wp), we also
have
Mo (VA(I(2g (o)) — will ~ 51 S (T1Q)™F,  T1 5™ ' Q"

Set 21 = z(]L(fo) and H; = HaL. On a small neighborhood V; of z; (small enough so that V; is
still included in Vj) we can then construct, as in the first step, a resonant normal form with
respect to wy up to an exponentially small remainder with respect to m. Unlike the step j =0
in which the perturbation was arbitrary, here the perturbation is given by the non-resonant
part with respect to wg, and this explains why it is sufficient to have an approximation of
IIo(Vh(I(21))) and not of the full vector Vh(I(z1)). Moreover, a careful construction of
the new normalizing transformation ®; shows that the resonant part of Hy o @, whose flow
commutes with the linear flow of frequency wq, also commutes with the linear flow of frequency
wp. Exactly like in the first step, we arrive at a dichotomy which determines whether the
algorithm stops (the variation of the action of the solution of Hjo®, and then of H; = Hpo®
and Hy = H, is small and the theorem is proved) or moves to the next step with the gain
that now both the directions wg and wy, that are linearly independent, are excluded from
the directions along which a drift in the actions may appear before an exponentially long
interval of time. Note that if the algorithm stops, the parameters Q and m have to be chosen
according to
s <S1, mhie<s;, mls<S1, 0<i<lI.

Observe that
Tl < Sapn—lanl ~ (TOQ)pn_l anl < Qn(1+pn_1)fl

_1
and hence the compatibility conditions are satisfied if we choose m ~ Q) ~ ¢ 271 and ¢ < 1,
with a; = 1 + p,_1, and thus we obtain a result of exponential stability with respect to
1

m ~ & 2ra1, In particular, as 2na; > 2n, this stability result also holds true if the algorithm
stopped at step j = 0.

We have briefly explained how to pass from the step j = 0 to the step 7 = 1, and how
the parameters (Q and m are chosen if the algorithm stops at step j = 0 or j = 1. But of
course, for any 0 < j < n — 2, one proceeds exactly the same way to go from step j to step
j + 1. The fact that the algorithm stops after n steps (if, of course, it didn’t stop before)
is clear since then n linearly independent directions are excluded from the directions along
which a drift in the actions may appear before an exponentially long interval of time. More
formally, in the case j = n — 1, the resonant part in the normal form H;;l =H, 10P,_1
consists of a Hamiltonian whose flow commutes with n linearly independent linear flows with
frequency wyo, . .. ,wp_1; it is plain to see that such a Hamiltonian is integrable, so H :{_1 consist
of an exponentially small perturbation of some integrable Hamiltonian: the first case of the
dichotomy thus holds, the algorithm stops and the theorem is proved. At each step j, the
compatibility conditions are given by

$i <1, mTie<s;, mlis; <1, 0<i<y,

~ ~

and using the fact that

TO 5 anl, z} 5 (zjjle)pnianil’ 1< ] <n-— 1’

1
we can choose, if the algorithm stops at step j, m ~ Q ~ ¢ *"% and € < 1, with

ap=1, a1=1+pp1, aj=14+pyj+-+Ppj.- . .Dn-1, J=2,



leading to a result of exponential stability with exponent 2na;. We have

ap—1=1+pr+pip2+---+pp2...Pn-1=a,

and since 2na,_1 > 2na,_s > -+ > 2nag, independently of the step j at which the algorithm
stops (and hence independently of the choice of @ and m), we obtain a result of exponential
stability with exponent 2na.

Let us now describe the plan of the proof. In §3.2, our aim will be to obtain a suitable
normal form (Proposition 3.1) for an abstract Hamiltonian H;, where 0 < j <n — 1, which,
as we explained in the heuristic description above, will be later related to our original Hamil-
tonian H described in (x) in the following way: Ho = H and for j > 1, Hj = Hj_1 0 ®;_1 =
Hyo®go---0®;_ 1 where ®;, for 0 < i < j — 1, is the normalizing transformation with
respect to the periodic frequency w;. Here the periodic frequencies wy, ... ,w; are assumed to
be known, H; is already normalized with respect to wp,...,w;_1 and our aim is to explain
the construction of the transformation ®; which will further normalize H; with respect to w;.
The proof being technical, details will be given in Appendix A. In §3.3, a partial stability
result (in the direction given by the linear span of wy,...,w;, up to times of order 2) will
be easily deduced from the normal form Hamiltonian H; o ®;. Using this, we will introduce
a first version of the algorithm dichotomy in Proposition 3.2: either stability holds for an
exponentially long interval of time and the algorithm stops, or a small drift in the action does
appear in the orthocomplement of wy, ... ,w; and the algorithm should move to the next step.
We will also prove in Proposition 3.2 that if j = n — 1, then only the first alternative can be
true. In §3.4 and §3.5, we will examine the situation where the second alternative holds true
(so necessarily j < n—2), and using the steepness property of & (in §3.4) and then Dirichlet’s
box principle (in §3.5) we will prove how to pass from the step j to the step j+ 1. In §3.6, we
summarize the work done in §3.2, §3.3, §3.4 and §3.5 in Proposition 3.7 that gives one step
of the algorithm, and which clearly shows that at some given step, either the algorithm stops
or it yields the hypotheses that allow to apply it again. Finally, in §3.7 we conclude the proof
of Theorem A, which will follow easily from Proposition 3.7 by determining the parameters
@ > 1 and m > 1 in terms of our small parameter &.

3.2 Normal form statement

In this section we fix 0 < j <n—1, and we assume the existence of periodic vectors wy, . .. ,wj,
with periods Tp, ... T}, which are linearly independent. For convenience we set w_; = 0 € R".
We define the complex and real vector space

Aj ={veC"|vwg=v-wy=-=v wj1 =0}, Aj ::]XjﬂR",

which are of complex (respectively real) dimension n — j. Then we consider three positive
real numbers rj, s; and &j, a point z; € B,; and we define the complex domain

Vss, 3¢, (%) = {2 € C*" | I(2) — I(z)) € A, |I(2) — I(z))] < 3sj, [|2]| <rj +3}  (3.1)

where, for simplicity, the dependence on r; is omitted. We will simply write || - H33j,3£j for
the supremum norm for vector fields defined on V35j73§j(2]’) and, for -1 < i < n —1, we
will denote by I, (2) := w; - I(z) and X,,, its associated Hamiltonian vector field. With our
convention, the function /,,_, and its associated Hamiltonian vector field are identically zero.

Given a real number 0 < € < 1 and an integer m > 1, we can define a set of Hamiltonians
as follows.



Definition 2. The set NFj(w_1,...,wj—1,%},5;,7,&;, F,e,m), or for short NF}, consists of
real-analytic Hamiltonians H; defined on Vss; 3¢, (2j), and of the form

Hj(z) :== h(I(2)) +gj(2) + fj(2), 2 € V3q, 3¢, (%))
h:D.—C, [[V2h(D)|l, <F, I(Vss,3¢(2)) C Dy,
||ng||33j,3§j < e, ||ij||35j,3§j < j2]_12_m5a

{lw—l’gj} = {lwoagj} == {lefpgj} =0.
Now let us introduce another definition, taking into account the periodic frequency w;.

Definition 3. The set ﬁj(wo,...,wj,zj,sj,rj,fj,F,s,m), or for short ]V}/’j, consists of
real-analytic Hamiltonians H; € NFj(w_1,...,wj-1,%},5;,75,&j, F,e,m) which satisfy the
following additional conditions: if we denote l:[j (respectively I1;) the orthogonal projection
onto INXJ- (respectively A;), then

1T VA(I(25)) = wjl| = T VA(I(2)) — will < s (32)
and
Sj < (Tj+2£j)£ja 2j216(’l“j—|-3£j)mTj€ < S5, 72(3F\/ﬁ+ 1)5;1(7‘j—|—3£j)mTij <1 (33)

The interest of the subset NF j C NFj is that if H; € ﬁj, then up to a change of
coordinates ®; (which is real-analytic, symplectic and close to identity), we get that H;o®; €
N F; 1 which will constitute a main ingredient in our algorithm. Here’s the precise statement.

Proposition 3.1. Let H; € ﬁj(wo,...,wj,zj,sj,rj,§j,F,€,m). Then there exist a real-
analytic symplectic embedding

D) : Voo, 26, (2) = Va3, (2), ®5 (Vasy 26, (25)) 2 Vs, 5(25),

such that H;r =Hjod;=nh +g;r + f;r with

{lw—lagj‘r} = {lwoagj‘r} == {le’g;‘r} =0, (3.4)
and with the estimates
X llosy 2, <2406 (1K llas, 26, < (G 4+ 127277, (35)
195 = 1d]|as, 2¢, < 27 The. (3.6)
In particular, H;r € NFji(w_1,...,wj, 2j4+1,8j41,Tj+1,&j+1, Fre,m) given any choice of

Sj+1, Tj+1, &1 and zjp1 € By, for which the inclusion Vs, 3¢, (2j41) € Vas; 2¢,(2))
holds true.

The proof of Proposition 3.1, which is technical, is deferred to Appendix A. The second
part of Proposition 3.1 follows easily from the first: if we define H; 1 := H;, gj11 == g;.r and

j
fi+1 = f]*, then (3.4) read

- ) = {1, = ={ly,, =0,
{lw 17gj+1} {l 0 gj+1} = = {l gj—i—l} =0



whereas the inclusion Vs, 3¢, (2j41) € Vas, 2¢,(25) yields

I(V3s; 11,3650 (2541)) © I(Vas; 2¢;(25)) € I(Vss; 3¢, (%)) € Do

and, together with (3.5), the estimates
+1
Hng+1H3Sj+1,3§j+1 < Hng+1H2sj72£j < 2 €,

Hij+1H3Sj+1,3€j+1 < Hij+1H23j72§j <@+ 1)2j2_m5-

This exactly means that H;,q = H;r € NFji1(w_t,...,Wj, 2j4+1, Sj41,Tj+1,Ej+1, Fre,m).

3.3 Use of the normal form

From now on, we will mainly work on the real domains
V23j72£j (Zj) = V23j,2§j (Z]) N RQn, 0<3<n—1.

The normal form in Proposition 3.1 is used to show that given a solution z;.r (t) of the Hamil-
tonian system associated to H;r = Hj o ®;, the curve [ (z;L (t)) has a small variation in the

direction spanned by wp,...,w;, which is nothing but AjL—H (the orthocomplement of Ajy ),
for times [¢| as large as the inverse of [[X i+ ||2s; 2. It may well happen that in the direc-
J

tion given by Aji1, the curve I (zj‘(t)) has also a small variation and hence I(z;(t)) where

zi(t) = <I>j(zj7L (t)), has small variation, which yields our confinement result. But if not, that

is if there is a faster deviation of I (z;r(t)) from [ (z]+ (0)), this has to occur in the direction
given by Aj; 1. Here is a precise statement.

Proposition 3.2. For 0 < j < n —1, let H; € ﬁj(wo,...,wj,zj,sj,rj,fj,F,e,m) and
D1 Vas; 2¢,(2) = Vas; 3¢, (25) given by Proposition 3.1, and let Z;»L (t) be the forward solution
of the Hamiltonian H;L = Hjo ®; starting at z;.r = @;l(zj). If0 < j <n-—2, and if we
define '
tjo=(rj + &) (G +1) 127 T2, (3.7)

then we have the following dichotomy:

(1) either z;r(t) € Vi, 6, (z5) for 0 <t <tj,

(2) or there exists a positive time tj < t; such that

[1(=] () = 1(z)] = 5;/4
and, for 0 <t < t;L,

2 (1) € Viyg, (%), (= () = 1(z) < s5/4, Wy (L(= (1) = 1(2)))] < s7'e. (3.8)
If j =n—1, and if we define
th1 = (Tn—l + fn_l)_1n_12_(n_1)8n_1€_12m, (3.9)

then zt 1 (t) € Vi, 601 (2n1), for 0 <t <t ;.
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Proof. First observe that since the image of ®; contains Vi, ¢ (z;), it contains z; and so

z;r = <I>j_1(zj) is well-defined, and we have, using (3.6) and the first two inequalities of (3.3),

125 = 2l = [lz]7 = @;(z])I| < 2H ' Tje < s5(108(r; +365)) ™1 < &(ry + 26;)(108(r; +3€;)) ™
which easily implies

127 = 2|l < &/108, |1(z) = I(2))] < 5,/108. (3.10)

Observe also that since z; is real and H; and ®; are reals, the forward solution z]+ (t) is real.
We first consider the case 0 < j <n — 2. Using (3.10), we can now define ¢; € (0, +00] to
be the time of first exit of z]+ (t) from Vi, ¢ (2;). We claim that the dichotomy of the statement
is implied by the following trivial dichotomy: either ¢; <5 or ¢5 <t;.
Indeed, in the first case, one obviously have

Z]—'—(t) € Vrj,gj (Zj), 0<t< t_j.

In the second case, either \I(z;r(tj)) —1I(zj)| = sj or Hz]+ ()|l = rj+&;. But since the solution
is real, the second possibility implies that

[1(=f ()] = 1/2[l=] EHIP = 1/2(F + &) + 1565,

while
11(zj)| = 1/2[|%|* < 1/2r7

and therefore, using the first inequality of (3.3), we obtain
[1(=](t5)) = I(z)| = (= )] = 11 (2)] > &(1/285 + 1) > s5/4.

So, whether ]I(Z;L(tj)) — I(zj)| = s; or Hz;r(tj)H = rj + &, there exists a positive time
tj <tg < tj such that

[1(= () = 1(z)] = 55/4
and

I(=F(0) — I(z))| < s;/4, 0<t<tf.

Since t;r <t z;.r(t) € Vs, ¢(2) for 0 <t < t;r. It remains to show that
1L —1
T (I (1) — ()| < 571, 0<t<tt,
Since h is integrable, for 0 < s <t < t;L,

if(Zf(S)) = {LH}(=](s)) = ({1, H = (5)), o ATn H Mz (9)))

dt
= {Lh+gf + [} () ={L,g] + £} ().

Then, for any 2 € Vj, ¢,(2;) and any —1 <i < j, using (3.4) we obtain

{lwng—}('z) = Wi - {I,g;-L}(z) =0

11



which implies that {7, g;'}(z) € Aji1. Therefore

I, (%uz;(s))) — {1 £ )

and hence
(TG () = 1)) = [ 1t (GG e) )ds = [ 41573 s

and, using the second inequality of (3.5) and the fact that

L £} ) < Ml (X (2 ()]

we obtain
T (1G5 (1)) = )] < 000+ E)I1X ol 26, < 1l + ) + )22
Since t;r <t <tj=(r;+ )G+ 1)_12_js;12m, we thus obtain

ML (I (0) = ) < 55, 0<t<t],

which concludes the proof for the case 0 < j <n — 2.
Now for the case j = n — 1, we have A, = {0} and so A} = R™, hence for t <, | =
(rn—1 + fn—1)71n712*("*1)sn_1a*12m, repeating the last argument we get

Iz () = I(zp_1)| < 8p1, 0<t<t, 1.

n—1

As z;'_l(t) is real, this implies, using also the first inequality of (3.3), that for 0 < ¢ <¢,_1,

len DI = 2/I(zF_, (1))l
2 (271 (t)) = I(zn-1)| + 2|1 (zn—1)|
2501+ |21 (1)

2(7"1171 + 2£n71)£n71 + T727/—1

(Tnfl + 2£n71)2

VAN VAN VANRRVAN

SO z,ill(t) € Vi, 12601 (zn—1) for 0 < ¢t < t,_1, and this concludes the proof of the proposition.
Ol

3.4 Use of the steepness property

Let us start by giving a geometric interpretation of the steepness property, as its definition is
quite abstract. Assume that h is steep on some domain D, and consider a curve 7 : [0, 1] — R"
which takes values in A N D, where A is a proper affine subspace of R™. It may happen that
Vha(v(0)) = 0 (this is the case if v(0) is a resonant point for h, that is, if k- VA(y(0)) for
some non-zero integer vector k € Z™: then Vhy(v(0)) = 0 where A is the real space generated
by such integer vectors k). If this happens, the steepness property ensures that, for some
time 0 < ¢ < 1, Vhy(y(#)) # 0 (informally, in terms of resonances, this means that we do not
have “accumulation of resonances”). Moreover, the longer is the length of the curve v, the
farther away from zero is the vector Vhy(v(%)). Here’s a quantitative statement, which is due
to Nekhoroshev.

12



Lemma 3.3 (Nekhoroshev). Let h be a function which is (r,r,C, 8, (p)i=1,...n—1)-steep, and
such that
IV2h(D)]|» < F.

Let v : [0,t7] — R™ be a continuous curve, A an affine subspace of R"™ of dimension I, where
1<i<n-—1, and d a positive real number. Assume that

(i) for allt € 0,tT], v(t) € \;

(791) the ball {I € R™ | ||I —~(0)|| <d} is contained in D,;

)

(id) for allt € [0,t7], [|v(0) = y(®)|| < d and [|4(0) = y(t)|| = d;
)
)

(iv) d < min{6, (3F) 'k, 2(5k(4C)~1)1/Pi}

then there exists a time t € [0,t] such that
IIAVA(y(E)]] > C/5(d/2)™,
where A is the vector space associated to A, and 5 the orthogonal projection onto A.

This is a special case of the lemma on “almost plane curves” of Nekhoroshev, stated in
[Nek77] and proved in [Nek79] (our case corresponds to “plane curves”).
Now assume that Alternative (2) of Proposition 3.2 holds true, and let ~;(t) := I (z]+) +

Hj+1(](2;r(7f)) —I(z;»L)) for t € [0, t;r] Since this curve takes values in a proper affine subspace,
the following proposition is a simple consequence of Proposition 3.2 and Lemma 3.3.

Proposition 3.4. For 0 < j < n—1, let H; € ]Vf’j(wo,...,wj,zj,sj,rj,gj,F) and ®; :
Vs, 2¢;(25) = Vs, 3¢;(25) given by Proposition 3.1, and let z;r (t) be the forward solution of the
Hamiltonian HJ+ = Hjo®; starting at z;r = <I>j_1(zj). Assume that h is (r,k, C, 8, (p1)i=1,...n—1)-
steep. Then we have the following dichotomy for j <mn — 2:

(1) either z;r(t) € Vi, ¢, (z5) for 0 <t <tj,

(2) or there exists a time t; < t;L < t; such that, setting v;(t;) := I(Z;L) + Hj+1(I(z;-r(fj)) -
I(zf)), then

\]Hj_,_th('yj(fj))H > ,u,jsé)nijil, Wy = 57101671)"’]'*1, (3.11)

provided that

2
e <sld (3.12)
sj < 8min{J, (3F) 'k, 2(5k(4C) 1) /Pr—s-1},

Ifj=n—1, then z |(t) € Vo, 1 e, 1 (2n-1), for 0 <t <t,_4.

Proof. We only have to consider the case j < n — 2, and we have to prove that Alternative
(2) of Proposition 3.2 implies Alternative (2) of the above proposition. So we assume the
existence of a positive time t;L < t; such that

(= (1)) = I(2))| = s;/4
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and, for 0 <t < tj,

2 (1) € Viyg, (%), (=] (1) = I(z) < 55/4, M (I(z] (1) — I(z))] < 7'«
Hence, using the first inequality of (3.12),
W (2= () = 1(z)) = (25 (8) = 1(z) | = W (L (8) = 1 (25)] = /4 =5 e = 5/8
and in particular
T2 (1(2] (8])) = I(z))| = 5/8.

Therefore we can certainly find a positive time fj < tj such that

I (12 (8)) = 1(2))l] = s5/8

and

I (I (1) = I(=z))l| < 55/8, 0<t<i]. (3.13)
Now we want to apply Lemma 3.3 to the curve v;(t) = I(z;f) + Hj+1(I(zj7L(t)) - I(z;r)), for
t e [O,f;r], with d := s;/8 and with the affine subspace \j;; := I(z;r) + Aj+1 which has
dimension n — j — 1. The assumptions (i) and (i7) of Lemma (3.3) are trivially satisfied, as

V() =5 (0) = T (125 () = 1(2)))-

Then (44i) holds true since, by definition of H;, we have I(Vas; 2¢;(25)) € I(V3s, 3¢;(25)) € Dy
Eventually, the second inequality of (3.12) clearly implies (iv) therefore Lemma 3.3 can be
applied, and there exists a time ¢; € |0, fj] such that

L1V A(y; ()] > 571 C(d/2)P 1 = pysy" 70

This concludes the proof. O

3.5 Use of periodic approximations

Let us first state the following simple consequence of Dirichlet’s theorem on approximation
of real vectors by rational vectors.

Lemma 3.5. Let v € R\ {0}, and Q > 1 a real number. Then there exists a T-periodic
vector w € R™\ {0} such that

lo—wl| <V =LTQ)™, |7 <T < Valll|71Q" "
Proof. Fix @ > 1. Up to a re-ordering of its component, we can write v = |v|(+1,z) for
some z € R™ ! and by Dirichlet’s approximation theorem, there exists a rational vector
p/q € Q"L such that
gz —pl < Q' 1<qg<Q"
The vector w = |v|(£1,p/q) € R" is then T-periodic, for T = |v|~1q, and we have
lv —wl| <T Mgz —pll, |o|™ <T < fo7'Q"!
which implies

o —wll < Va=HTQ)™, |7 <T < Valll|~'Q"™

and this was the statement to prove. ]
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Now assume that the conclusion of Alternative 2 of Proposition 3.4 holds true, so the

vector IL;11Vh(v;(t;)) is non-zero, where v;(t;) = I(z;.r) + Hj+1(I(z]7L(fj)) - I(z;L)) By
Lemma 3.5 this non-zero vector can be approximated by a periodic vector w;41, and it will be
easy to ensure that this new periodic vector is linearly independent from wy, ...,w; (as wji1
is close to I1j11Vh(v;(%;)), the latter being, obviously, linearly independent from wy, ... ,w;

as it is orthogonal to them). Moreover, as v;(Z;) is close to I(z;r(fj)), setting zj41 1= z;r(tj),

the vector wjyq is also an approximation of II;{1Vh(I(zj11)). This leads to the following
proposition.

Proposition 3.6. For 0 < j < n—1, let H; € ]V}/’j(wo,...,wj,zj,sj,rj,§j,F,e,m) and
;1 Vag; 06, (25) — Vas;3¢;(25) given by Proposition 3.1, and let z;f(t) be the forward so-
lution of the Hamiltonian H]"' = Hj o ®; starting at zj = <1>j_1(zj). Assume that h is
(r,K,C, 6, (p1)i=1,...n—1)-steep. Then, for j < n —2, we have the following dichotomy:

(1) either z;f(t) € Vi, 6, (25) for 0 <t <y,

(2) or, given some positive parameter QQ > 1, there exists a Tji1-periodic vector wji1 €
R™\ {0}, linearly independent from wy, . ..,w;, with the estimate

(F'/ns;) ™t < Tjp1 < \/ﬁ,ujflsj_p”_j_lanl, F':= max{1, F}, (3.14)
and a time t; << t; such that if we define
zier =2 (), s =2Vn = WTnQ) ™Y, =+, &= 6/3

then it holds that

V3s;41,36511 (Zj+1) © Vag; 2¢,(25) (3.15)
L1 VA (2j41)) = wjsl] < 8541, (3.16)
25 (1) € Vi, g, (7)), 0<t <1y, (3.17)
provided that
€< s?/&

s; < 8min{d, (3F) 'k, 2(5k(4C) 1) /Pr—s1}

Q > 8F'\/n(n—1),

e < (2v/nF)"lsjsi11.

(3.18)

Ifj=n—1, then z} (t) € Vs, 1, 1(2n—1), for 0 <t <i#,_1.

Proof. Since (3.18) implies in particular (3.12), it is enough to prove that Alternative (2) of
Proposition 3.4 implies Alternative (2) of the above proposition. So we assume the existence
of a time #; < t;r < t; such that

0 V(s E)I] > sy ™7 g =571C167P =1,

where ;(t;) = I(z;.r) + HJ-H(I(,Z;r(fj)) - I(z;L)) Let us define v;41 := IL; 11 Vh(v;(¢;)). We
have

15 (65) = Tzl < I (1(2 (&) = TEOD) + (=) = T()I] < s3/8 + v/ns; /108,
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where we used the estimate (3.13) (as ¢; < fj') and the estimate (3.10). Since n > 2 this
implies
1 (£5) = I(z)Il < (Vi = 1)s;
which implies
lvj+1 = 1 VA ()| < F(Vn = 1)s;.
Now recall that by definition of z;, we have
I VA(I(25)) — will < s;
and since w; € Ajl+1 and Aj 1 C Ay, I wj = 0 and T4 = 11,111}, and therefore
T 1 VA ()] = [T (I (VAL (25))) = wj)l| < s
which implies that

gl < llvjr = T VA )|+ ([T VA ()| < F'/ms;.

We just proved that
sl < ol < F'/ms;. (3.19)

Now, for Q > 1, we apply Lemma 3.5 to vj41: there exists a T} i-periodic vector wjiq €
R™\ {0} such that

vjs1 = wjstll S V= UTa@Q) " Jojaal| ™! < Tjr < Vallvjal| '@

Using (3.19), this implies
(F'v/asy) ™t < gl 7Y < Tysn < Vallopa 1@ < Vs Ls77 -1 n=t - (3.20)
and also, using the lower bound on T} 1,
[vj01 = wjn]| SV =1(Tj41Q) 7" < Vi —1fojn[|Q7" < F'Vn = 1ns;Q7" (3.21)

Let us prove that w;; is linearly independent from wy, ..., w;, that is w;y; does not belong
to Ajl+1- To do this, it is enough to prove that if v is an arbitrary vector in A]‘L—H’ then
lwjt1 - v| < |Jwjsi]ll|v]]: indeed, otherwise, letting v = w; 1, one would get a contradiction.
On the one hand, we have

w1 - o] = (@1 = v541) - 0] < g1 = wisalllloll < Vn = 1Q™H[vjpll[[v]]
where we used the fact vj11 € Aj4q and (3.21), while, on the other hand,
s loll > (lojaall=llvjr1=wssalDllvll = 1=V =1Q ™ Hllvjsallllvll > vVn = 1Q ™ H|vj4llllv]]

where we used the third inequality of (3.18) and (3.21). These last two inequalities imply that
lwjt1 - v] < |lwjs1]|||v]] for an arbitrary vector v € Ale, and so wjy is linearly independent
from wy, ..., w;.

Next we define

i1 = 2 (t5),
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and obS(irve that, since #; < tj, by (3.8), zj+1 € Vi, ¢;(25), but also z;'(t) € Vi, ¢;(25) for
0 <t < 'tj, which justifies (3.17). Moreover, still from (3.8),

1(zj41) = v (E)] = M1 (I (zj41) = ()] < 55 e
SO
11(zj11) = ()] < Vs e
and hence
11041 VA(I(2j41)) = vj4al] < Fy/ns;'e.

Therefore, using the first inequality of (3.21), the definition of sj;1 and the last inequality
of (3.18),

41 VR(I(2j41)) — wjt1l] (41 VA(I(2j+1)) — vjtl| + [vj+1 — wjrl]

<
< F\/ﬁsjfle + Sj+1/2 < 8511,

which proves (3.16). It remains to check (3.15), so let us fix z € V3, 3¢,,,(25+1). First, we
have

I(2) = I(25) = 1(2) = I(zj41) + 1(zj11) = 1(2)) = 1(2) = I(z41) + 1(z] () — I(zj) € Ay
since I(2) — I(zj11) € Aj11 € Aj and I(z;.'(fj)) — I(zj) € A;. Then,
[1(2) = 1(z)| < [1(2) = I(zj41)| + H(zj41) = 1(25)] < 3sj41+55/4 <25

provided that sj;1 < 7s;/12: but this inequality (in fact, the stronger inequality s;41 < s;/2)
follows from the definition of s;41, the third inequality of (3.18) and (3.21). Eventually,

HZH < rj+1+3§j+1 :rj+§j+3§j+1 =7 +2§j

and so we showed that Vs, 3¢;,,(254+1) € Vas; 2¢;(2;), which concludes the proof. O

3.6 One step of the algorithm

As a straightforward application of Proposition 3.1, Proposition 3.2 and Proposition 3.6, we
now describe formally one step of the algorithm that will eventually lead to the proof of
Theorem A.

Proposition 3.7. For 0 < j < n—1, let H; € ]V]E’j(wo,...,wj,zj,sj,rj,fj,F) and ®; :

Vs, 2¢;(25) = Vs, 3¢;(25) given by Proposition 3.1, and let z;.r (t) be the forward solution of the

Hamiltonian H;L = Hjo®; starting at z;f = @;l(zj). Assume that h is (r, k, C, 8, (p1)i=1,...n—1)-
steep. Then, for 0 < j <n — 2, we have the following dichotomy:

(1) either z;.r(t) € Vi, 6, (25) for 0 <t <y,

(2) or, given a real number Q > 1, there exists a Tji1-periodic vector wji1 € R™\ {0},
linearly independent from wy,...,w;, with the estimate

(F'v/ns;) ™' < Tipr < Vnpgts; 7 071QM Y, F/ = max{1, F}, (3.22)
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and there exists a time fj < t; such that,
zip1 =21 () € Bryyys sj1 =2Vn—1(Tj1Q) ", rjpi=rj+&, &=¢/3
such that H;L € ﬁjﬂ(wo, Wit Zjg s Sj41, Ti41, 41, Fre,m) and
25 (1) € Vi, g, (7)), 0<t <1y, (3.23)
provided that

s < 8min{J, (3F) 'k, 2(5k(4C) 1) /Pr—s-1},

Q = 8F'\/n(n — 1),

e < (2y/nF) " ts;siq1, (3.24)
27H1216(rj 41 + 3 1)mTj e < s,

T2BF i+ 1)&] (rj + 3¢)mTjasi < 1.

If j =n—1, then z:_l(t) € Vs 126, 1 (2n—1) for 0 <t <tp_q.

Proof. The case j = n—1 follows directly from the case j = n—1 of Proposition 3.2. Then, we
claim that the inequalities (3.24) imply the inequalities (3.18) and the inequalities (3.3) (with
j replaced by j + 1). Assuming this claim, and using Proposition 3.6, we have the inclusion
of the complex domains of (3.15), and therefore using the second part of the statement of
Proposition 3.1, we can assert that H;L € NFj;1. Moreover, in view of (3.16),and since (3.3)

is satisfied (with j replaced by j 4 1), we eventually obtain that H;r € ]Vf’]qu, while (3.23)
is nothing but (3.17).

It remains to prove the claim. To do this, observe that (3.24) obviously implies (3.18)
and (3.3), except for the following two inequalities:

e<s5/8, sju1 < (11 + 26541)E5 41 (3.25)
But using the third inequality of (3.24) and the fact that H; € ﬁj, we know that
e < (2VnF') lsisiin, s; < (rj+ 288 (3.26)

Then, using the second inequality of (3.24), one easily check that sj;; < s;/4, and this,
together with (3.26), imply (3.25), and the proof is over. O

3.7 Proof of Nekhoroshev exponential stability

We can finally give the proof of Theorem A. Recall that we are given a Hamiltonian H as
in (x), which is defined on B,, and of the form

H(z)=h(I(2))+ f(2), h:D,—C, f:B,—C
and that (2.5) holds true, that is

VAl < B, [[V2hll. < F, || Xl <.
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We already defined F’ = max{1, F'}. Recall also that h is (r,x,C,d, (p;)i=1,...n—1)-steep. Let
us now define additional parameters: for any 0 < j7 <n—1and 0 <k < j, we set

k._ k._ i

n—j<i<n—j+k—1 0<i<k

with the convention that the product over the empty set is one, that is, 70 = 1. Observe in

J
particular that

ag =1, a% =1+pp_1,

and at the other extreme,

/

aﬁé =1+py+pops+---+pap3...pn1=a,

ap i =1+4pi+pip2+--+pip2.. pp1 = a
For 0 < j <mn — 2, recalling that the numbers j; have been defined in (3.11), we define

L N

L . —1 —1\1/pn—j—1 e J
= i (9P 2500y = T
1=

The proof of Theorem A will be a consequence of the following proposition.

Proposition 3.8. Let H(z) = h(I(z)) + f(z) be as in (x) satisfying (2.5), such that h
is (r, k5, C, 0, (p1)i=1,...n—1)-steep. Let zo be an arbitrary point in B, and z(t) the forward
solution of H starting at zg. Given an integer m > 1 and a real number QQ > 1, we have

[I(z(t)) — I(z0)| < s:=3EvVn— 1Q7Y, o<t<t:= 3(2rEvn — 1)71Q2m,
provided that:

(Q > (5r2)"136Evn — 1,
Q> Evn—1(8n)~",
Q > Evn —1(80)7 1,
Q > 8F'\/n(n —1), (©)
QﬁF’ﬁaﬂLl\/n — 17(a+a )V;_lly;_lz,«;_(W2:}+”2:§)Q"(a+al)5 <1,
n—1
27 127(3 + 37" )r(n — 1) n%/n — Ix 2M-1y, 2 mQ?* e e < 1,
Q >m216(3" +1)(3Fy/n+1)vn — 1.
Let us first prove this proposition. The fact that this proposition implies Theorem A

simply follows from a suitable choice of m and @ (in terms of our given parameters) and will
be detailed later.

Proof of Proposition 3.8. The proof follows from an algorithm whose inductive step is given
by Proposition 3.7. But first we need to initiate the algorithm. By assumptions we have

< [[VR(I(20))ll < E

and so we can apply Lemma 3.5 to vy := Vh(I(zy)): there exists a Tp-periodic vector wy €
R™\ {0} such that

HUQ — WQH <vn-— 1(T0Q)71, E! <Tp < n,‘i*lanl. (3.27)
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We define
Hy:=H, so:=vVn—1TyQ)™" , ro:=r/2, & :=r¢/3=1/6,

and observe that Hy € NFy(w_1, 20, So, 70,0, Fye,m). Indeed, Xo = C", 1o + 3¢ = r so that
V350,36 (20) € By, and we can write Hy = h+ f = h + go + fo, with go := f and f := 0,

HXgoH3T0,3§0 < HXfHS <g,

as the requirement {l, ,,g0} = 0 is void since w_; = 0. In fact, using the first inequality
of (3.27) and assuming that

Q> (5r)~136Eyn —1,
216nvn — 1  w2rmQ? e < 1, (C0)
Q > m216.3(3Fy/n+1)v/n—1,

one easily check that, using the definitions of sg, 79, & (which gives in particular ro + 3§y =r
and (r0+3§0)§0_1 = 6) and the second estimate of (3.27), that Hy € ﬁo(wo, 20, 80,70, &0, Fhe,m).
So Proposition 3.7 can be applied.

If Alternative (1) of Proposition 3.7 holds true, the solution 27 (t) of Hf = Hgo® satisfies
20 (t) € Viggo(20) for 0 < ¢ < #g. As ®g sends Vagg 2¢,(20) into Vi, 3¢,(20) and ¢ < #g, then
®o(z5 (1)) = 20(t) = z(t) satisfies in particular

[I(z(t)) — I(20)] <3s0 <s, 0<t<t, (3.28)

the proposition is proved and the algorithm stops.
If Alternative (2) of Proposition 3.7 holds true, then there exist a Tj-periodic vector
w1 € R™\ {0}, linearly independent from wy with the estimate

(F'/nso) ™ < Ty < Vg sy P Q" 1, (3.29)
and
2 =20 (fo) € By, s1=2Vn—1T1Q)"", r=rg+&, &=4&)/3

such that Hy € ﬁl(wo,wl,zl,sl,n,&,F,a,m) and
25 (1) € Viggo(20), 0 <t <o, (3.30)

provided that

Q> Evn—1(8n)7",
Q> Evn—1(86)1,
Q > 8F'\/n(n—1),
2\/EF’\/H‘I%+“8 \/m—(aHGB)MalHﬂ} orlai+ad)s < 1, (C1)
180r(n — 1)~ %p™ \/mn”p”—lansz”a}*ls <1,
(Q > m216.10(3F/n + 1)v/n — 1.

Indeed, using the definitions of sg, s1, ro, r1, &, & (in particular, we use the facts that
51 < 80, 51 > vV — L(T1Q), r1+3& = 5r/6 and (1 +3&)&; " = 15) and the estimate (3.27)
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and (3.29) on respectively Ty and 77, one can check that (C1) imply (3.24) for j = 1. Setting
H; = Hg‘ € ﬁl(wo,wl, 21, 81,71,&1, F,e,m), we can apply Proposition 3.7 again.

If Alternative (1) holds true, then the solution 2{ (t) of H' = Hj o ®; = Hf o ®; =
Hg o ®go ®y starting at 2, = &, (2) satisfies 2 (t) € Vi, ¢, (21) for 0 <t < #7. As ®; sends
Vasy 26, (21) into Vas, 3¢, (21), then ®1(21(t)) = 21(t) belongs to Vas, s¢ (1) for 0 < t < 1.
By (3.15), Vg, 3¢, (21) is contained in Vo 2¢,(20), and as t < £y, 21(t) belongs to Vag 2¢,(20)
for 0 <t <t. Now observe that since z; = zar (to), by uniqueness of the solutions associated
to the system defined by H; = H, we have the equality z(¢) = z; (¢ + fo) as long as the
solution is defined. Using this equality, what we have proved is that

25 (1) € Vagy 0 (20), to <t <to+t
But recall that from (3.30), we know that
28 (1) € Vg go(20), 0 <t <1y,
and therefore, since t < ty + t, we have in particular

23 (1) € Vagg g, (20), 0<t <L

As before, using this and the fact that ®¢ sends Vo, 2¢, (20) into Vs 3¢,(20) we also arrive at
the estimate (3.28).

If Alternative (2) holds true, then the algorithm continues. To apply Proposition 3.7 at a
step 7, for 1 < j <n — 1, it is sufficient to check that

Q> Evn—1(8n)~",

Q > Evn —1(86)71,

Q > 8F\/aln 1),
QﬁF/\/ﬁaj:-l-a;j\/mf(az}a;:j)V;lyjjlmf(ﬂ§+ﬂ§:i)Qn(a§+a§j)€ <1,
2927(3 + 37 )r(n — 1)7a;'na;' Vn— 1k~ V{QmQQ"a;fle <1,

(Q > m216(37 T +1)(3Fy/n + 1)v/n — 1.

Indeed, (Cj) implies (3.24), using the definitions of s;, 7; and §; for 0 < i < j (which imply
in particular that the s; are decreasing, s; > vn — 1(T;Q)~ Y, r; + 3§ = r(3+37%) /4 and
(ri +3&)& 1 = 3(371 +1)/2), and the estimates on the period 7} that one obtains at each
step using (3.22). To conclude, just observe that the conditions (C) imply the conditions (CO0)
and (Cj) forany 1 < j < n—1. For j = n—1, there is only one possibility in Proposition (3.7),
the algorithm stops and the statement is proved. This ends the proof. O

(CJ)

Proof of Theorem A. We just need to choose m and ) in Proposition 3.8 in terms of our
given parameters. First we choose m in terms of @) as follows:

m=[01Q], b = (216(3Fv/n+1)(3" +1)vn—1)7!
where [ -] denotes the integer part. Using this choice, the conditions (C) are implied by

Q>by, Q>bsd !, Qb rbsQ™e <1, bQ"Te <1, (3.31)
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where

by := max{8F,\/n(n — 1), E\/’I’L - 1(877)_1, bfl}
by := Ev/n — 1871
by :=5"136Evn —1
bs == 2""127(3 + 37" )n%(n — 1)7%/n — 11/,;21/(2”33191
bo 1= 2/ F' /" =1 L D),

Then we choose () as follows:
1

Q := (bsre)” 2na
and observe that (3.31) becomes

2a a+a’

— 2a
re < by by, re < by by PSP, e < by b Pt e < b TV b ra—a’. (3.32)

With these choices of m and @, since m > b1 — 1 we have

1
s =3Evn —1b2" (ra)ﬁ
and

1 1
t > 3(4EvVn — 1)*1b5 2na ril(rs)*ﬁ exp <(ln 2)b1by rl(rs)ﬁ>

so if we define

2a a+a/

71 a—al
b5

~ —1;-2 ~ —1;-2 ~ —1;-2 ~ —
(G b5 b2 na7 Co 1= b5 b3 na’ C3 = b5 b4 na’ Cyq 1= bG ara

and
1 __1 __1
&5 = 2EVn — 12", &= 3(4EVn — 1)7'b, 7, & = (In2)biby ™

we eventually obtain that if

2a
re < min {51, o020 Gapdn® Gypa—al } (3.33)

then

[L(=(8)) = I(20)] < E(re) s, 0 <t < dgr(re)~ma exp (e (re) " ma ).

This proves the statement for positive times, but for negative times, the proof is of course the
same, so this concludes the proof. O

22



A  Proof of the normal form statement

A.1 Technical estimates

We first derive technical estimates for real-analytic vector fields defined on certain domains
in C?". These estimates are stated and proved for Hamiltonian vector fields, even though the
Hamiltonian character plays absolutely no role here.

For 0 < j < n—1, recall that w; € R™\ {0} are T}-periodic vectors, and that w_; = 0 € R".
We write l; (2) = w; - I(2), for 1 < j <n — 1, and we define the complex vector space

A={weC"|vwi1=vwy=-=v -wj1=0}

Then we consider three sequences of positive real numbers r;, {; and s;, a sequence of points
zj € By, and we let )\ = I(z;) + A be the complex affine subspace associated to Aj passing
through I(z;). The complex domalns we consider are given by

Vs, ¢, (2) ={z € C" | I(z) € \j, |I(2) — I(z)| < sj, ||2]] <7j+ &}

We fix 0 < 0; < s; and 0 < p; < &, and a real-analytic Hamiltonian vector field X, defined
on Vg, ¢.(27). Throughout this section, we will make the following two assumptions:

0j < (Tj + gj)pj’ {lw—MXj} = {lw—o,Xj} == {lw];pXj} =0. (Al)
Lemma A.1. Assume that (A.1) is satisfied. Then Xf(j Vsj—o5.65-p;(2) = Vs, gj(z]) is a
well-defined symplectic real-analytic embedding for all [t| < 7; = (rj +&;)~ UJHXXJHS &, with

the estimate HX;J_ = 1d||s;—0;.6,—p; < [ X115, .65 -
Proof. Let 2 € Vs, 5, ¢, p;(2j) and 2(t) = Xf(j(z) for small |t], and let |s| < |¢|. Since

oy X33 (2(8)) = wi - ({11, x53(2(8))s -+ {ns X5} (2(5))) i= wi - {1, x5} (2(5))

for =1 <1 < j—1, the second part of (A.1) implies that

wor-{L,x;3(2(s)) = wo - {1, x;}(2(s)) = - - = wj1 - {1, x; }(2(s)) = 0,
so {I,x;}(2(s)) € A; which implies that
d

L Ia(5)) = (L} () €
and therefore

i T A(2(9))ds = I(2) = I(2)) + I(2)) +/0 %I(z(s))ds €\

Then, using the first part of (A.1), for
[t] < min{p;, (rj + &)~ UJ}HXXJ Hsjlgj (rj + &)~ UJHXXJHSJ,gJ Tjs
we have

[12(t) = 2l < [Ell1Xx; Iy < s

and, using Cauchy-Schwarz inequality,

1)~ ()] < 271200 + 21200 — 2] < (g +€)I120) — 21| < (3 + I Xy oy < 0
This proves that Xij Vs, —o5.6-p;(25) = Vs, ¢;(25) is a well-defined symplectic real-analytic
embedding for || < 7;, with the estimate HX;Q —1d|s;—0;.6;—p; < X s, O

23



Lemma A.2. Assume that (A.1) is satisfied, and let Xy be a real-analytic Hamiltonian vector
field defined on Vg, ¢,(2;). Then, for [t| < 7;/3 = (3(r; + gj))_10j||XXj||;jl,§j; we have
1K) XLy o0y < (14 305+ €07 101X sy, ) 15 Ly =20, 5,20,

and therefore
||(X§<]‘)*Xf||5j—0'j,§j—l)j < 2||Xf||sj'f2oj/37§j*2pj/3-

Proof. Let |t| < 7;/3 = (3(rj + fj))_lajHXxj ||sj£] We have the following expression

(XL )" X = (DX o XL ). (X0 XL ) = <DX;J? o X! — Id) (Xpo XL )+ XpoXL .
Lemma A.1 implies that Xf(j Vs;—0,6-p;(25) = Vs; 20, /3.¢;—2p,/3(2j) hence
—t t —t
1DX; 0 Xy, = Mdllsj—05.6—p; < [1DX = 1[50, /3,65 -20;/3-
We claim that
HDX);t - IdHSj—ZJj/&Ej—ij/?) < 3(7"]' + g])UJIHX;Jt - IdHSj—O’j/37fj—pj/3

while obviously, using Lemma A.1,

HX;Jt _ Istj—aj/?),fj—pj/g = HXt_XJ — IdHSj—O'j/37fj—Pj/3 < ‘tH‘X_XjHS]yfj = ‘tH‘XXjHSj7§j'

Assuming this claim, using the expression for (Xij )* X and putting all the estimates together,
we arrive at

X)) X pllsy oy 5y < (14305 + €077 111 Xog sy ) 11X 5 © X sy 50
therefore
X Xl oy < (14305 + )05 11X Ny ) 11Xy 20, 56,20,

and also

(X)X lls;—0y.6-0; < 201X lls;—20, /3,6, —20,/3
since [t] < 7;/3 = (3(r; +&)) o | Xy, L;EJ It remains to prove the claim. Let ' = X ' —1d,
2 €V, 90,/3.¢,-2p,/3(2) and v € C?" a unit vector. The map

£€Crs F,(6) = F(z +€v) € C"

is holomorphic for [£| < (3(rj +&;)) oy < pj/3, with z+&v €V, _; /3¢, 3(2j). The usual
Cauchy’s estimate implies that

IDF(2)|| = sup ||DF(2)0|l = sup [[FL,(0)]| < 3(rj +&)o;" sup [1£2,0 (€]
lofl=1 lofl=1 E1<(3(rs+€)) 1oy

hence
IDF(2)|| < 3(rj 4+ &)0; IFlls; -, /36,0173

and the claim follows since z € Vs;—20,/3.6;—2p; /3(zj) was arbitrary. O
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Lemma A.3. Assume that (A.1) is satisfied, and let Xy be a real-analytic Hamiltonian vector
field defined on Vg, ¢, (2;). Then

X5, X, s, —20, /3620573 < 95 + €)1 X s, 6511 X £ s, -

Proof. We have the expression

d *
X7, X0 = 00X

=0

so for z € Vsj,%gj,pj(zj), let us define the holomorphic map

teCm Fi(t) = (XL ) Xs(2) € C

for [t| < 7;/3 = (3(r; + fj))*lajHXxjH;;gj. By Cauchy’s estimate

11X, X )2 = [1F20)]] < 377 HIF (O] < 377 1(X,) Xl

—05,¢i—P;j

and by Lemma A.2

37 X, X lls o8-, < 677 X f ;20 /3,65 20,3 < 615 +€)07 [ X s, 11 Xl -

Since 2 € Vs, 5 ¢, pj(zj) was arbitrary, this proves that

H[XﬁXXj]Hsroj,&rpj < 6(r; + fj)ajll\XXjHsj,ngXstj,gj
and the lemma follows by simply replacing o; and p; by respectively 20;/3 and 2p;/3. O

Lemma A.4. Assume that (A.1) is satisfied, and let X}, be a real-analytic Hamiltonian vector
field defined on V,, ¢.(2;), which is integrable, that is k is a function of I(z) alone. Then

H[Xk?XXj]HSj_Zo-j/gvgj_ij/g = gpj_lHXXszjvgjHXkHsjvgj'
Proof. Here we write

d *
[XkaXXj] = _[XXJ"X]C] == E(Xltc) XX]'
t=0

and we observe that since X}, is integrable, if we let z(t) = X[(z), then I(2(t)) = I(z).
This implies that X : Dy, ¢, () = Ds, ¢, (2;) is a well-defined symplectic real-analytic
embedding for all [t| < 77 = PjHXkHs_jlgj- The conclusion follows easily by repeating all the

previous arguments with TJ,- instead of 7;. O

A.2 Proof of the Proposition 3.1

Proposition 3.1 will be proved by iterating m times an averaging procedure, which is classical
in the case j = 0, but more involved in the general case.
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Proof of Proposition 3.1. Let us fix 0 < j < n — 1, and set ¢; := 2Je. The integer m > 1
being given, for 0 < i < m we define

sé =27, 7; = (1 - 272, sé = 3sj —isj/m, f;' 1= 3¢, —i§;/m.

Then we claim that for each 0 < ¢ < m, there exists a real-analytic symplectic embedding
LV ;E;(ZJ) — V35, 3¢, (2j) such that

(Hj — f;) 0@ = (h+g;) 0 @) = h+ g\ + f]
with

{lwflag;‘} = {lwoagj‘} == {leyg§} =0, {lwfpf;} = {lw()?f]l:} == {le—uf]l:} =0
and with the estimates

1 Xgillsier < 7, 1 Xillsi g0 < el || - Id[[si g1 < Tjvs.

J
Let us prove the claim by induction on 0 <17 < m.
For ¢ = 0, letting <I>? be the identity, g? =0 and fJO := gj, there is nothing to prove. Then
assume that the statement holds true for some 0 <i <m —1, and let H; = (H; — fj) o @} =
h + g; + f;. We define the functions

4 (A 4 [ 4
[f;]] = Tj 1/0 f; onjdt, X;‘ = T] 1/0 t(f]l — [f;]]) oXijdt

whose associated Hamiltonian vector fields are given by

T . T . A
Xy, = T /O (XL ) fldt, X =17 /0 HXL)*(F] — [f1];)dt

g7 J

with, using our inductive assumption, the following obvious estimates
Xy lle < 1Xpllg <eb IXllog < TlXpllge < Tl (A2)
It is clear that '
{lfilj: o, =0. (A.3)
For —1 <1 < j—1, observe that {l,,,lw;} =0, so l,, o Xf}j = [, and hence

. T; A
o f)} = T /0 (s £110 X1, Yt
T; A
= Tj—l/o {lwlonJj,f;onjj}dt
= 7! sz o X! dt
A A {ln, f} 0 X,

where the last equality follows from the symplectic character of ijj. Using our inductive
assumption, this implies

{lw717 [sz]j} = {lwm [sz]j} == {le_w [f]l]]} =0, (A4)
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and by a completely similar argument, we also get

(oo XG5} = {lugs X5} = = {luy 1, x5} = 0. (A.5)

Now set

o= sé - sé-“ =sj/m, pj:= 5} - 5;*1 =&;/m.
Since 5; > 2¢;, using the first inequality of (3.3) we have

o = s5/m < (rj +28)&/m < (rj + )& /m = (r; + &)p;

and therefore, using also (A.5), we can apply Lemma A.1:

X;; : Vs;'ﬂ,g]?ﬂ(zj) = Vsj—aj,fl (Z]) — Vg 751(2])
is a well-defined symplectic real-analytic embedding for all

[t < 75 = (r; + &) o5l X llsi §z=(m(7“j+€§)) bl Xy ||S £

with the estimate HXt —1d|l P41 it < [t X Hs £ Moreover, as § < 3¢5, using the second
J
estimate of (A.2) and the second 1nequahty of (3.3), we have

T > (m(rj—i—?)fj)TjE})_lsj = 2i(m(rj+3§j)7}2j€)_1sj > (m(rj+3§j)1}~2j€)_1sj > 216 (A.6)
so 7; > 1 and hence X, : V it1 av1(25) = Vg ¢i(2j) is well-defined, with
X S; 7§j 0S5

1L, = Tl oo < 11Xl 1 < T (A7)

It is easy to check, using an integration by parts, that {X;-, lo; } = f]Z — f;] ;» and this equality,
together with Taylor’s formula with integral remainder gives

(ht gy + f)o Xy = ht gy + (£ +

with
/{ b))+ g+ FloxiYo XLty fly =7+ (1= DI

We set <I>§.+1 (IﬂoXlZ,g;'H—g]—i—[f] and f“rl—fZ so that
(Hj = f;) 0 @57 = Hjo X s = (h+ g5+ fj) o X\o = h+g;"" + fi.

First observe that <I>§+1 Vg giv1(25) = Dss; 3¢, (25) Is a real-analytic symplectic embedding,
J%

and using (A.7) together with our inductive assumption, we have the estimate
i+1 j 1 1
BT — Tl s g < 1195~ Tdll g+ 1L — Tl g < T30 ) = Tyt

Then
{lw 17g;+1} = {lwmgH_l} - = {le7gz+1} =0
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follows from the definition of g;.'H, the inductive assumption, (A.3) and (A.4). Moreover,
using the first estimate of (A.2) and our inductive assumption,

[ X gl girs givr < [ Xgills g6 + 1 X(p1, st e < v +es =t

; i
For —1 <1< j—1, we already know that
{lwlag;'} = {lwlaf;} = {lww [f;]]} = {lwa;"} =0

which implies {l,, fj} = 0 whereas {l,,,h — l,;} = 0 is obvious. These equalities, together
with Jacobi identity, imply that

{lwl? {(h - le) + g;' + f;,t’X§’}} =0
and therefore .
oo £ = [ Al A=) 5 + (P o X

It follows that ‘ ' ‘
{lw_laf;Jrl} = {lwo,f;‘Jrl} == {le',laf;Jrl} =0.

To complete the proof of the claim, it remains to estimate

J

1
P t oy ) ) )
First,

X il it i < S 1) X nt, + Xt + X s Xl i

and since 7 > 3 by (A.6), we can apply Lemma A.2 to get
||Xf;f+1||5;ﬂ+1,§;ﬁ+1 < 2||[Xp-i,, + Xgi + Xf;i’t,XX;]||s;f2aj/3,5;l72pj/3- (A8)
Using Lemma A.3, we have
i\ —1
X, Xailllsi—20, 73,6120, < 915 + €505 1 X i i el Xy [lsi

and since ‘ '
1 Xpi st et < €50 1 X llsigr < Thej

we get ‘
10X gt Xl 20, 3612, 73 < (9(r; + 3&)mTyegs; " )el (A.9)

since 5;'» < 3¢ and 5;'» < gj. Similarly, since 'y;. < 2¢y,
N Ny
X i Xyilllsi—20, 3602173 < (90 +385)mTyyjs;)es < (18(rj +3¢5)mTe ;55 ). (A.10)
Concerning the last bracket, let us first prove that

[Xh—t, Xoi] = (X -1 X
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where we recall that S\J- = I(z) + Aj and h;\j is the restriction of h to S\J-. To do this, it is
sufficient to prove {h — le,X;.} = {h;\j — le,X;.}, which is equivalent to {h,xé} = {h;\j,xé}.
For any z € V; é-z(Z]) we have
{h.xj}(2) = VA (2)) - {1, x;}(2).
But for any —1 <1 < j — 1, we know that
{lu, X33 (2) =wi - {1, X5 }z) =0

which means that {I ,Xé}(z) € Aj. Therefore, recalling that TI; denotes the orthogonal
projection onto /~\j, it comes that

{h.X5}(2) = (VA (2)) - {1, x5}(2) = Vs, (1(2)) - {L, X5 }(2) = {h3,, x5} ()

and therefore {h, x:} = {h; ,x%}. Then, for any z € V.; ,i(2;), we can estimate
1 Xj AjrAg 85,65\

IVhs, (1(2)) —wjll = ||ﬁj(Vh(I(Z)))—WJ||

1T (VA(I(2))) = (VA (z)I| + [T (VA(I(21))) — w;]]
IVR(I(z)) = VA ()| + [[L;(VA(I(2;))) — wj]|

FI|I(2) = I(z)|| + 55 < FV/nlI(2) — I(z))] + s;

F\/ﬁsz +5; < (BFVn+1)s;

since sﬁ- < 3s;, and where we used the fact that

(VAN VAN VAN VAN

sup Hvzh(I(z))H < F.
2€V3s; 3¢, (25)

From this, we deduce that

[ Xhs i llsigi < sup  |V(hs.
)\j J S] ’5.7 Zevs’L 51 (Zj) >\J
AN

< (3F\/ﬁ + 1)8j(7“j + 3§j)

and using Lemma A.4, we get

— L) Tl < BFVR +1)s;(r; + &)

||[Xh—leaXX;]||s;720j/3,§;e2pj/3 = ||[Xh;j—le-,XX;]||s;f2aj/3,5;l—2pj/3
-1 o T
9Pj ||Xh/~\j—le||s},§;||XX;||s;.,§}

IN

hence

IN

9p; (BFVn+1)s;(r; + 3¢ Te;
= (9BFVn+1)& (ry +3¢)mTys;)ely. (A1)

Xt Xyilllsi 20, 73,6120, /3

Putting the estimates (A.8), (A.9), (A.10) and (A.11) together, and recalling that e; = 27¢,
we arrive at

[1X g [l grer < (2754(r; + 3)mTyes; ! + 18@BFVn + 1)&7 () + 3¢,)mTs)e.
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Using the second and third inequality of (3.3), we obtain

1+1

HXf;+1Hs;+17s;+1 < 8;/2 =g}

This finishes the proof of the claim.
Now let us define ®; = @', g;' = g;" and f]+ = fi"+ [jo®;. Since s]" = 2s; and {" = 2¢;,
®; is a real-analytic symplectic embedding

D Vag, ¢, (%) = Vas; 3¢, (25)

such that Hj o ®; = h + g;r + f;r We already know that {lwfl,g;-r} = {lwo,g;-r} = ... =
{le,gj} =0, and the estimates

[1X g ll2s; 26, < 77" < 265 = 27 e, - ||Do = Id]|oy, 2¢; < Ty < 27 The.
To conclude the proof of the proposition, it remains to estimate X P First recall that
J
||ijm||28j72§j < egn = 2im€j =2727"e. (A12)
Then, fjo®;= fjo®]" = fjo X)1<J1 o Xi;n and so Xy 09, = (X>1<§-")* e (X>1<})*Xff’ where
XY —1d|| i1 i < || X iy o0 < Tiet = 27" Te;
XL, Tl gior < [1Xg s g5 < Tyl = 27Ty

for each 1 < i < m. Applying Lemma A.2 inductively yields
m—1

i —1
[ X 00, |25, 2¢, = ||((I>j)*ij||5;n,§;n < H <1+3(7’j+5;)0j ||XX;||s;,£;) 12X, [[2s;,2¢;
1=0

—_

3

(14305 + 3655 ml1 Xy lls 1) 11X, s 2,

I
[fam

3

IN

(1427"3(rj + 3¢5)s; 'mTie;) || X |ls, 26,

Il
o

7
m—1 A

exp (Z 2_23(7’]' + 3£j)8j1mch€j) ||ij||25j72§j
i=0

< exp(6(r; + 3§j)‘9;1mTJ‘€j)HijH2s]',2€j'

IN

The second condition of (3.3) implies in particular that exp(6(r; + 3£j)5;1mTjej) < 2 and
therefore ‘ ‘

1X o, s, 26, < 201X s, 26, < 227127 = j272 e, (A.13)
From (A.12) and (A.13) we get

[1X o ll2s; 26, < 2727 +j2727Me = (j+ )22,

and this ends the proof. O

Comment. The preprint “Double exponential stability for generic real-analytic elliptic
equilibrium points” was first submitted to the Arxiv in August 2015; in order to make it more
accessible, we decided to withdraw this preprint and split it into two parts. This corresponds
to the first part, the second part being [BFN19].

Acknowledgements. The authors have benefited from partial funding from the ANR
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