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Abstract 

Recently a class of multinetwork elastomers (MNEs) was developed by swelling a filler polymer network 

with monomers that are subsequently polymerized to form matrix networks. Such MNEs were reported 

to possess remarkable stiffness and fracture toughness while maintaining the ability to sustain large 

deformation as found in simple elastomers.  The enhancement in toughness is attained by prestretching 

the chains of the filler network through the introduction of one or more matrix network(s), thereby 

promoting energy dissipation through chain scission in the filler network.  In this work, a model to 

capture the mechanical response of MNEs is developed, and validated with experimental data.  

Prestrech of the polymer chains is incorporated into the model by basing the strain energy density 

function on the combined effect of swelling and subsequent deformation of the completed MNE.  The 
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filler network is modeled as a polydisperse network of breakable polymer chains with nonlinear chain 

elasticity, while the matrix networks are modeled using the generalized neo-Hookean model.  Although 

the filler network occupies only a small fraction of the material volume, the model shows that it 

contributes to the majority of the stress.  Finally, the hysteresis during cyclic loading is shown to 

correlate with the accumulation of damage in the filler network during each cycle.   

 

1 Introduction 

 

Elastomers are widely utilized in many industrial and biomedical applications due to their ability to 

undergo large and reversible deformations.  In most of these applications, from traditional industrial 

applications (e.g. tires) to emerging technologies (e.g. soft robotics and stretchable electronics), 

elastomeric components are required to sustain certain levels of mechanical loading. Therefore, it is 

desirable to design elastomers with high fracture toughness to enhance their load carrying capabilities.  

The first theory describing the intrinsic or threshold fracture of elastomers (in the absence of viscoelastic 

dissipation) was presented by Lake and Thomas [1], who stated that all bonds on a polymer strand 

between two crosslinks must be stretched to the breaking point before one bond ultimately fails.  Thus, 

the energy to rupture a single polymer strand should scale linearly with the length of the strand l. As a 

result, the intrinsic fracture energy, estimated by multiplying the energy to rupture a single chain with 

the areal density of polymer chains across the fracture plane (~ l−1/2), scales with the square root of the 

average chain length (i.e. ~ l1/2).   A consequence of this mechanism is that any attempt to increase the 

stiffness of an elastomer, by increasing the density of crosslinks and thereby decreasing the average 

chain length, will also make the elastomer more brittle with a decreased intrinsic toughness. This trade-

off between stiffness and toughness has been observed in many experimental data [2, 3].   
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Another route to improve the fracture resistance of materials is to introduce bulk energy 

dissipation mechanisms, which can lead to the formation of a dissipation zone surrounding a crack [4]. 

The dissipation zone can prevent the energetic driving force for crack growth, supplied by external 

loading, from being fully delivered to the crack tip, which enhances the apparent fracture toughness 

without changing the intrinsic toughness. This is the underlying mechanism for toughness enhancement 

in filled elastomers [5, 6] where chains can attach and detach from filler particles embedded in the 

elastomer to dissipate energy, in viscoelastic elastomers [7] where molecular friction provides 

dissipation, and in interpenetrating networks where dissipation is introduced through the damage of 

sacrificial networks [8, 9].  The last strategy, i.e. interpenetrating networks, has been implemented in 

numerous gel systems [8-12], but was only realized in elastomers very recently [13], where a variable 

fraction of prestretched chains can be built into the elastomer network to control the extent of chain 

rupture and energy dissipation.   

 Such interpenetrating multinetwork elastomers (MNEs), as described by Ducrot et al. [13], were 

created by first forming a crosslinked elastomer, i.e., the ‘filler’ network.  This elastomer was then 

swollen using a solution containing monomers, during which chains of the filler network were stretched.  

These monomers were then polymerized in place to form a ‘matrix’ network interpenetrated with the 

filler network.  This procedure was repeated to introduce additional matrix networks and further stretch 

the chains in the filler network.  The terminology of matrix and filler networks is used by drawing an 

analogy to classical composites, where the filler material is of smaller fraction and is held together by 

the matrix to form the bulk material [14].  To monitor the extent of damage, bond rupture in the filler 

network around a crack tip was mapped by introducing light emitting photophores into the network. It 

was hypothesized that the prestretched filler network makes the dominant contribution to stress, while 

the matrix networks mainly serve to prevent large cracks from forming [13].  Validation of this 
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hypothesis, however, is still difficult within the experimental instrumentation. Also, a systematic study 

of how physical parameters, such as degree of crosslinking and prestretch, impact macroscopic 

mechanical and fracture behaviors is necessary to optimize the stiffness and toughness of the MNEs, 

which is challenging with these types of time-consuming experiments.  Hence, there is a need to develop 

quantitative models which can describe the mechanical response of this new class of materials.  Such 

models will allow for an investigation of the relative contributions of each network to the stress.  

Implementation of such models in finite element analysis will allow for a systematic study of the impact 

of MNE parameters on the fracture toughness, e.g. how the size of the damage zone around crack tip 

depends on bulk material properties.   

 The objective of this work is to develop a nonlinear constitutive model capable of quantitatively 

predicting the mechanical behavior of MNEs, especially how the network pre-stretch induced by 

swelling affects the strain stiffening and damage in the MNEs.  In particular, new experimental data are 

presented where three sets of double network and triple network elastomers are synthesized from a 

common parent single network elastomer.  The pre-stretch of the first network is changed by varying 

the fraction of volatile solvent versus monomers during swelling, which enables a systematic study on 

the effect of pre-stretches.  We will show that our model can capture all experimental data using a fixed 

set of model parameters not pertaining to swelling, thereby demonstrating predictive capability of our 

model.    

Recently another model has been presented to capture the nonlinear mechanics of MNEs [15]. 

However, the model is phenomenological in nature and requires many fitting parameters to match the 

hysteresis measured in cyclic uniaxial tensile tests. Furthermore, in [15] the damage evolution was 

implemented by increasing the critical extension of the network which prevents the model from 

capturing the experimentally observed decrease in shear modulus due to chain rupture [13, 14]. The key 
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difference between our model and the previous one is that here the fundamental physics of polymer 

chains in the filler network is directly incorporated in the continuum model. Specifically, since the filler 

network contains a much higher density of crosslinks and experiences larger prestretch than the matrix 

networks, the chains in the filler network are expected to be highly stretched and subjected to stretch. 

Therefore, we implement a chain elasticity model that combines configurational entropy and bond 

deformation on the backbone of the polymer chain. Progressive damage in the MNEs is captured using a 

kinetic model describing chain rupture in the filler network. In contrast, the matrix networks contain 

relatively long and loosely crosslinked chains and thus are modeled using a generalized neo-Hookean 

model [16]. The prestretches experienced by the filler and matrix networks due to the swelling process 

are also taken into account. This physics based approach ensures that each parameter in our model has 

a physical interpretation, which can elucidate the connection between physical parameters (e.g., chain 

length) and continuum-level mechanical response.  

 The paper proceeds as follows. The experimental procedures to synthesize MNEs and the 

subsequent uniaxial tensile testing method are given in Section 2.  Formulation of the model is 

presented in Section 3 which is divided to present the combined kinematics of swelling and MNE 

deformation in Section 3.1, and the material models in Section 3.2.  In Section 4, the model is applied to 

uniaxial extension and is compared with experimental data.  Conclusions are given in Section 5.   

2 Material and experimental methods 

2.1 Reactants 

 

The monomer ethyl acrylate (EA) and the crosslinker 1,4-butanediol diacrylate (BDA) were purified over 

a column of activated alumina to remove the inhibitor. The UV initiator, 2-hydroxy-2-
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methylpropiophenone (HMP) was used as received. Ethyl acetate was used as the solvent. All reagents 

were purchased from Sigma Aldrich. 

2.2 Synthesis 

 

The synthesis of the MNEs was carried out in a glove box (Mbraun Unilab) under nitrogen atmosphere 

to avoid side reactions with oxygen in the air. Before introduction into the glove box, every reagent and 

solvent were bubbled with nitrogen for 45 minutes to remove the dissolved oxygen. The reaction was 

triggered by UV light (Vilbert Lourmat lamp, model VL-215.L, focused on 365 nm). The UV power was 

kept low (10 μW/cm²) to create slow polymerization.  

The preparation of MNEs is carried out in the following way starting from monomers, a first 

network (i.e. the filler network) is synthesised, and then multiple steps of swelling and polymerization 

are conducted to create a multiple network.  

2.2.1 Synthesis of the filler network 

 

The filler network was prepared from a solution in ethyl acetate consisting of: EA the monomer 

(50 wt %), BDA the crosslinker (1.45 mol % relative to monomer) and HMP the UV initiator (1 mol % 

relative to monomer). The solution was cast in a 1 mm thick glass mold and the reaction was initiated by 

UV for 2 hours. After synthesis, the sample was washed and dried to remove unreacted species and free 

chains as described in [13, 17]. This single network (SN) is then fully dried under vacuum at 80 °C. 

2.2.2 Preparation of MNEs with a controlled swelling of the filler network  
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The synthesis method previously described in [13, 17] has been adapted to obtain a larger range 

of swelling states of the filler network. The filler network was swollen to equilibrium in a bath composed 

of monomer and solvent. At equilibrium, a swollen piece of the network was removed from the bath, 

sealed between PET sheets, and tightened between glass plates. Then a second polymerization, in a 

similar manner to that of the filler network, was conducted.  Then the sample was dried under vacuum 

at 80°C overnight to remove the solvent. The resulting material is a double network (DN) elastomer, and 

its synthesis procedure is schematically depicted in Figure 1. This procedure can be then repeated 

multiple times leading to the creation of a triple network (TN), a quadruple network (QN) and so on, 

with different volume fractions of each network.  
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1: Synthesis of Filler Network 2: Swelling with Solvent and Monomers

3: Polymerization at Equilibrium 4: Drying of the Solvent

 

Figure 1: Schematics of the synthesis procedure of a double network elastomer 

 

2.3 Characterization of the synthesized materials 

 

To characterize the composition of synthesized MNEs, the mass and thickness of a sample are 

carefully measured after each step. Since in this work all the networks are comprised of the same 
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monomer (ethyl acrylate), it is reasonable to assume that all networks have the same density (i.e., mass 

divided by the partial volume of the network). With the additional assumption of isotropic swelling, the 

prestretch of the filler network 0 can be quantified using the measured masses as follows 

3

0

11 1


 

N

N
m

m
,   (1) 

where 1

N  is the volume fraction of the filler network in an MNE consisting of N networks, 1m  is the 

mass of the SN sample, and 
Nm  is the mass of the MNE sample. It should be noted that the model to be 

demonstrated in Section 3 is not limited to the assumption of same density in all networks, and is 

applicable to networks polymerized from different monomers. Two different ways of calculating the 

prestretches of the filler networks will be presented later, one being a generalization of Eq. (1) and the 

other based on the measurement of sample thickness. 

2.4 Mechanical Tests 

 

Mechanical tests were performed on a standard tensile Instron machine (model 5565) using a 100 

N load cell. A video extensometer gave a local measurement of the stretch λ = L/L0 where L0 is the initial 

length and L is the corresponding deformed length. The relative uncertainty of the measurements given 

by the load cell and the video extensometer are respectively 0.1 % in the range of 0 to 100 N and 0.11 % 

at the full scale of 120 mm. Specimens were cut into a dumbbell shape using a normalized cutter 

(central part: length 20 mm, cross-section 4 mm and thickness 0.6 – 2.5 mm depending on the sample). 

Uniaxial tensile tests from small to large strain were performed at a constant 500 µm.s-1 crosshead 

velocity and the typical stretch rate on the central part of the sample was around  ̇ = 0.04 s-1.  
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2.5 Set of materials 

 

Mechanical properties of the MNE can be influenced by several factors [13]: (i) number of networks, (ii) 

type of monomers used in each network, (iii) type of crosslinker, (iv) concentration of crosslinker, and (v) 

degree of swelling which can be changed by adding a certain amount of solvent to the solution of 

monomers.  In this work, results from our theoretical modeling will be compared with experiments on 

MNEs in which all networks are comprised of Ethyl Acrylate (EA) but with different crosslinker 

concentrations and prestretches in the filler network. To be consistent with existing report [18], we use 

the following notation to denote different MNEs: 

EAeX(Y)EA 

EA: ethyl acrylate, monomer of the filler network 

e: ethyl acetate has been used for the synthesis 

X: mol % of crosslinker used for the synthesis of filler network  

(Y): Y=λ0, prestretch of the filler network  

EA: ethyl acetate, monomer of matrix networks.  

 

A summary of the experimental datasets used in this work is given in Table 1.  A tag is added to each 

elastomer for a simplified notation as well as to indicate the number of networks. We will be referring to 

these tags when comparing the modeling results with experiments later. From the base SN elastomer, 

three DN elastomers (DN1-3), with different pre-stretches, are created by controlling the ratio of 
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monomer to solvent during swelling. Specifically, DN1, DN2 and DN3 were prepared by swelling the SN 

elastomer using mixtures with monomer volume fraction of 50%, 70% and 100%, respectively. Three TN 

elastomers, with different pre-stretches, are synthesised by swelling the DN elastomers with pure 

monomers; e.g. TN1 is synthesised from DN1.  Measurements were also taken for the matrix network 

alone (M), where the crosslinker concentration (0.01 mol%) is 145 times less than that used in forming 

the filler network. Finally additional DN and TN data were extracted from Ducrot et al [13], DNP and 

TNP, where the synthesis procedure was similar to that of DN3 and TN3 with the exception that a 

photophore, chemiluminescent bis(adamantly)-1,2-dioxetane bisacrylate, was used as crosslinker in 

place of BDA.   

 

Table 1: Set of MNEs Investigated 

Sample name λ0 wt% 

of filler network

 1100 N  

Type of 

network Number of 

polymerization steps 

Tag 

EAe1.45(1) 1 100 SN 1 SN 

EAe1.45(1.32)EA 1.32 42.0 DN 2 DN1 

EAe1.45(1.51)EA 1.51 29.2 DN 2 DN2 

EAe1.45(1.68)EA 1.68 20.5 DN 2 DN3 

EAe1.45(2.18)EA 2.18 9.52 TN 3 TN1 

EAe1.45(2.41)EA 2.41 7.39 TN 3 TN2 

EAe1.45(2.55)EA 2.55 6.06 TN 3 TN3 

EAe0.01(1) 1 100 Matrix 1 M 

EAe1.45(1.48)EA [13] 1.48 30.8 DN 2 DNP 

EAe1.45(2.72)EA [13] 2.72 4.97 TN 3 TNP 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12 

 

3 Model  

3.1 Kinematics 

3.1.1 Swelling 

We number the networks, in superscripts, by the order i ( Ni 1 ) in which they were added 

to the material, where N is the total number of networks which comprise the material: for a SN N = 1, 

for a DN N = 2, and for a TN N = 3.  Each swelling and drying operation is denoted using the index j, in 

subscripts, which runs from 1 to a maximum value of N−1. The swelling and drying of a matrix network 

contains the following steps: (1) the networks is swollen to equilibrium by a solution containing 

monomers and solvent; (2) polymerization of the matrix network; and (3) the material is dried to 

evaporate the solvent. The relaxed configuration of each matrix network is the one after step (2) but 

before step (3) since drying introduces volume shrinkage of the material.  The deformation gradient of 

each matrix network is measured relative to its relaxed configuration.    

Figure 2a) shows the jth swelling and drying operation and the associated deformation 

gradients: 
max

jΦ  for the steps of swelling to equilibrium, 
dry

jΦ  for drying and  
maxdry

j j jΦ Φ Φ  for the 

entire procedure. Assuming that the swelling and drying are isotropic, the isotropic stretches during 

these steps ( max

j , dry

j  and sj ) can be calculated from  

 
1/3max max max

j j jJ  Φ I I ,  
1/3dry dry dry

j j jJ  Φ I I ,   IIΦ sjsjj J 
3/1

,   (2) 

where I  is the second order identity tensor, 
max

jJ , 
dry

jJ  and sjJ are respectively the volume ratios 

during the jth swelling only, during the jth drying only, and during combined swelling and drying in the 

jth step. Clearly, 
max dry

sj j jJ J J  and max dry

sj j j   . Denote the volume fraction of monomers in the jth 

swelling solution as mon

j  then it follows that (see Supporting Information Section S1) 
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1

mon

j sjdry

j mon

sj j

J
J

J






 
.  (3) 

After the jth swelling and drying we obtain a MNE, and if the configuration at this point is set to 

be the reference configuration of the MNE, the deformation gradient that maps the ith network from its 

relaxed configuration to the reference configuration of the MNE is  

   
1/3 1/3

1 1 1

j j j
i dry dry dry

j k i i sk i sk

k i k i k i

J J    

  

     
      
     
  Φ Φ Φ I I ,  (4) 

where the notation  indicates multiplication.  For example, consider a TN elastomer just formed (N = 3, 

j = 2), the total swelling and drying deformation gradients are given by 12

1

2 ΦΦΦ   for the filler 

network, 
2

2 2 1

dry
Φ Φ Φ  for the second network, and 

3

2 2

dry
Φ Φ  for the third network.  Note that the 

 notation returns 1 for an empty product. For example, for a SN elastomer 

0
1

0 0

1

dry

sk

k




 
  
 
Φ Φ I .  

Note that since the filler network was synthesized without using additional solvent, it is in the relaxed 

configuration after polymerization and thus 0

dry
Φ I . Using Eq. (4) we can define the ratio between the 

volume of the ith network after the jth swelling and drying and its volume when it is first introduced 

(before drying):  

     
3

3 3

1 1 1det
j j j

ii dry dry dry

jsj i sk i sk i sk

k i k i k i

J J J     

  

 
    

 
  Φ .  (5) 

In writing the constitutive relationship for the MNE, the contribution from each network will be 

considered; hence it is necessary to determine the volume fraction of each network that makes up the 

total MNE volume.  The volume fraction that the ith network occupies in the material when it is first 

introduced (j = i − 1) is given by  
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1

1
max

1 1

1

1 1i mon

i iJ i



 


 



  
 (6) 

The first equation (for the filler network) is straightforward, while the second equation ( 1i  ) for the 

matrix networks can be explained as follows. After introduction of the ith network with the ( 1i )th 

swelling, the volume of the MNE is increased by a factor of max

1iJ 
. Assuming all the original material 

remains intact after swelling, the volume fraction of the original material after this swelling becomes 

 
1

max

1iJ


 .  Since the newly introduced matrix network and solvent occupy the remaining volume 

  1
max

11 iJ


 , the volume fraction of the matrix networks is given by   1
max

1 11mon

i iJ


   as stated by 

Eq. (6).  Similarly, subsequent drying and introduction of additional matrix networks with the jth swelling 

causes the volume fraction of the existing networks to be divided by a factor of sjJ .  Therefore, if we 

extend this idea the volume fraction of the ith network when N networks are present (j = N − 1), 

denoted by i

N , is obtained by dividing the initial volume fraction 
i  by  

i

NsJ 1   

 
i

Ns

i

i

N
J 1




 ,  (7) 

where  
i

NsJ 1  is given by Eq. (5). Note that Eq. (1) is a special case of Eq. (7).  

3.1.2 Deformation 

If the MNE, after all swelling operations ( 1 Nj ), is then mechanically deformed, the 

deformation gradient which maps the relaxed configuration of the ith network to the current 

configuration when N networks are present is given by  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

15 

 

 
i

N

i

N 1 ΦFF , (8) 

where F  is the deformation gradient that maps the MNE configuration after all swelling and drying to 

its deformed configuration.  Eq. (8) can be understood by considering the example of a TN elastomer for 

which a schematic of the deformation gradients is shown in Figure 2b).  Six configurations are shown: A) 

when the filler network is formed, B’) when the filler network has been swollen to equilibrium by a 

matrix network B) after drying to remove excess solvent from B’ to form a DN, C’) after the DN material 

in configuration B has been swollen to equilibrium by an additional matrix network, C) after drying to 

remove excess solvent from C’ to form a TN, and D) after the TN elastomer in configuration C has been 

mechanically deformed.  A is the relaxed configuration for the filler network, B’ is the relaxed 

configuration for the second network, and C’ is the relaxed configuration for the third network.  C 

represents the reference configuration for the completed TN elastomer relative to which subsequent 

mechanical deformations are measured.   
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1

11,ΦΦ

2Φ

1

2Φ

F

1

3F

2

3F

A

B

C

D

jΦ

max

jΦ

dry

jΦ

a)

b)

Swollen to equilibrium

Initial Network

Final Swollen Network

2

1 1

dry
Φ Φ

max

1Φ 2

2Φ

3

2 2

dry
Φ Φ

max

2Φ

3

3F

C’B’

 

Figure 2: a) Swelling and drying in the jth step, and the corresponding deformation gradients.  b) Deformation map for a TN 

elastomer showing relaxed configurations for the 1
st 

(A),  2
nd

 (B’), 3
rd

 (C’) networks and the deformed configuration (D).  The 

deformation gradients which relate these configuratiolns are shown schematically.  
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Spatial forms of constitutive relations are often written in terms of the invariants of the left 

Cauchy-Green deformation tensor defined as 
TT

BFFB   [19].  Since the swelling pre-deforms the 

material we introduce the left Cauchy-Green deformation tensor for each network i, denoted by 
i

NB , 

which captures both swelling and post-swelling deformation:  

         
2

1 2/3

1 1 1 1

NT T
i i i i i Tdry i

N N N N N i sk s N

k i

J 


   



 
    

 
B F F FΦ FΦ FF B . (9) 

The first, second and third invariants of 
i

NB are respectively given by 

        
2/3

1 1

i i i

N N s N
I tr J tr


 B B B ,  (10) 

          
    

4/3

2 2 21 2

2

1

2 2

i

s Ni i i

N N N

J
I tr tr tr tr

      
     

B B B B B ,  
(11) 

and 

     23 det i

N

i

N

i

N JI  BB .  (12) 

where 

          FFΦF detdetdetdet 11

i

Ns

i

N

i

N

i

N JJ   .  (13) 

In many cases the deformation of the completed MNE can be assumed to be incompressible so that 

  1det F .  In this case  
i

Ns

i

N JJ 1 . 
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3.2 Constitutive Model 

The total strain energy per unit volume of the MNE is assumed to be the sum of the 

contributions from each network (  i

N
i
NU B ) weighted by its volume fraction (

i

N ), or 

   
1

N

N
ii i

NN N

i

U U


B B .  (14) 

If we assume that the completed MNE is incompressible under further deformation, the Cauchy stress 

can be computed as follows (see Supporting Information Section S2) 

 
1 1

2
N

ii
N N

Ni ii

NN N N i
i i N

U
p

 


  


 

B
σ σ B I

B
, (15) 

where p is a Lagrange multiplier used to satisfy incompressibility and 
i

Nσ  represents the contribution to 

the Cauchy stress from network i and is given by 

 
2

N

ii

Ni ii i

NN N i

N

U
p


 



B
σ B I

B
.  (16) 

Here 



N

i

ipp
1

 and ip  is the contribution to the Lagrange multiplier from network i. Note that the 

determination of p using boundary conditions must be based on 
Nσ  and not 

i

Nσ . For the case of 

uniaxial extension, it is possible to separate p into contributions ip  from each network.   

 To complete the constitutive relation for the MNE, it is necessary to specify the strain energy 

density function  i

N

i
NU B  for each network. Since the properties of the first (and filler) network usually 
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differ significantly from the matrix networks, below we propose two different formulations of  i

N

i
NU B  

for the filler and matrix networks.  

3.2.1 Filler Network 

The filler network contains a relatively high density of crosslinks. Also, based on experimental 

measurements with photophores [13] many chains in this network can be ruptured in the bulk material 

before crack propagation.  Therefore, a constitutive model is needed to capture the nonlinear response 

of polymer chains as they are stretched and ultimately break.  In addition, because damage was 

observed over a range of strains, the model must contain a feature which allows the chains to reach 

critical extensions and break at different times.  This has been accomplished in several ways in the 

literature: polydispersity or a distribution of chain lengths [20] results in shorter chains breaking before 

longer chains; a distribution of initial end-to-end distance of the chains results in initially more stretched 

chains breaking before more coiled chains [21]; and different orientations of the chains relative to the 

principal deformation direction lead to chains aligned with the deformation breaking before unaligned 

chains [22, 23] .  Although in real materials all the previously mentioned effects may be present, we will 

focus on polydispersity of chain lengths.  It should be noted that in this work the distribution of chain 

lengths is estimated based on experimental measurements of chain rupture in Section 4, which 

effectively captures all effects that contribute to chain breakage at different extensions.   Based on the 

above considerations, for the filler network we propose a strain energy potential in the following form 

      KchKKKN dNrENNrbNfU 



1

***

max

1 , ,  (17) 

where, TkB  ,   is volumetric density of chains (before any swelling), Bk  is the Boltzmann 

constant, T is the absolute temperature, KN  is the number of Kuhn segments in a polymer chain 
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between crosslinks (i.e. representing the chain length), and  KNf  is a probability density function 

which describes the distribution of chain lengths and satisfies   1
1




KK dNNf . oK ANrr /*   is 

the fractional chain extension, where r is the end-to-end distance of the polymer chain and
oA  is the 

Kuhn length of the polymer chain.  KNrb ,*

max  are a set of damage functions that depend on the chain-

length (NK) and will be described later. *

maxr  is the maximum fractional extension a chain has reached in 

its deformation history, and     TkrErE Bchch /***  is the nondimensional chain energy to be discussed 

next. The integration in Eq. (17) accounts for the total contribution of all chain lengths to the strain 

energy.  More details on the derivation of this type of strain energy potential can be found in [20].   

Using the “8-chain” model by Arruda and Boyce [24], the following expression can be written to 

relate the chain extension *r  to  1

1 NBI  

 
K

N

oK N

I

AN

r
r

3

1

1* B
 .  (18) 

Introducing a dimensionless chain force as     TkrFArF Bo chch /***  , the dimensionless polymer chain 

energy needed in Eq. (17) is calculated from 

    *****

*

*

drrFrE

r

r

ch

o

ch ,  (19) 

where Ko Nr /1*   is the fractional extension of the chain under load-free condition.  We have chosen 

to start this integration at *

or  rather than zero to enforce the zero-strain energy condition at the relaxed 
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state where   3
1

1 NI B ; this choice introduces a constant into the strain energy density and has no 

impact on the stress predicted by the model.  

The kinematic assumption (Eq. (18)) implies that the strain energy density depends only on 

 1

1 NI B .  One may argue that during swelling and drying there is a large volume change which implies 

the third invariant  1

3 NI B  changes, and for this reason the strain energy can also depend on  1

3 NI B .  

In fact, such a term has often been included in the strain energy function when modeling swelling and 

drying. For example, Hong et al. include a term  




 1

3ln NI B  for the filler network [25] when 

modeling gels.  On the other hand, this term has been the subject of some controversy in the literature 

[26] and the discussion remains inconclusive [27]. Nevertheless, the effect of such a term is shown to be 

rather small in most practical cases [27].  Furthermore, in this work we focus on the deformation of a 

pre-swollen MNE that remains incompressible during post-swelling and drying deformation, in which 

case  1

3 NI B  will be constant, and whether the  1

3 NI B  dependency is included in the strain energy 

density function will not impact our results.   

Since 1

NU  depends only on  1

1 NI B , we can write

     
 

    
 

I
B

B

B

B

B

B

B

B
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

N

NN

N

N

N

NN

N

NN

dI

IdUI

dI
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Thus, to evaluate the stress in Eq. (15) the derivative of the strain energy potential is needed, which can 

be calculated by  

  
 

     
K

chKK

N

NN dN
r

rFNrbNf

dI

IdU




1

*

***

max

1

1

1

1

1 ,

6



B

B
.  (20) 
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There are several models in the literature which can be used to obtain  ** rFch  or  ** rEch  

[24,28,29]; one of the most commonly used models is the Arruda-Boyce model [24].  However, the 

 ** rFch  relationship adopted in the Arruda-Boyce model is based on a freely jointed chain model with 

Langevin statistics, where the chain is inextensible and there is a singularity in chain force when 1* r . 

This singular behavior allows only a very small fraction of the chains to experience large forces at any 

time, which limits the maximum stress that is obtainable.  On the contrary, the novel microstructure of 

the MNE leverages prestretch via swelling to create many chains in the filler network that are subjected 

to large tensile forces and can rupture during the deformation.  These large tensile forces are sufficient 

to deform bonds and elongate chains, as discussed in a recent work [30].  Therefore, the Arruda-Boyce 

or any inextensible model based purely on entropic elasticity may not be suitable for this type of 

material.  In a work to be reported separately, we incorporated bond deformation into the chains’ 

backbone, and obtained a force-extension relationship by minimizing the free energy of a polymer chain 

consisting of configurational entropy and bond deformation energy. Compared with entropic chain 

models, this new relationship has been shown to provide better agreement with single chain extension 

data in experiments, especially when 
* 0.9r  [31]. For the poly ethyl-acrylate (PEA) chain relevant to 

the present work, the force-extension relationship can be approximated in closed form by polynomial 

functions as follows   

 

      9.09.0684369.0262389.0501
20

513

9.02
2

1
1

2

1

*3*2***

**2**






rrrrF

rrrF

ch

ch

  (21) 

 Last, we comment on the damage functions b, which represent the fractions of chains that 

remain intact and are dependent on the number of Kuhn lengths KN  in the chain.  b equals 1 for 
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undamaged material and decreases as chains are ruptured. The rupture of polymer chains can be 

modeled using rate dependent nonlinear ordinary differential equations [20, 28] where the rate of chain 

scission depends on the force acting on the bonds in the polymer chain.  On the other hand, it was 

found that [20] if the deformation speed was sufficiently high the damage was nearly rate independent. 

Extension rates used in the experiment of Ducrot et al fall into this regime and the material exhibited 

negligible rate dependence [13].  In this work, we focus on this regime and approximate the damage 

functions by rate-independent functions in the form of  KNrb ,*

max . These damage functions have been 

obtained in [31] by numerically solving the rate equations at a given stretch rate in the rate-independent 

regime, and they are summarized in Supporting Information Section S3.  Since the chain rupture is 

irreversible, during loading (as *

maxr  increases) b decreases, whereas upon unloading when the chain 

end-to-end distance  becomes smaller than , the value of b cannot increase. 

3.2.2 Matrix Networks 

When the matrix networks (i > 1) are formed the concentration of the crosslinker used is 

approximately 145 times less than that in the filler network [13]. This results in much longer chain 

lengths between crosslinks in the matrix networks. Since the chains in these networks have less (or even 

no) prestretch compared with the chains in the filler network and hence do not experience large 

fractional extensions, it is reasonable to assume that they remain intact (i.e. no rupture) during 

deformation and their strain stiffening is insignificant.  With this consideration, a neo-Hookean material 

model, which is based on Gaussian freely jointed chains with a linear force extension relationship [27], 

would seem to be a good choice to represent the matrix networks.  However, because these networks 

are so lightly crosslinked, physical entanglements create a strain softening effect at small deformations 

[13] which cannot be captured by the neo-Hookean model. This softening effect is well described by a 

*r
*

maxr
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molecular model by Rubinstein and Panyukov [32], but it is not straightforward to convert the molecular 

model into a continuum model for general 3D deformations. Instead, we will use the generalized neo-

Hookean constitutive model [16] for the individual matrix networks to phenomenologically capture the 

softening effect: 

     1 11 3 1
2

Mn
i ii M
N NN

M

U I I
n

          
B B , i > 1 (22) 

where M  is the shear modulus and Mn  is an additional parameter which controls the shape of

  1

ii

NNU I B .  Note that a 3rd parameter from the generalized neo-Hookean model [16] was omitted to 

minimize the number of parameters that are introduced into the MNE model.  Like the filler network, 

the strain energy for each matrix network depends only on the first invariant, i.e.  i

NI B1
, thus as before 

to evaluate the stress in Eq. (15) the derivative of the strain energy potential is obtained 

  
 

  
11

1

1

1 3
2

M

ii
nNN iM

Ni

N

dU I
I

dI

 

   
  

B
B

B

, i > 1.  (23) 

 

4 Application of the Model 

Below we will use the model established above to predict the mechanical response of MNEs 

under uniaxial loading conditions and compare the results with experimental data. Assuming that the 

networks contribute independently to the total stress, parameters pertaining to the matrix networks will 

be extracted from available data for these networks alone. Chain length distribution in the filler network 

will be estimated based on data for DN and TN elastomers with light emitting photophores embedded in 

the filler network. Finally, comparison will be made to uniaxial extension and cyclic loading experiments 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

25 

 

conducted [18] for a variety of MNEs (SN, DN and TN) where the prestretch caused by the first swelling 

and drying was varied.   

Before we proceed, it will be beneficial to specialize the general constitutive model for uniaxial 

extension.  The left Cauchy-Green deformation tensor in this case is given by 

33

1

22

1

11

2
eeeeeeB    ,  (24) 

where   is the stretch of the sample and  1 2 3, ,e e e  are orthogonal unit vectors forming the basis of the 

deformed configuration.  Using Eq. (9) and the fact that the strain energy potentials depend only on 

 i

NI B1
, Eq.(15) can be rewritten as follows  

  
  

 
2/3 1

1
1 1

2

ii
N NN

i i

N N s N i
i N

dU I
J p

dI





 
  
 
  


B

σ B I
B

  (25) 

In uniaxial extension, Nσ  only has one nonzero component which we denote as 
N .  Requiring the 

other stress components to be zero gives the Lagrange multiplier p.  Substituting Eq. (24) into Eq. (25), 

we can obtain an expression for 
N   

  
  

 
 

2/3 1
2 1

1
1 11

2

ii
N NNN

i i i

N N Ns N i
i iN

dU I
J

dI
    


 

 
   
 
  

 
B

B
 (26) 

where the stress contribution from each network is given by 

  
  

 
 

2/3 1
2 1

1

1

2

ii

NN
i i i

N N s N i

N

dU I
J

dI
   


 

B

B

.   (27) 
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Note that a portion of the Lagrange multiplier is assigned to each network so that the stress in each 

network is zero in the MNE’s reference configuration which is equivalent to satisfying the traction-free 

boundary condition on the lateral surface of the tensile sample for each network.  As such the stress i

N  

is the contribution of each network to the total uniaxial tensile stress, instead of the actual stress 

sustained in each network. 

We will extensively compare predictions from the model with experimental data, which without 

processing, will be the nominal (engineering) stress.  For uniaxial extension, the engineering stress can 

be related to the Cauchy stress (or true stress) as follows 



 N

NP  ,   (28) 

similarly,  /i

N

i

NP  . 

 

4.1 Extracting Parameters for the Matrix Network 

Experiments were conducted on the matrix networks alone to determine the parameters M  

and Mn  in Eq. (22).  The stress for a single matrix network alone, 
MP , can be evaluated from Eqs. (26) 

and (28) by setting 2N , 1

2 0  , and 2

2 1  . The experimental data and the best fit are shown in 

Figure 3.  Since these experiments were done for a dry matrix network, when applying Eq. (22) to the 

MNE, M  is replaced by 

1

1
M

i M

dry

i

i
J






  ,  (29) 

where 
M

i is the shear modulus for network i in its reference state.   
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Figure 3: Engineering stress plotted against stretch for uniaxial extension of the matrix network.  The model with parameters  

0.8325Mn   and 0.2M MPa   was found to provide a good fit to the experimental data.   
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4.2 Distribution of Chain Lengths in Filler Network 

 

Several specialized experiments were conducted for MNEs where photophores were used to 

crosslink chains in the filler network [13].  These photophores emit light when they rupture, and the 

recorded light intensity provides a means to estimate the distribution of polymer chain lengths in the 

filler network.  Specifically, when photophores are added to the chains they create weaker links.  If we 

assume that the rate of chain rupture is proportional to the rate of photophore rupture, the chain length 

distribution can be correlated to the measured light emission data.   

To see this, note that the recorded light intensity was integrated over the sample [13].  

Assuming that the elastomer is transparent so light produced by scission throughout the volume can all 

be collected, the light emission intensity can be expressed as 

 
 

 



A

NK

K

Kl dSDdN
dt

Nrdb
NfLI

,*

max

1

 ,   (30) 

where 
l  is a proportionality constant which relates light intensity to photophore rupture,   is the 

volumetric density of chains which is proportional to the density of photophores, t is time, 
ND  is the 

thickness of the sample after the (N – 1)th swelling and drying, and S is the area of the sample 

perpendicular to the thickness direction.  Under homogeneous deformation during uniaxial extension, 

Eq. (30) can be rewritten as follows 

 
 *

max

1

, K

l K K

db r N
LI f N dN

dt




  ,   (31) 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

29 

 

where 
l l NV    and SDV NN   is the constant volume of the sample.  To evaluate   dtrdb /* , 

consider 

 

 

 
 1

*
1

max

* 1
max 1

N

N

dIdrdb db

dt dr ddI





B

B  
 

*
2max

*

max 1

2 2
2

rdb

dr I
   

B
,   (32) 

where
   

    BBB
1

3/21

1

*

max

1

1

*

max

1

1

*

max

22 IJ

r

I

r

dI

dr

NsNN 

  and 
 

    23/21

1

1

1 22 

  


Ns
N J

d

dI B
 are respectively 

obtained from Eq. (18) and Eqs. (10) and (24), *

max/ drdb  is known based on the damage functions 

presented in Supporting Information Section S3, and   is the stretching rate prescribed in the 

experiment.  If *r  does not exceed its previous maximum value, no additional damage will occur and Eq. 

(32) should be taken to be zero.   

In general, the rupture of bonds follows certain kinetics and will not occur at the same extension 

even for chains of the same length. However, the damage will be concentrated near the vicinity of 

highest extension. This allows us to simplify Eq. (32) by approximating  **

max

*

max/ pkrrdrdb    

where   is the Dirac delta distribution and 
*

pkr  is the extension at which the peak value of *

max/ drdb  

occurs (see Supporting Information Section S3).  Introducing this approximation and Eq. (32) into Eq. 

(31) gives  
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which can be rearranged to solve for   *

pkK rNf  
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f N r

r

 

   







 

,   (33) 

where     2*1

1

* 3/ pkNpkK rIrN B  using Eq. (18).  Based on Eq. (33), the experimentally measured light 

emission data was converted into a chain length distribution, as shown in Figure 4. A probability 

distribution function in the form of Eq. (34) was found to provide a good fit for the chain length 

distribution measured from light emission data (see Figure 4) 

     

min

minminmin

0

)exp(

NN

NNNNbNNANf

K

KKf

a

KfK
f




, (34) 

where 
minN  is the minimum number of load bearing Kuhn segments present in the material, 

fa  and 
fb  

control the shape of the probability function, and Af is used to ensure the normalization requirement 

  1
1




KK dNNf  is satisfied.  
fa , 

fb , and 
minN  are the three parameters extracted from the fitting.  In 

Figure 4, light emission data are not available for large chain lengths since the material already failed, so 

the fitting curve is a smooth extrapolation of the measured data.   
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Figure 4: Chain length distribution estimated by fitting light emission data.  Light emission experimental data from Ducrot et al 

[13] are converted to chain length probability using Eq.(33) where 
92.7 10l   was found to provide a good fit.  * 1.03pkr  , 

and for a 1 mm.s
-1

 crosshead velocity the stretch rate for the central part of the sample was estimated to be  ̇ = 0.08 s
-1

. The 

chain length distribution can be approximated by Eq. (34) with 6min N , 1.1fa , 105.0fb .   

 

4.3 Uniaxial Extension of MNE 

Model prediction will be compared with two groups of experiments: MNEs with and without 

photophore.  The chain length distribution from Figure 4 was applied directly to the MNE with 

photophore. Whereas for the MNE without photophore, the same form of distribution (Eq. (34)) was 

used but the parameters 
minN , 

fa  and 
fb  were slightly different from those in Figure 4. The same 

tuned distribution was used for all the experiments without photophore, which involved several data 

sets with different pre-stretches.   
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4.3.1 With Photophore 

For the experiments on MNEs with photophores [13], i.e., DNP and TNP from Table 1, the prestretches 

of the networks are 48.11 s  and 72.221 ss  , respectively.   in Eq. (17) is related to the 

volumetric density of chains in the filler network before any swelling, and is a fitting parameter since no 

SN data was available for MNE with photophores.  When used with the chain length distribution in 

Figure 4, it was found that MPa264.0  and a slightly adjusted value of 54.11 s  provided the 

best fit to the experimental data for both DN and TN elastomers For TN 72.221 ss   was held fixed so 

that 77.12 s . The comparisons are shown in Figure 5, where the model reproduces all the key 

features observed in the DN and TN data.  For example, the model correctly predicts the small initial 

slope observed in the stress-stretch curve for both DN and TN; the slope is small in this region because 

no chains are sufficiently stretched to create large forces.  With further stretching the shortest chains 

become highly stretched to cause an upturn in the stress, which is observed in both the model and the 

experimental data.  Finally, for the TN with further stretching, damage accumulates and causes a second 

inflection point after which the stress-stretch curve levels off.  This phenomenon is not observed in the 

DN because the material fails before sufficient damage accumulation.   

It is of interest to calculate the extension of individual chains under the bulk deformation. 

Because there is a distribution of different chain lengths in the filler network, these chains are subjected 

to different extensions at the same bulk deformation. The chain extension as a function of the number 

of Kuhn segments (i.e. chain length) are shown in Figure 6, for the chains in the filler network of the SN, 

DN and TN elastomers. Results are shown for two different bulk stretches: 1 , corresponding to 

undeformed elastomers, and 2 . Both swelling and drying (from SN to DN and then to TN) and 

additional bulk deformation (from 1  to 2 ) increase the fractional extension, and their impacts 
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are more significant for chains with shorter length. For the TN with 2 , large fractional extensions for 

small NK have caused material damage. To quantify the damage, we define the following quantity  

    KKKN dNNrbNfb 



1

*

max , , (35) 

which represents the fraction of surviving load bearing chains in the filler network of an MNE with a 

total of N networks.  The evolution of damage for the TN elastomer is presented in Figure 7a).  No 

damage is observed until a sufficient stretch (above 1.5) is reached that causes the shortest chains to 

break.  Afterwards 
3b  steadily decreases with additional stretching as more chains are ruptured. 
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Figure 5  Engineering stress plotted against stretch for uniaxial extension of (a) DNP, (b) TNP.  The following prestretches 

54.11 s , 77.12 s  and parameter MPa264.0  were found to give good agreement with the experimental data.  

Experimental data from Ducrot et al [13].   

 

 

Figure 6 Fractional extension plotted against number of Kuhn segments for individual chains in the filler network of SN, DN and 

TN elastomers.   

 

Using the two prestretches and Eqs. (5) to (7), the volume fractions of each network can be calculated to 

be: for the DN elastomer 274.01

2  , 726.02

2  ; for the TN elastomer 05.01

3  , 13.02

3  , and 

82.03

3  . The prevailing hypothesis with these materials is that the chains in the filler network (i = 1) 

control the stress whereas the subsequent matrix networks prevent large cracks from forming [13].  

Separating the total stress into components from individual constituent networks of the MNE allows us 

to understand how each network is contributing to the overall property of the MNE. For this purpose, 
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the partial stress in each network, as defined by  /i

N

i

NP   with i

N  given by Eq. (27), is plotted in 

Figure 7b) for the TN elastomer. Here 1

3P , 2

3P  and 3

3P  represent the equivalent uniaxial tensile stress 

contributed by the first (and filler), second and third (both matrix) networks, respectively.   In agreement 

with the hypothesis, the filler network provides most of the stress ( 1

3P ), while the contributions of the 

matrix networks ( 2

3P , 3

3P ) are almost negligible although they occupy an estimated 94% of the material 

volume.   
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Figure 7: (a) The evolution of damage in the filler network of the TN elastomer is shown by plotting the surviving chain fraction 

(b3) against stretch.  (b) Contribution from each network to the engineering stress of a TN elastomer under uniaxial extension, 

plotted against stretch.     
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4.3.2 Without Photophore 

 

For the MNEs without photophores, we consider three datasets formed from the same original 

SN but with different prestretches.  The stress-stretch curve for the SN is shown in Figure 8, and 

matching the initial slope provides MPa215.0  which will be used for the filler network in all the 

MNEs.  In each case experimental measurements of thickness, percentage of filler network (based on 

weight), stretch and stress are available.  Measurements of sample thickness and weight (Table 2) can 

be used to estimate the prestretch of the networks.  Here %FN is the percentage of weight of the filler 

network obtained by weighing the sample before and after swelling and drying. Since the filler and 

matrix networks are comprised of the same monomers, it is reasonable to assume that all the networks 

have the same density.  This allows the measurement to be directly converted to volume fractions, i.e., 

% FN = 
1100 N , which can then be used to determine sjJ  using Eqs. (5) and (7).  sjJ can also be 

calculated using    
3 3

1 /sj j j sjJ D D   , and the values of 
sj  obtained from the two different 

approaches can be slightly different, see comparison in Table 3.  For this reason, and due to variations 

observed in samples with the same crosslink density and net swelling (see Supporting Information 

Section S5), we allow a small amount of tunability in the chosen values of 
sj , tabulated in Table 3, to 

ensure that key features in the mechanical response are properly captured.  Finally, other intermediate 
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swelling variables calculated from 
1sJ  ,

2sJ  and 
mon

j  are tabulated in Table 4.  

 

Figure 8: Engineering stress plotted against stretch for uniaxial extension of SN elastomer.  Experimental data and model fit 

(with MPa215.0 ) are shown.   

 

Table 2: Swelling data for the 3 datasets.   

Before Swelling After 1
st
 Swelling and drying After 2

nd
 Swelling and drying 

Sample % FN D0 (mm) Sample %FN 

 

D1 (mm) Sample %FN 

 

D2 (mm) 

SN 100 0.74 DN1 42 0.97 TN1 9.52 1.6 

SN 100 0.74 DN2 29.17 1.13 TN2 7.39 1.79 

SN 100 0.74 DN3 20.55 1.27 TN3 6.07 1.84 

 

Table 3: Swelling ratios estimated by two approaches and the final chosen values.  DN and TN in each dataset share the same 

1sJ values while 
2sJ values are only applicable to TN samples.  

Sample Estimate using Dj Estimate Using %FN Value Used 
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1s  
2s  

1s  
2s  

1s  
2s  

DN1/TN1 1.32 1.65 1.34 1.64 1.34 1.60 

DN2/TN2 1.51 1.58 1.51 1.58 1.54 1.49 

DN3/TN3 1.68 1.45 1.70 1.50 1.75 1.40 

 

Table 4: Calculated swelling parameters. DN and TN in each dataset share the same 
1

1sJ  and 
2

1sJ  values while 
1

2sJ  and 
2

2sJ  

values are only applicable to TN samples.  Note that 
3

2 1sJ   for all networks. 1

2  and 2

2 are volume fractions in DN 

samples, whereas 
1

3 , 
2

3  and 
3

3  are for TN samples.  

Sample 
1

1sJ  1

2sJ  2

1sJ  2

2sJ  1

2  2

2  
1

3  2

3  3

3  

DN1/TN1 2.41 9.94 0.64 2.66 0.42 0.58 0.10 0.14 0.76 

DN2/TN2 3.65 12.17 0.76 2.55 0.27 0.73 0.08 0.23 0.70 

DN3/TN3 5.36 14.71 1.00 2.74 0.19 0.81 0.07 0.29 0.64 

 

 When no photophores are incorporated into the polymer network there is no light emission 

data from which the chain length distribution can be extracted.  However, since these MNEs use the 

same density of crosslinker in the filler network (EAe1.45) the expected distribution will be similar to 

that of the network with photophores.  Using the same form of the distribution (Eq. (34)), the values of 

2.6min N , 6.0fa , and 18.0fb  are determined based on generating the best fit to the stress-

stretch data for all DN and TN elastomers (6 independent samples), which only differ slightly from the 

values extracted from Figure 4.    

The results of the fitting are shown for the three datasets in Figure 9, Figure 10, and Figure 11 

respectively.  Each figure shows a comparison between predicted and measured stress-stretch relations 

for DN and TN elastomers.  The model is in reasonable agreement with the experimental data in all 
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cases.  A direct comparison between the stresses and damage predicted by our model for the three 

datasets is presented in Figure 12, which illustrates the effect of prestretch on the mechanical response.  

In Figure 12a) the stresses are presented for three DN elastomers. DN3, which has the largest prestrech 

(Table 2), exhibits an upturn in stress at the smallest stretch. As the prestretch is decreased, the stress 

upturn occurs at larger stretches.  Similar conclusions can be drawn from the TN data in Figure 12b).  A 

comparison between the damage evolutions for the three TNs is shown in Figure 12c), where damage 

begins to occur at lower stretches for MNE with larger prestretches.   
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Figure 9 Engineering stress plotted against stretch for uniaxial extension of (a) DN elastomer (b) TN elastomer.  Experimental 

data (from dataset DN1/TN1) and model fit are shown.   
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Figure 10 Engineering stress plotted against stretch for uniaxial extension of (a) DN elastomer (b) TN elastomer.  Experimental 

data (from the dataset DN2/TN2) and model fit are shown.   
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Figure 11 Engineering stress plotted against stretch for uniaxial extension of (a) DN elastomer (b) TN elastomer.  Experimental 

data (from dataset dataset DN3/TN3) and model fit are shown.   
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Figure 12: Model predictions for (a) engineering stress vs. stretch for DN elastomers; (b) engineering stress vs. stretch for TN 

elastomers; and (c) the evolution of damage (surviving chain fraction b3 vs. stretch) for TN elastomers; all under uniaxial 

extension.  Each subfigure contains three curves corresponding to the three different datasets. 
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4.4 Cyclic Loading of MNE 

The experimental data presented in Ducrot et al [13] for the MNE with photophores was for cyclic 

loading.  It is interesting to apply the model under cyclic uniaxial extension to see how the unloading 

curves compare with the experimental data; studying cyclic loading can also further elucidate how the 

evolution of damage impacts the mechanical response of the MNE.   

Consider the constant rate cyclic loading history shown in Figure 13a) where the amplitude of 

loading is increased after each cycle.  In the experiments, three identical cycles were first performed 

before the amplitude was increased [13]; however, no noticeable change occurred in the 2nd and 3rd 

cycles so they have been omitted here to simplify the presentation of the numerical results.  Engineering 

stress is plotted against stretch in Figure 13b), where loading and unloading curves are shown for both 

model prediction and experimental data of TNP.  Similarly, the evolution of the damage variable is 

shown in Figure 13c).  It is important to note that the loading envelope in the experiment (blue symbols) 

correspond to those in Figure 5b) and all the fitting parameters in the model remain unchanged from 

those used to obtain the fit in Figure 5b). No additional fitting was performed for the unloading 

branches.  

To understand these results, consider the path A-O1-A-B-O2 in Figure 13c).  Suppose the material 

has been loaded to reach the stretch at A for the first time.  In reaching point A some damage has 

occurred as can be seen in Figure 13c) where b3 = 0.72 < 1 at point A.  When the material is then 

unloaded from A to O1 it follows the lower “damaged” unloading path (red, A-O) in Figure 13b) rather 

than the higher “undamaged” loading path (blue).  From A to O1 in Figure 13c) we follow a horizontal 

curve because the damage variable depends on the maximum stretch in the history of the deformation 

(in this case the stretch at point A) instead of the current stretch.  During the subsequent reloading O1-
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A-B, from O1-A we retrace the same path as during unloading since the stretch has not exceeded its 

previous maximum value (at point A) so no additional damage occurs.  From A-B stretching the sample 

further establishes a new maximum stretch, and thus the damage evolves as seen in Figure 13c) where 

the damage variable decreases from 0.72 at point A to 0.49 at point B.  This damage results in a 

decrease in the slope of the stress-stretch curve in Figure 13b) at the transition (point A) from reload to 

additional stretch.  Similarly, when we unload after reaching point B we follow the lower unloading path 

(red, B-O) and again the damage variable remains constant during unload.   
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Figure 13: (a) Stretch plotted against deformation progress for constant rate cyclic loading where the amplitude is increased 

after each cycle.  (b) Engineering stress plotted against stretch for cyclic uniaxial extension of TN elastomer.  All parameters in 
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the model are identical to those presented in section 4.3.1. Experimental data from Ducrot et al [13].  (c) The evolution of 

damage is shown by plotting the surviving chain fraction (b3) against stretch. 

 

The cycle O-A-B-O in Figure 13b), included in the path we previously described, forms a hysteresis 

loop, and the area enclosed in this loop, int 3

cyc

cycle

D P d  , has the physical interpretation of energy 

dissipation. The hysteresis during cyclic uniaxial extension was found to correlate, to some extent, with 

the size of damage zone in fracture experiments [13], and hence is an important quantity to examine in 

attempt to increase the fracture toughness of the material.  In Ducrot et al. [13] this hysteresis was 

compared with the cumulative light emitted, whereas in our work, an analogous quantity would be the 

change in damage variable during a cycle  

    dtdNNrbNfb
cycle

KKK

cyc

 



1

*

max3 , . (36) 

An expression for the rate of energy dissipation in our model was obtained in the Supporting 

Information Section S2,      1 * * *

int max

1

,N K K K ch KD f N b r N N E r dN 


   , so cycDint
 can be determined 

by either integrating 
intD  over a cycle or by using  

     1 * * *

int max

1

,N

cyc

K K K ch K

cycle cycle

D f N b r N N E r dN dt Pd  


     . (37) 

The numerical results for cycb3  and cycDint
 are presented in Figure 14, for cycles 2-5 from Figure 13.  In 

Ducrot et al [13] the cumulative light was found to vary with the mechanical hysteresis by a power of 
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0.75, while in Figure 14 a power of 0.63 provides a good fit which is in reasonable agreement with 

experiments.   

 

Figure 14: Decrease in damage variable per cycle plotted against energy dissipated per cycle. Symbols are from integration of 

numerical results obtained from the model. Dashed line is a linear fit to the model prediction, on the log-log scale.    

 

4.5 Further Discussion 

 

While our model predictions have shown good agreement with experiments, there are some 

discrepancies that warrant further discussion. First, in the uniaxial extension results in Figure 9, Figure 

10, and Figure 11 for the TN elastomer, the model seems to overestimate the stress when the sample is 

about to break.  A possible explanation for this is the potential material inhomogeneity not considered 
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in the model.  When we apply the model to an idealized uniaxial extension, the deformation is assumed 

to be perfectly homogenous, which is certainly not valid when the sample fails.  Localized damage which 

grows near a pre-existing defect may also impact the overall stress of the specimen at the stretches 

leading up to failure. There is evidence to support this hypothesis in the TN light emission data [13]. 

Specifically, there is a peak in the light emission after which the intensity decreases with further 

stretching.  In obtaining the chain length distribution from the light emission data (Figure 4), a 

distribution with a single peak was used, because it was assumed that a single damage mechanism 

occurs within the material. However, the experimental data also showed increased light emission 

intensity near failure which may indicate the possibility of additional damage mechanisms such as 

inhomogeneous deformation and localized damage around defects. This over-estimation does not exist 

in the DN data because the DN elastomers are expected to have lower fracture toughness, evidenced by 

the experiments of Ducrot et al. [13] where the damage zone in the area surrounding a crack tip [13] is 

much smaller in the DN elastomers than the TN elastomers.  The lower fracture toughness could result 

in a more brittle failure once damage localizes at a defect; in this case, we do not anticipate a reduction 

in stress growth near the failure point.   

Another discrepancy between the model and the experimental results lies in the unloading 

curves in Figure 13b), where the stress predicted by the model can be noticeably lower than measured 

stress.  To elucidate this point, we compute the unstretched Young’s modulus (see Supporting 

Information Section S2 for definition), i.e., the Young’s modulus evaluated at  = 1. The ratio between 

the value at the beginning of cycle i (i>1),  N

o
k

E , and that before the first cycle  
1

N

oE  is evaluated and 

plotted in Figure 15 against the maximum stretch max reached in that cycle.  Here the loss of chains 

(Figure 13c)) translates to a reduction in Young’s modulus.  A plot similar to Figure 15 was presented in 

the Supporting Material of Ducrot et al [13], for a similar TN elastomer without photophores. In that 
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work, after a maximum stretch of max = 2.4 was reached in the cycle the unstretched Young’s modulus 

decreased by approximately 20%; from Figure 15 at max = 2.4 the modulus decreases by approximately 

50%.  This suggests the possibility that the model over predicts the rupture of chains.  There are several 

potential explanations for the discrepancy. Firstly, one of the assumptions made in the model is that the 

contribution of each network to the stress is independent.  While this may be a reasonable first-order 

approximation in modeling these materials, due to chain entanglements and a small degree of transfer 

reactions (e.g., the (n+1)th network reacting chemically with the n networks previously formed), it is 

likely that damage in the filler network will result in dissipation in the matrix networks and these 

additional dissipation mechanisms may have some impact on the Young’s modulus.  An evidence of this 

is the small amount of residual strain observed in the experimental data [13], where after damage the 

material did not completely recover its initial configuration.  A second possibility could be the existence 

of critical pathways in the filler network along which the rupture of bonds can result in the relaxation of 

many chains in the filler network. In this case the damage would not be isotropic and homogenous as 

assumed in this model.  In fact, stretching pre-deformed samples perpendicular to the direction of initial 

deformation has yielded some light emissions [33] indicating that damage is not entirely isotropic.  A 

third and related possibility is the coupling between chains in the filler network. There is no direct 

experimental evidence for this, but in an existing model [34] the rupture of chains was considered to 

effectively remove crosslinks and increase the length of existing chains in the material.  Finally, the 

specific chain force relationship (Eq. (21)) is used for both loading and unloading.  During loading the 

stress is dominated by chains with forces in the bond stretching regime.  However, during unloading this 

is no longer true, and the force on the polymer chain can depend on its bending flexibility [29] which 

was not considered in Eq. (21).   
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Figure 15: Evolution of unstretched Young’s modulus at the beginning of cycle k, (k>1) normalized by the unstretched modulus of 

a fresh sample, as a function of maximum elongation previously achieved by the sample.   

 

Finally, we estimate the force and energy required to cause the rupture of a chain from the cyclic 

loading data in Figure 13. When a bond breaks we define the average force [35], 

  ochBch AdbrFTkF /

1

0

**

 , and the average chain energy  

1

0

** dbrENTkE chKBch
. For the data in 

Figure 13b) the following values are obtained: nNFch 95.1~  and molkJEch /20001000   

depending on the chain length. The force value is comparable to single chain pulling experiments for 

polymer chains [36], while the energy requires more discussion.  The dissociation energy of the 

photophore bond was reported to be 150kJ/mol [13], which seems to be one order of magnitude 

smaller than the chE  value obtained here. However, it is incorrect to make such a direct comparison, 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

55 

 

for several reasons explained below.  Firstly, the bonds break via a transition state which is altered by 

the external force [33]. As a result, the energy that the bond will be excited to when it breaks can be 

significantly less than the dissociation energy.  Secondly, when a bond on a polymer chain is ruptured 

the energy of the entire chain is dissipated [1] which includes the deformation of all the bonds.  The 

shortest chains in the model had 6.5 Kuhn segments for PEA which corresponds to ~78 bonds [31]. Using 

1000 /chE kJ mol  and if all the bonds in a shortest chain are excited to approximately the same 

energy this implies ~13 kJ/mol for each bond, which is approximately 8.5% of the dissociation energy. 

Clough et al. [33] have found that typical C-C bonds store 15-18% of the dissociation energy before 

rupture, which is on the same order of magnitude as was estimated for the dioxetane bond in the 

photophore.   

The model developed in this work provides a method to systematically study how prestretch 

impacts the mechanical response and damage evolution of a MNE.  It is also instrumental to the design 

of MNE with optimized fracture toughness. Implementing the model into finite element simulations will 

allow us to explore a wide range of problems involving stress concentration and crack propagation, since 

this class of material can generate large damage zones [13] locally.  It is therefore of interest to 

systematically investigate how the different prestretches will impact the size of the damage zone around 

cracks and the overall fracture toughness.  In recent experiments it was observed that when a third 

swelling operation was performed to generate quadruple network elastomers, necking occurred in the 

samples during uniaxial extension [14]. The mechanism of this phenomenon is believed to be transfer of 

load from the filler network to the matrix network, which has only been observed to by stable when the 

matrix network volume fraction exceeds 25 times the filler network volume fraction [14].  To model this 

phenomena it will be necessary to extend the present model to consider stiffening and failure of the 

matrix networks.  Furthermore, mechanoluminescence has been used to demonstrate that the rupture 
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of chains does not occur homogenously within a sample during necking [14]; this behavior will be 

captured by finite element implementation of an extended version of this model in a future publication.   

 

5 Conclusion 

A continuum model is developed to capture the mechanical response of multinetwork elastomers 

synthesized by introducing matrix network(s) into an existing filler network. The swelling process 

prestretches the chains of the network formed in the previous step; such prestretch is incorporated into 

the model by basing the strain energy of each network on the combined deformation caused by 

swelling, drying and post-swelling deformation of the completed MNE.  Because the chains in the heavily 

crosslinked filler network undergo the greatest amount of prestretch and often break during the 

deformation, separate material models are used for the filler and matrix networks.  The filler network is 

modeled as a polydisperse network of breakable polymer chains with nonlinear chain elasticity, while 

the matrix networks are modeled using the generalized neo-Hookean model.  With a few fitting 

parameters, this model provides a good match to the uniaxial extension, including cyclic loading, 

experimental data.  Although the filler network only occupies a small volume fraction of the MNE, it 

contributes to the majority of the stress as confirmed by our model and recent experimental data [14].  

It was found that a larger prestretch of the filler network causes the MNE to exhibit strain stiffening 

effect at a smaller stretch, and the damage due to chain rupture initiates at lower stretches.  Finally, the 

hysteresis of the stress-stretch curve during cyclic loading is found to correlate to the accumulation of 

damage during the cycle.   
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6 Nomenclature 

 

S Area of sample in plane of view Dimension 

oA  Initial Kuhn length of polymer chain [L] 

l  Proportionality constant to relate light intensity to bond rupture [M][L][T]
-2

 

fA  Parameter in chain length probability density function - 

fa  Parameter in chain length probability density function - 

fb  Parameter in chain length probability density function - 

b Damage evolution function - 

Nb  Surviving chain fraction - 

l  Proportionality constant to relate light emission to damage evolution [M][L][T]
-2

 

B  Left Cauchy-Green deformation tensor for mechanical deformation of MNE - 

i

NB  
Left Cauchy-Green Deformation tensor of multinetwork elastomer with N 

networks, with respect to the relaxed configuration of network i. Takes into 

account deformation by swelling, drying and mechanically deformation by 

deformation gradient F .   

- 

ke  Unit vector in k direction - 
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*

chE  
Nondimensional Helmholtz free Energy of stretched polymer chain - 

mon

j  Volume fraction of monomers in swelling solution - 

chF  Tensile force acting on polymer chain [M][L][T]
-2

 

*
chF  Nondimensional Tensile force acting on polymer chain - 

jΦ  
Deformation gradient for jth swelling and dying operation - 

max

jΦ  
Deformation gradient for jth swelling to equilibrium operation  

dry

jΦ  
Deformation gradient for jth drying operation - 

i

jΦ  
Deformation gradient after j swelling and drying operations with respect to the 

relaxed configuration of network i.   

- 

F  Deformation gradient applied to completed MNE by mechanical loading.   - 

i

NF  
Deformation gradient of MNE with N networks, with respect to the relaxed 

configuration of network i. Takes into account deformation by swelling, 

drying and mechanically deformation by deformation gradient F .   

- 

f  Probability density function for chain length - 

mF  Contribution of chain length PDF for bin m.   - 

g Arbitrary function - 

I  2
nd

 order Identity tensor - 

 i

NI B1  First invariant of 
i

NB  
- 

 i

NI B2  Second invariant of  
- 

 i

NI B3  Third invariant of  
- 

i Identifies network - 

j Identifies swelling operation - 

i

NB

i

NB
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sjJ  
Ratio of volume after to volume before jth swelling and drying operation - 

dry

jJ  Ratio of volume after to volume before jth drying operation - 

max

jJ  Ratio of volume after to volume before jth swelling to equilibrium operation - 

i

sjJ  ratio of the volume of the material after j swelling operations to the volume of 

the material when the ith network was introduced 

- 

i

NJ  
ratio of the volume of the material when network i was introduced to its 

current volume (with N networks) 

- 

Bk  Boltzmann constant [M][L]
2
[T]

-2
[]

-1
 

  Stretch associated with uniaxial extension - 

sj  
Isotropic stretch associated with jth swelling and drying operation (ratio of 

thickness after to before jth swelling and drying operation) 

- 

dry

j  Isotropic stretch associated with jth drying operation (ratio of thickness after 

to before jth drying operation) 

- 

max

j  Isotropic stretch associated with jth swelling operation (ratio of thickness after 

to before jth swelling operation) 

- 

o  
Isotropic stretch of 1

st
 network due to swelling - 

LI Light emission intensity [M][L][T]
-3

 

M Number of chain length bins - 

m Identifies chain length bin - 

im  Mass of ith network [M] 

Nm  Mass of multinetwork elastomer with N networks [M] 

Mn  Parameter in constitutive model for matrix networks. - 

N Number of networks - 

KN  Number of Kuhn length is a polymer chain - 

minN  Minimum number of Kuhn segments in chain length probability density 

function 

- 
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mKN ,  
Average number of Kuhn lengths per chain or bin m - 

mKN ,  number of Kuhn lengths per chain at start of bin m - 

1, mKN  number of Kuhn lengths per chain at end of bin m - 

p  Lagrange multiplier [M][L]
-1

[T]
-2

 

ip  Lagrange multiplier for network i [M][L]
-1

[T]
-2

 

r End to end distance of polymer chain [L] 

*r  Fractional extension of polymer chain - 

*

maxr  
Maximum achieved fractional extension of a polymer chain during 

deformation history 

- 

*

pkr  Fractional extension where peak rate of bond rupture occurs - 

NP  Nonzero engineering stress component for MNE with N networks, under 

uniaxial extension 

[M][L]
-1

[T]
-2

 

i

NP  
Nonzero engineering stress component for network i for MNE with N 

networks, under uniaxial extension 

[M][L]
-1

[T]
-2

 

i  Volume fraction that network i occupied in the material when it was first 

introduced 

- 

i

N  
Volume fraction of network i in a multinetwork elastomer with N networks - 

Nσ  Cauchy stress tensor for MNE with N networks [M][L]
-1

[T]
-2

 

i

Nσ  
Cauchy stress tensor for network i in MNE with N networks [M][L]

-1
[T]

-2
 

N  Nonzero true stress component for MNE with N networks, under uniaxial 

extension 

[M][L]
-1

[T]
-2

 

i

N  
Nonzero true stress component for network i for MNE with N networks, under 

uniaxial extension 

[M][L]
-1

[T]
-2

 

jD  Thickness of sample after j - 1 swelling and drying operations [L] 

t time [T] 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

61 

 

  TkB  , parameter in constitutive model for 1
st
 network.  Related to 

shear modulus.   

[M][L]
-1

[T]
-2

 

M  Parameter in constitutive model for matrix networks.  Related to shear 

modulus 

[M][L]
-1

[T]
-2

 

NU  Strain energy density of mutinetwork elastomer with N networks [M][L]
-1

[T]
-2

 

 i

N

iU B  
Strain energy density for network i in a multinetwork elastomer with N 

networks, if the network were to occupy the entire material when introduced.   

[M][L]
-1

[T]
-2

 

T Absolute temperature [] 

  Volumetric density of load bearing chains in reference configuration of 

material.   

[L]
-3

 

m  Volumetric density of load bearing chains in reference configuration of 

material in bin m.   

[L]
-3

 

jV  Volume of sample after j - 1 swelling and drying operations [L]
3
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