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According to the current codes and guidelines, shear assessment of existing reinforced concrete slab bridges sometimes leads to the conclusion that the bridge under consideration has insufficient shear capacity. The calculated shear capacity, however, does not consider the transverse redistribution capacity of slabs, thus leading to overconservative values. This paper proposes an artificial neural network (ANN)-based formula to come up with estimates of the shear capacity of one-way reinforced concrete slabs under a concentrated load, based on 287 test results gathered from the literature. The proposed model yields maximum and mean relative errors of 0.0% for the 287 data points. Moreover, it was illustrated to clearly outperform (mean Vtest / VANN =1.00) the Eurocode 2 provisions (mean VE,EC / VR,c =1.59) for that dataset. A step-by-step assessment scheme for reinforced concrete slab bridges by means of the ANN-based model is also proposed, which results in an improvement of the current assessment procedures.

Introduction

As the age of existing infrastructures is increasing, the question if existing structures are safe for further operation becomes important. To answer this question, an accurate assessment of the existing infrastructures is necessary. The assessment should not be overly conservative, so that unnecessary strengthening or replacement actions can be avoided. On the other hand, the assessment should be as accurate as possible, so that structural safety can be assured.

When reinforced concrete slab bridges are assessed, the estimated one-way shear capacity can be overly conservative, as transverse redistribution is not considered in the existing codes (Lantsoght et al. 2013a, Lantsoght et al. 2015a). In Europe, the live load model from NEN-EN 1991-2:2003(CEN 2003) uses a distributed lane load and design tandems. These tandems consist of large concentrated loads that are closely spaced, so that the load combination with the currently prescribed load model in Europe leads to large shear stresses at the support. As a result, a large number of reinforced concrete slab bridges are found to be insufficient for shear when assessed according to the currently governing codes [START_REF] Walraven | Residual shear bearing capacity of existing bridges, in: fib Bulletin 57, Shear and punching shear in RC and FRC elements[END_REF].

For more than a century [START_REF] Talbot | Tests of reinforced concrete beams[END_REF][START_REF] Talbot | Tests of reinforced concrete T-beams[END_REF][START_REF] Talbot | A test of three large reinforced concrete beams[END_REF], researchers have been debating the shear capacity of reinforced concrete members without shear reinforcement [START_REF] Kani | The Riddle of Shear Failure and Its Solution[END_REF][START_REF] Regan | Research on shear: a benefit to humanity or a waste of time[END_REF][START_REF] Collins | How safe are our large, lightly reinforced concrete beams, slabs, and footings[END_REF]. In slabs, the additional dimension of the width makes the problem three-dimensional (Lantsoght et al. 2013b, Lantsoght et al. 2015c). A plasticity-based model [START_REF] Lantsoght | Extended Strip Model for slabs subjected to load combinations[END_REF], Lantsoght et al. 2017c) has been proposed to estimate the maximum load on a reinforced concrete slab bridge, but this method has the disadvantage that the calculation needs to be tailored to the geometry of the bridge under consideration. Nonlinear finite element models [START_REF] Falbr | Shear redistribution in solid concrete slabs[END_REF]) combined with the appropriate safety formats [START_REF] Schlune | Safety Evaluation of Concrete Structures with Nonlinear Analysis[END_REF], Schlune et al. 2011[START_REF] Belletti | Evaluation of safety formats for non-linear finite element analyses of statically indeterminate concrete structures subjected to different load paths[END_REF][START_REF] Belletti | Evaluation of safety formats for non-linear finite element analyses of statically indeterminate concrete structures subjected to different load paths[END_REF]) can be used for the assessment of existing reinforced concrete slab bridges, but this approach is quite time-consuming [START_REF] Shu | Shear Capacity of a RC Bridge Deck Slab: Comparison between Multilevel Assessment and Field Test[END_REF].

When a large number of bridges need to be assessed, computationally fast methods are necessary.

To determine the sectional shear stresses and bending moments due to the applied load combination, automated procedures using linear finite element models can be used [START_REF] Frissen | User manual for ARP (Automatic Calculation Procedure Slabs)[END_REF].

Determining the bending moment capacity can be based on the traditional flexural theory for reinforced concrete beams. For a more effective estimate of the shear capacity of one-way reinforced concrete slabs under a concentrated load, this paper proposes the use of artificial neural networks (ANN), a popular machine learning technique.

Machine learning, one of the six disciplines of Artificial Intelligence (AI) without which the task of having machines acting humanly could not be accomplished, allows us to 'teach' computers how to perform tasks by providing examples of how they should be done [START_REF] Hertzmann | Machine Learning and Data Mining[END_REF]. When there is abundant data (also called examples or patterns) explaining a certain phenomenon, but its theory richness is poor, machine learning can be a perfect tool; as such its application to the problem of shear in one-way slabs is suitable and timely. The Artificial Neural Network (also referred in this manuscript as ANN or neural net) is the (i) oldest [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF] and (ii) most powerful [START_REF] Hern | Google says machine learning is the future. So I tried it myself[END_REF] technique of machine learning. ANNs also lead the number of practical applications, virtually covering any field of knowledge [START_REF] Wilamowski | The industrial electronics handbook[END_REF]Irwin 2011, Prieto et al. 2016). In its most general form, an ANN is a mathematical model designed to perform a particular task, based in the way the human brain processes information, i.e. with the help of its processing units (the neurons). ANNs have been employed to perform several types of real-world basic tasks, and have been successfully applied to civil engineering problems [START_REF] Flood | Neural Networks in Civil Engineering. I: Principles and Understanding[END_REF][START_REF] Mukherjee | Prediction of Buckling Load of Columns Using Artificial Neural Networks[END_REF][START_REF] Aymerich | Prediction of fatigue strength of composite laminates by means of neural networks[END_REF][START_REF] Pu | Application of artificial neural networks to evaluation of ultimate strength of steel panels[END_REF][START_REF] Gholizadeh | Assessment of load carrying capacity of castellated steel beams by neural networks[END_REF][START_REF] Naser | Deriving temperature-dependent material models for structural steel through artificial intelligence[END_REF][START_REF] Rao | Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM, ANN and SVM[END_REF][START_REF] Jordan | Bridge Damage Identification Using Artificial Neural Networks[END_REF][START_REF] Yaseen | Predicting compressive strength of lightweight foamed concrete using extreme learning machine model[END_REF]. Some efforts have also been geared towards using ANN-based prediction models for the problem related to shear in structural concrete, yet these models still have relatively large errors [START_REF] Adhikary | Prediction of shear strength of steel fiber RC beams using neural networks[END_REF][START_REF] Jung | Knowledge-based prediction of shear strength of concrete beams without shear reinforcement[END_REF][START_REF] Gandomi | An evolutionary approach for modeling of shear strength of RC deep beams[END_REF][START_REF] Kara | Empirical modeling of shear strength of steel fiber reinforced concrete beams by gene expression programming[END_REF][START_REF] Naik | Span-to-depth ratio effect on shear strength of steel fiber-reinforced high-strength concrete deep beams using ANN model[END_REF][START_REF] Sarveghadi | Development of prediction models for shear strength of SFRCB using a machine learning approach[END_REF][START_REF] Hossain | Modeling shear strength of medium-to ultra-high-strength steel fiber-reinforced concrete beams using artificial neural network[END_REF][START_REF] Aa | Determination of shear strength of steel fiber RC beams: application of dataintelligence models[END_REF].

Tab. 1. Variables adopted in the study, showing minimum and maximum values in the database. Concerning functional approximation, ANN-based solutions are frequently more accurate than those provided by traditional approaches, such as multi-variate nonlinear regression, besides not requiring a good knowledge of the function shape being modelled [START_REF] Flood | Towards the next generation of artificial neural networks for civil engineering[END_REF]). The proposed ANN was designed based on the 287 experimental results available to date in the literature. The goal of this study is not to provide a full description of the mechanics underlying the behaviour of one-way reinforced concrete slabs.

Data Gathering

The dataset used for the development of the ANN simulations consists of 287 experimental results from (i) tests gathered from the literature reported in (Lantsoght et al. 2015b), namely [START_REF] Graf | Versuche über die Widerstandsfähigkeit von Eisenbetonplatten unter konzentrierter Last nahe einem Auflager Deutscher Ausschuss für Eisenbeton[END_REF][START_REF] Richart | Tests of reinforced concrete slabs subjected to concentrated loads; a report of an investigation[END_REF], Richart 1948a[START_REF] Diaz De Cossio | Shear and diagonal tension -Discussion[END_REF], Leonhardt and Walther 1962a, b, Rajagopalan and Ferguson 1968[START_REF] Aster | Schubtragfahigkeit dicker Stahlbetonplatten[END_REF][START_REF] Reineck | Shear Tests on Reinforced concrete beams with axial compression for offshore structures[END_REF][START_REF] Kani | Kani on Shear in Reinforced Concrete[END_REF][START_REF] Heger | Design method for reinforced concrete pipe and box sections[END_REF][START_REF] Ekeberg | Load-carrying capacity of continuous concrete slabs with concentrated loads (in Norwegian)[END_REF][START_REF] Regan | Shear Resistance of Concrete Slabs at Concentrated Loads close to Supports[END_REF][START_REF] Regan | Shear Resistance of One-Way Slabs under Concentrated Loads[END_REF][START_REF] Fang | Load Capacity of Isotropically Reinforced, Cast-in-Place and Precast Panel Bridge Decks[END_REF][START_REF] Miller | Destructive testing of decommisisioned concrete slab bridge[END_REF][START_REF] Cullington | Assessment of reinforced concrete bridges: Collapse tests on Thurloxton underpass[END_REF][START_REF] Furuuchi | Effective width for shear failure of RC deep slabs[END_REF][START_REF] Olonisakin | Mechanism of shear transfer in a reinforced concrete beam[END_REF][START_REF] Serna-Ros | Influence of stirrup distribution and support width on the shear strength of reinforced concrete wide beams[END_REF][START_REF] Jäger | Versuche zum Querkraftwiderstand und zum Verformungsvermogen von Stahlbetonplatten[END_REF][START_REF] Rombach | Schnittgrößen auskragender fahrbahnplatten infolge von radlasten nach DIN-fachbericht[END_REF][START_REF] Sherwood | One-way shear strength of thick slabs and wide beams[END_REF], Vaz Rodrigues 2006, Vaz Rodrigues et al. 2006[START_REF] Coin | Essais sur le cisaillement des dalles en beton arme[END_REF][START_REF] Jäger | Querkraftwiderstand und Verformungsvermogen vond Stahlbetonplatten[END_REF][START_REF] Rombach | Shear resistance of bridge decks without shear reinforcement[END_REF][START_REF] Jaeger | Reinforced Concrete Slab Shear Prediction Competition: Experiments[END_REF][START_REF] Rombach | Querkrafttragfahigkeit von Fahrbahnplatten ohne Querkraftbewehrung[END_REF][START_REF] Reißen | Experimental Study on the Shear Capacity of Concrete Slabs[END_REF], 2013a, b, (ii) the TU Delft slab shear tests [START_REF] Lantsoght | Shear in Reinforced Concrete Slabs under Concentrated Loads Close to Supports[END_REF], and (iii) recently reported experiments [START_REF] Mohammadyan-Yasouj | Wide Beam Shear Behavior with Diverse Types of Reinforcement[END_REF]. Eleven variables were adopted as input (independent) for the ANN-based shear capacity predictions, as described and illustrated in Tab. 1 and Fig. 1, respectively. Note that the proposed ANN features just 10 nodes in the first layer, which inputs have to be obtained as function of those eleven variables, as described in §3.7.1. For all experiments, the sectional shear and moment were calculated considering all loads, thus including the self-weight. For the case of a continuous slab shown in Fig. 1 This value was either reported in the original reference, or calculated as 82% of the cube compressive strength (van der Veen and Gijsbers 2011). The corresponding 287-point dataset is publicly available (Developer 2018a), and was constructed by randomly ordering the collected experimental results.

Artificial Neural Networks

Introduction

The general ANN structure consists of several nodes in L vertical layers (input layer, hidden layers, and output layer) and connected between them, as depicted in Fig. 2. Associated to each node in layers 2 to L, also called neuron, is a linear or nonlinear transfer (also called activation) function, which receives the so-called net input and transmits an output. All ANNs implemented in this work are called feedforward, since data presented in the input layer flows in the forward direction only, i.e. every node only connects to nodes belonging to layers located at the right-handside of its layer, as shown in Fig. 2. ANN's computing power makes them suitable to efficiently solve small to large-scale complex problems, which can be attributed to their (i) massively parallel distributed structure and (ii) ability to learn and generalize, i.e, produce reasonably accurate outputs for inputs not used during the learning (also called training) phase. 

Learning

Each connection between 2 nodes is associated to a synaptic weight (real value), which, together with each neuron's bias (also a real value), are the most common types of neural net unknown parameters that will be determined through learning. Learning is nothing else than determining network unknown parameters through some algorithm in order to minimize the network's performance measure, typically a function of the difference between predicted and target (desired) 

Implemented ANN features

The 

Network Performance Assessment

Several types of results were computed to assess network outputs, namely (i) maximum error, (ii) % errors greater than 3%, and (iii) performance, which are defined next. All abovementioned errors are relative errors (expressed in %) based on the following definition, concerning a single output variable (as is the case for the studied problem) and data pattern,

100 qp qLp qp qp dy d e - = , (1) 
where (i) dqp is the q th desired (or target) output when pattern p within iteration i (p=1,…, Pi) is presented to the network, and (ii) yqLp is net's q th output for the same data pattern. Moreover, the denominator in eq. ( 1) is replaced by 1 whenever |dqp| < 0.05; dqp in the nominator keeps its real value. This exception to eq. ( 1) aims to reduce the apparent negative effect of large relative errors associated to target values close to zero. Even so, this trick may still lead to (relatively) large 

Maximum Error

This variable measures the maximum relative error, as defined by eq. ( 1), among all output variables and learning patterns.

Percentage of Errors > 3%

This variable measures the percentage of relative errors, as defined by eq. ( 1), among all output variables and learning patterns that are greater than 3%.

Performance

In functional approximation problems, network performance is defined as the average relative error, as defined in eq. ( 1), among all output variables and data patterns being evaluated (e.g., training, all data).

Software Validation

Several benchmark datasets/functions were used to validate the developed software, involving low-to high-dimensional problems and small to large volumes of data. The interested reader can find the results of the validation online [START_REF] Researcher | ANN Software Validation-Report[END_REF].

integrating the best combination from the previous analysis. Summing up the ANN feature combinations for all parametric SAs, a total of 475 combos were ran for this work.

The ANN feature methods used in the best combo from each of the abovementioned nine parametric sub-analyses are specified in Tab. 5 (the numbers represent the method number as in Tabs 2-4). Tab. 6 shows the corresponding relevant results for those combos, namely (i) maximum error, (ii) % errors > 3%, (iii) performance (see §3. 7960X @ 2.80-4.20 GHz.

Tab. 5. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA).

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 1 1 2 6 2 5 1 1 1 1 1 3 2 3 1 3 2 1 2 6 2 1 7 1 1 1 1 3 2 5 1 3 3 1 2 1 3 5 1 1 1 1 1 3 2 3 1 3 4 1 2 1 3 5 1 2 1 1 1 3 2 3 1 3 5 1 2 1 4 5 1 3 1 1 1 3 2 3 1 3 6 1 2 1 4 5 7 4 1 1 1 3 2 3 1 3 7 1 2 1 1 5 7 5 1 1 1 3 2 3 1 3 8 1 2 1 1 5 7 5 1 1 1 5 5 3 1 3 9 1 2 1 1 5 7 5 1 2 3 5 5 3 1 3
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Tab. 6. Performance results for the best design from each parametric sub-analysis: (a) ANN, (b) NNC. 

- - - - - 2 - - - - - 3 - - - - - 4 - - - - - 5 - - - - - 6 - - - - - 7 

Proposed ANN-Based Model

The proposed model is the one, among the best ones from all parametric SAs, exhibiting the lowest maximum error. Since in this work, several SAs yielded approximately null errors, the ANN having the least number of hidden nodes and the lowest running time per data point (SA 5) was adopted (the maximum error and performance values are of orders 10 -11 and 10 -12 , methods {1,2,1,4,5,1,3,1,1,1, 3, 2, 3, 1, 3} in Tabs. 2-4. To allow implementation of this model by any user, all variables/equations required for (i) data preprocessing, (ii) ANN simulation, and (iii) data postprocessing, are presented in §3.7.1-3.7.3. The proposed model is a single MLPN with 3 layers and a distribution of nodes/layer of 10-37-1. Concerning connectivity, the network is partiallyconnected, and the hidden and output transfer functions are all Hyperbolic Tangent and Logistic, respectively. The network was trained using the Levenberg-Marquardt algorithm (2565 epochs).

After design, the average network computing time of a single example (including data pre/postprocessing) is 1.77E-04 s. Fig. 4 depicts a simplified scheme of some of the network key features.

Lastly, all relevant performance results of the proposed ANN are illustrated in §3.7.4. The obtained ANN solution for every data point can be found in Developer (2018a). It is worth recalling that, in this manuscript, whenever a vector is added to a matrix, it means the former is to be added to all columns of the latter (valid in MATLAB). 

Input Data Preprocessing

For future use of the proposed ANN-based model to simulate new data Y1,sim (11 x Psim matrix), concerning Psim patterns, the same data preprocessing (if any) performed before training must be applied to the input dataset. That preprocessing is defined by the methods used for ANN features 2, 3 and 5 (respectively 2, 1 and 5see Tab. 2). Next, the necessary preprocessing to be applied to Y1,sim, concerning features 2, 3 and 5, is fully described.

Dimensional Analysis

Since dimensional analysis (d.a.) was not carried out, one has

  1, 1, . . after sim sim da Y Y = . (2)

Dimensionality Reduction

After dimensionality reduction (d.r.), the new input dataset {𝑌 1,𝑠𝑖𝑚 } 𝑑.𝑟.

𝑎𝑓𝑡𝑒𝑟 is defined as function of the previously determined {𝑌 1,𝑠𝑖𝑚 } 𝑑.𝑎. 𝑎𝑓𝑡𝑒𝑟 = 𝑌 1,𝑠𝑖𝑚 , reading study, one can say that the effective depth of the slab is a useless variable for the accurate prediction of shear capacity. It was concluded during ANN simulations (preprocessing) that the effective depth is highly and linearly correlated with some of the remaining input variables.

    ( ) 1, 1, ..

Input Normalization

After input normalization, the new input dataset {𝑌 1,𝑠𝑖𝑚 } 𝑛 𝑎𝑓𝑡𝑒𝑟 is defined as function the previously determined {𝑌 1,𝑠𝑖𝑚 } 𝑑.𝑟 𝑎𝑓𝑡𝑒𝑟 , and they have the same size, reading 

    ( )
                          , (4) 
where one recalls that operator './' divides row i in the numerator by INP(i, 2). 

ANN-Based Analytical Model

Once the preprocessed input dataset {Y1,sim}n after (10 x Psim matrix) is determined, the next step is to present it to the proposed ANN to obtain the predicted output dataset {Y3,sim}n after (1 x Psim vector), which will be given in the same preprocessed format of the target dataset used in learning.

In order to convert the predicted outputs to their 'original format' (i.e., without any transformation due to normalization or dimensional analysisthe only transformation visible will be the (eventual) qualitative variables written in their numeric representation), some post-processing is needed, as described in detail in §3.7.3. Next, the mathematical representation of the proposed ANN is given, so that any user can implement it to determine {Y3,sim}n after , thus eliminating all rumors that ANNs are 'black boxes'. 

Output Data Post-processing

In order to transform the output dataset obtained by the proposed ANN, {Y3,sim}n after (1 x Psim vector), to its original format (Y3,sim), i.e. without the effects of output normalization taken in target dataset preprocessing prior training, the post-processing described next must be performed.

Non-normalized (just after dimensional analysis) and original formats

Once {Y3,sim}n after is obtained, eq. ( 7) transforms the vector to its non-normalized format 

Performance Results

Finally, the results of the proposed ANN for the 287 datapoints, in terms of performance variables defined in §3.4, are presented in this section in the form of several graphs: (i) a regression plot (Fig. 5), where network target and output data are plotted, for each data point, as x-and ycoordinates respectivelya measure of linear correlation is given by the Pearson Correlation 

ANN-based vs. Existing Models

Since the focus of this study is the assessment of reinforced concrete slab bridges in Europe, this section demonstrates the improved prediction capability of the ANN-based analytical model proposed in section 3, as compared to the shear capacity of one-way slabs predicted by the provisions of Eurocode 2 (CEN 2005). The reduction of the contribution of loads close to the support (av ≤ 2dl, see Fig. 1) to the sectional shear force prescribed by the Eurocode is taken into account, resulting in VE,EC. This reduction corresponds to an increase in the shear capacity for loads close to the support as a result of direct load transfer. Since this mechanism only occurs for loads applied on top of the cross-section and close to the support, the Eurocode 2 reduces the contribution of externally applied loads close to the support. As such, this provision allows for finding the sectional shear force for a combination of loadsa situation that occurs when assessing existing reinforced concrete slab bridges. The corresponding average shear capacity according to Eurocode 2 is determined as:

( ) 

1/3 3/2 , 0.15 100 0.035 R c x cm eff l cm eff l V k f b d k f b d  = , ( 

Discussion

The results in Fig. 8 influence the shear assessment of reinforced concrete, but all tested slabs are rectangular. For skewed slabs, shear stress concentrations will result in the obtuse angle [START_REF] Cope | Concrete slabs: analysis and design[END_REF][START_REF] Cope | Shear Forces in Edge Zones of Concrete Slabs[END_REF][START_REF] Cope | Flexural Shear Failure of Reinforced-Concrete Slab Bridges[END_REF], making the skew angle an important factor for the shear assessment. Besides the Liverpool experiments on skewed slabs [START_REF] Cope | Shear in skew reinforced concrete slab bridgesanalytical and experimental studies -A report to the Department of Transport[END_REF], which did not result in shear failures of the slabs, the authors are not aware of experiments on skewed slabs under concentrated loads failing in one-way shear. To extend this novel ANN-based design approach to new scenarios, experiments on skewed slabs failing in one-way shear should be carried out, and the skew angle should then be included as input variable for ANN design.

To use the developed ANN formulation for the assessment of existing reinforced concrete oneway slab bridges, the following procedure is proposed:

1. Make a linear finite element model (LFEM) of the bridge under consideration.

2. Apply the superimposed dead load and live load model on the LFEM.

3. Make the factored load combination according to the governing code.

4. Find the governing sectional shear force vu based on a distribution of the peak shear stress over 4dl (Lantsoght et al. 2017a) and find the governing sectional moment mE (including the effect of the twisting moments [START_REF] Wood | The reinforcement of slabs in accordance with a pre-determined field of moments[END_REF])) based on a distribution of the peak sectional moment over 2dl. When either UCv or UCm is found to be larger than 1, more refined methods, such as nonlinear finite element analysis or proof load testing, may be necessary for a sharper assessment of the bridge under consideration. The proposed method is fast, cheap, and computationally efficient, and as such it is especially suitable for cases where a large number of bridges need to be assessed.

Final Remarks

This paper shows how artificial neural networks can be used to predict the shear capacity of one-way slabs under concentrated loads. For this purpose, a database with 287 experimental results

  , the slight gradient in the shear diagram and the slight nonlinearity in the bending moment diagram are caused by the self-weight. All values of the concrete compressive strength are the cylinder compressive strength.
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  outputs. When ANN learning has an iterative nature, it consists of three phases: (i) training, (ii) validation, and (iii) testing. From previous knowledge, examples or data points are selected to train the neural net, grouped in the so-called training dataset. Those examples are said to be 'labeled' or 'unlabeled', whether they consist of inputs paired with their targets, or just of the inputs themselves learning is called supervised (e.g., functional approximation, classification) or unsupervised (e.g., clustering), whether data used is labelled or unlabeled, respectively. During an iterative learning, while the training dataset is used to tune network unknowns, a process of cross-validation takes place by using a set of data completely distinct from the training counterpart (the validation dataset), so that the generalization performance of the network can be attested. Once 'optimum' network parameters are determined, typically associated to a minimum of the validation performance curve (called early stopsee Fig.3), many authors still perform a final assessment of model's accuracy, by presenting to it a third fully distinct dataset called 'testing'. Heuristics suggests that early stopping avoids overfitting, i.e. the loss of ANN's generalization ability. One of the causes of overfitting might be learning too many input-target examples suffering from data noise, since the network might learn some of its features, which do not belong to the underlying function being modelled[START_REF] Haykin | Neural networks and learning machines[END_REF]).
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 3 Fig. 3. Cross-validation -assessing network's generalization ability.

  Lantsoght E (2018). Neural network-based formula for shear capacity prediction of one-way slabs under concentrated loads, hal-02074675 solution errors when groundbreaking results are depicted as regression plots (target vs. predicted outputs).

  4evaluated for all learning data), (iv) total number of hidden nodes in the model, and (v) average computing time per example (including data pre-and post-processing). All results shown in Tab. 6 are based on target and output datasets computed in their original format, i.e. free of any transformations due to output normalization and/or dimensional analysis. The microprocessors used in this work have the following features: OS: Win10Home 64bits, RAMs: 128 GB, Local Disk Memory: 1 TB, CPUs: Intel® Core™ i9
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 4 Fig. 4 Proposed 10-37-1 partially-connected MLPNsimplified scheme.
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 3 𝑠𝑖𝑚 } 𝑑.𝑎. 𝑎𝑓𝑡𝑒𝑟 , which equals the original format 𝑌 3,𝑠𝑖𝑚 because no dimensional analysis was performed,

  ID: hal-02074675 © 2018 by Abambres M, Lantsoght E (CC BY 4.0) 23 Abambres M, Lantsoght E (2018). Neural network-based formula for shear capacity prediction of one-way slabs under concentrated loads, hal-02074675Coefficient (R); (ii) a performance plot (Fig.6), where performance (average error) values are displayed for several learning datasets; and (iii) an error plot (Fig.7), where values concern all data (iii1) maximum error and (iii2) % of errors greater than 3%. It´s worth highlighting that all graphical results just mentioned are based on effective target and output values, i.e. computed in their original format (free of any transformations due to output normalization).

Fig. 5 .

 5 Fig. 5. Regression plot for the proposed ANN.

Fig. 6 .

 6 Fig. 6. Performance plot (mean errors) for the proposed ANN.
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 7 Fig. 7. Error plot for the proposed ANN.
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 8 Fig. 8. Comparison between tested and predicted shear capacities: Eurocode 2 vs. proposed ANN.

  show the major improvement, for the 287-point dataset used, of the proposed ANN-based model as compared to currently used Eurocode 2 expressions for the shear capacity of reinforced concrete slabs in one-way shear. One critical observation should be made here: the ANN predictions are only valid within the input variable ranges of the employed 287point dataset (Developer 2018a). The number of experiments is rather limited, since slab shear tests are expensive to carry out. The user should keep this restriction in mind when predicting the shear capacity with the proposed ANN. The dataset covers a large number of variables that ID: hal-02074675 © 2018 by Abambres M, Lantsoght E (CC BY 4.0) 28 Abambres M, Lantsoght E (2018). Neural network-based formula for shear capacity prediction of one-way slabs under concentrated loads, hal-02074675

  Lantsoght E (2018). Neural network-based formula for shear capacity prediction of one-way slabs under concentrated loads, hal-02074675 5. Determine the shear capacity with the proposed ANN (VANN), taking as input the characteristic material properties (where possible updated with measured values) and the value of ME / (VE dl) where this ratio is maximum. Divide VANN by 4dl to find vANN. 6. Determine the bending moment capacity mR based on the flexural theory of concrete elements. 7. Determine the Unity Check for shear: UCv = vu/vANN. If UCv ≤ 1, the requirements for shear are fulfilled. 8. Determine the Unity Check for bending moment: UCm = mE/mR. If UCm ≤ 1, the requirements for bending moment are fulfilled. 9. If UCv > UCm the bridge can be considered as shear-critical: shear failure is expected to occur before flexural failure.

  'behavior' of any ANN depends on many 'features', with 15 ANN features implemented in this work (including data pre/post processing ones). For those features, it is important to bear in mind that no ANN guarantees good approximations via extrapolation

	FEATURE METHOD	F11 Hidden Transfer		F12 Parameter Initialization	F13 Learning Algorithm	F14 Performance Improvement	F15 Training Mode
	1		Logistic	Midpoint (W) + Rands (b)	BP	NNC	Batch
	2		Identity-Logistic		Rands	BPA	-	Mini-Batch
	3 4		Hyperbolic Tang Tab. 2. Implemented ANN features (F) 1-5. Randnc (W) + Rands (b) LM Bipolar Randnr (W) + Rands (b) ELM	--	Online -
	FEATURE METHOD 1 2 10 5 6 7 8 9 11	F1 Qualitative Bilinear Var Represent Positive Sat Linear Dimensional F2 Analysis Sinusoid Thin-Plate Spline Boolean Vectors Yes Gaussian Multiquadratic Eq Spaced in ]0,1] No Radbas	F3 Input Dimensionality Randsmall mb ELM Reduction Rand [-Δ, Δ] I-ELM SVD CI-ELM MB SVD -Linear Correlation ----Auto-Encoder --	F4 --% -Train-Valid--Test 80-10-10 --70-15-15 -	--Input F5 -Normalization --Linear Max Abs -Linear [0, 1] -
	3		-	-		-	60-20-20	Linear [-1, 1]
	4		-	-	Ortho Rand Proj	50-25-25	Nonlinear
	5		-	-	Sparse Rand Proj	-	Lin Mean Std
	6		-	-	No	-	No
			Tab. 3. Implemented ANN features (F) 6-10.
	FEATURE METHOD	F6 Output Transfer	F7 Output Normalization	F8 Net Architecture	F9 Hidden Layers	F10 Connectivity
	1	Logistic	Lin [a, b] = 0.7[φmin, φmax]	MLPN	1 HL	Adjacent Layers
	2	-	Lin [a, b] = 0.6[φmin, φmax]	RBFN	2 HL	Adj Layers + In-Out
	3	Hyperbolic Tang Lin [a, b] = 0.5[φmin, φmax]	-	3 HL	Fully-Connected
	4	-	Linear Mean Std	-	-	-
	5	Bilinear		No	-	-	-
	6	Compet		-	-	-	-
	7	Identity		-	-	-	-
	making use of its neural network toolbox when dealing with popular learning algorithms (1 -3
	from F13 in Tab. 4). Each parametric sub-analysis (SA) consists of running all feasible
	combinations (also called 'combos') of pre-selected methods for each ANN feature, in order
	to get performance results for each designed net, thus allowing the selection of the best ANN

(either in functional approximation or classification problems), i.e. the implemented ANNs should not be applied outside the input variable ranges used for network training. Since there are no objective rules dictating which method per feature guarantees the best network performance for a specific problem, an extensive parametric analysis (composed of nine parametric sub-analyses) was carried out to find 'the optimum' net design. A description of all methods/formulations implemented for each ANN feature (see Tabs. 2-4; these are a selection from the state-of-the-art on ANNs, including both traditional and promising modern techniques), can be found in previous published works (e.g.,

Abambres et al. 2018)

; the interested reader is referred to these works if he/she wants to deeply understand or reproduce the work shown in this paper. The code was developed in MATLAB (The Mathworks 2017), ID: hal-02074675 © 2018 by Abambres M, Lantsoght E (CC BY 4.0) 12 Abambres M, Lantsoght E (2018). Neural network-based formula for shear capacity prediction of one-way slabs under concentrated loads, hal-02074675 according to a certain criterion. The best network in each parametric SA is th e one exhibiting the smallest average relative error (called performance) for all learning data. ID: hal-02074675 © 2018 by Abambres M, Lantsoght E (CC BY 4.0) 13 Abambres M, Lantsoght E (2018). Neural network-based formula for shear capacity prediction of one-way slabs under concentrated loads, hal-02074675 Tab. 4. Implemented ANN features (F) 11-15.
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was compiled. From this dataset, 10 governing parameters were identified as input variables and the sectional shear force at failure was considered the output variable. The proposed ANN-based analytical model yielded maximum and mean relative errors of 0.0% and 0.0% for those 287 points, respectively. Moreover, it was illustrated to clearly outperform (mean Vtest / VANN =1.00) the Eurocode 2 provisions (mean VE,EC / VR,c =1.59) for that dataset. Lastly, a step-by-step methodology for the assessment of existing reinforced concrete one-way slab bridges, based on the use of the developed ANN-based formula, was proposed.

The study carried out has not yet allowed a full description of the mechanics underlying the behaviour of one-way reinforced concrete slabs, but parametric studies by means of accurate and robust ANN-based models make it possible to evaluate and improve existing mechanical models.
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