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Block Term Decomposition of ECG Recordings for
Atrial Fibrillation Analysis: Temporal and
Inter-Patient Variability

Pedro Marinho R. de Oliveira and Vicente Zarzoso

Abstract—Responsible for 25% of strokes and 1/3 of hospi-
talizations due to cardiac related disturbances, atrial fibrilla-
tion (AF) is the most common sustained cardiac arrhythmia
in clinical practice, considered as the last great frontier of
cardiac electrophysiology. Its mechanisms are not completely
understood, and a precise analysis of the atrial activity (AA)
signal in electrocardiogram (ECG) recordings is necessary to
better understand this challenging cardiac condition. Recently,
the block term decomposition (BTD) has been proposed as a
powerful tool to noninvasively extract AA in AF ECG signals.
However, this tensor factorization technique was performed only
in short ECG recordings and illustrated in single patients. To
assess its performance and variability through different subjects,
BTD is applied to a population of 10 AF patients in this paper.
Also, its time variability is evaluated by means of long segments
of AF ECG with varying observation window size. Experimental
results show the consistency of BTD as an AA extraction tool,
outperforming two well-known matrix-based methods in most of
the observed cases for long and short AF ECG recordings.

Index Terms—Atrial Fibrillation, Block Term Decomposition,
Electrocardiogram Recordings, Source Separation, Performance
Analysis.

I. INTRODUCTION

ARDIAC arrhythmias are heart diseases characterized by

abnormal electrocardiography waveforms. Reducing life
expectancy and increasing the healthcare bill, atrial fibrillation
(AF) is the most common sustained cardiac arrhythmia en-
countered in clinical practice, especially affecting the eldery.
Persistent AF represents a particularly complex case of this
arrhythmia, where extensive atrial remodelling has taken place
due to sustained AF, significantly affecting atrial activity
(AA) and AF perpetuation itself. The importance given to
this challenging cardiac condition has increased in the last
years and is expected to increase further, becoming a major
public health and economical concern, as its mechanisms are
complex and not completely understood. About 160 000 new
patients are diagnosed with AF every year only in USA and
similar numbers are reported in European countries. By 2050,
it is estimated that AF will increase from 2.3 to about 12.1-
15.9 million patients only in USA, becoming then a new
epidemic [1]. Moreover, a patient with AF spends, anually,
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approximately $8 700 more in healthcare than a patient with-
out AF. The treatment of this desease is estimated to add
$26 billion per year to the USA healthcare costs [2]. In a
normal electrocardiogram (ECG), the P wave corresponds to
atrial depolarization. During AF, the P wave is replaced by
fibrillatory waves, called f waves, which are present throughout
the whole ECG recording. However, they are masked by the
QRST complex that corresponds to the ventricular depolariza-
tion and repolarization, i.e., the ventricular activity (VA), in
each heartbeat.

Signal processing techniques are useful and important tools
in the analysis of cardiac signals, especially AF signals. In
particular, they are necessary to noninvasively extract the
AA from the standard 12-lead ECG for an accurate analysis
of the f waves, in order to better understand the complex
mechanisms behind this disease. The extraction of AA from
multi-lead ECG recordings accepts a blind source separation
(BSS) formulation [5]. Matrix-based techniques to solve BSS
problems, such as principal component analysis (PCA) [3]
and independent component analysis (ICA) [4] have proven
useful in noninvasive AA extraction [5]-[7]. However, matrix
decompositions are known to have some limitations, since
constraints need to be imposed to guarantee uniqueness, e.g.,
orthogonality or statistical independence between the sources.
Such constraints are mathematically convenient, but they may
lack physiological grounds, making difficult the results inter-
pretation.

In order to overcome the limitations imposed by matrix
decompositions, a tensor factorization technique has been
recently proposed to noninvasively extract the AA signal from
AF ECG recordings [8],[9]. If compared to matrix-based
techniques, tensor decompositions present some remarkable
features like, for example, their essential uniqueness with
minimal or no constraints. Another example is the fact that the
rank of the tensor can exceed its largest dimension, whereas in
matrices the rank is limited by its lowest dimension. The block
term decomposition (BTD) proposed as a technique to solve
BSS problems in [10] suits the characteristics of AA in AF
episodes, since atrial signals can be approximated by all-pole
(or exponential) models and mapped onto Hankel matrices
with rank equal to the number of poles [12]. The Hankel
matrices containing the ECG data are stacked along the third
dimension of a third-order tensor, and then processed by BTD.
Previous experiments using BTD in synthetic and real AF ECG
data showed that this tensor decomposition can outperform
the matrix-based techniques for noninvasive AA extraction in



short segments of AF ECG recordings [8], [9], [11]-[13].

The performance of BTD strongly depends on its com-
putation method. The most used for this application is the
non-linear least squares (NLS) method, whose results, in turn,
depend considerably on its initialization and model parameters,
i.e., the multilinear rank (the rank of the matrix factors) and
the number of block terms of the tensor. In [12] an estimation
method of the multilinear rank of BTD in an AF ECG tensor is
proposed. This estimation is based on the application of three
popular methods for the estimation of auto-regressive (AR)
model order in the TQ segment of a heartbeat, where only
AA is present. In addition, a sucessful AA extraction depends
on the precise selection of the AA source among the estimated
sources. In [13] the BTD shows that the classical automated
method of atrial source selection [5], [6] is not optimal, and
then two automated methods are proposed that, though still
suboptimal, provide better accuracy.

BTD has proven useful in extracting the AA signal from
the AF ECG, being able to outperform well-known matrix-
based techniques. However, the performance of this tensor
approach was only assessed in fixed short segments of a
single AF patient. Its performance in a population of patients
remains an open question. Aiming answer this open question
and to provide results with more clinical relevance, this paper
presents the performance of BTD in long AF ECG segments,
as well as the analysis of the observation window size on
its performance [14]. Furthermore, the present work assesses
BTD for the first time in a population of patients with
persistent AF and compares it to two popular matrix-based
methods for AA extraction: RobustICA-f [15] and PCA. The
correlation of two AA quality indices is another outcome of
this work. Experimental results using Monte Carlo simulations
evaluate the AA extraction performance of BTD on long and
short segments of AF ECG recordings.

The rest of this paper is organized as follows. Section
IT introduces the notation used in the present work, while
Section III recalls the BTD as a tensor approach to solve
BSS problems. Section IV discusses quantitative measures of
AA content. Section V presents the database and the setup
used in the present experiments, whose results are reported
in Section VI. Finally, Section VII gives an end to this paper
with conclusions of the work and prospects of future research.

II. NOTATIONS

Scalars, vectors, matrices and tensors are represented by
lower-case (a, b, ¢, ...), boldface lower-case (a, b, ¢, ..),
boldface capital (A, B, C, ...) and calligraphic (A4, B, C, ...)
letters, respectively.

The matrix transpose is represented by (-)*, symbol || - ||
represents the lo-norm, | - | represents the absolute value and
o represents the outer product. E[-] denotes the mathematical
expectation and the operator diag(-) builds a diagonal matrix
by placing its arguments along the diagonal. Given a third-
order tensor A € Cl1*12xIs " with scalars a;, ;, 4, its frontal
slices are represented by A ;, € C1*%2, Given a matrix
A € Ch*f2) with scalar entries a;, 4,, its i{® row and the
it" column are represented by a;, and a_;,, respectively.
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Fig. 1. Visual representation of the block term decomposition of an arbitrary
third-order tensor.

III. BLocK TERM DECOMPOSITION

The BTD of an arbitrary third-order tensor 7 € RI1x/2x13
is written as

R
T=) E.oc (1)
r=1

where ¢, € R’® is a nonzero vector and E, € RIxI
has rank L, and admits a factorization E, = ATBTT, where

A, € RIiXLr and B, € R2*L+ have full column rank L,.
Equation (1) may then be rewritten as

R

T = Z (A,B)oc, . (2)

r=1

The visual representation of BTD as a sum of the outer
product of its matrix and vector factors is shown in Figure 1.
One can see that the BTD is a decomposition of 7T in
multilinear rank-(L,,L,,1) terms. Several conditions guarantee
the essential uniqueness of this decomposition. For example,
in [10, Theorem 2.2], it is shown that the BTD is essentially
unique if the following conditions are satisfied:

1) The matrix factors A = [Al Ao

RO*ZS L and B = [B; B
RI2x%%1 Lr are full-column rank.

2) Matrix C = [cl Co cR] € RB*E does not

contain proportional columns.

The first condition requires that Zle L, < I, I5. Milder
uniqueness conditions are also presented in [10].

Now, ECG recordings from K leads composed of N time
samples can be stored in a matrix:

AR} €
BR] S

Y = MS € REXN (3)

where M € RE*E is the mixing matrix, modeling the
propagation of the cardiac electrical sources from the heart to
the body surface, S € REXN js the source matrix that contains
the atrial, ventricular and other sources (noise, respiration,
muscular activity, etc.), and R is the number of sources [7].
Since the goal is to estimate M and S from the matrix Y (the
only observed data), it is clear that AA extraction in an AF
ECG recording is a BSS problem.

As previously described in [10], the BTD is proposed as a
solution of a BSS problem like (3). The idea to obtain a tensor
from Y is to map each of its k" row onto a Hankel matrix
H{” € R/*/, where I = J = ML if N is odd or [ = &
and J = % + 1 if N is even, with

[Hggk)]i,j £ Yritjo1 4



where ¢ = 1,...,1, j = 1,...,J, and k£ = 1,..., K. Next,
the tensor is built by stacking each Hankel matrix along
the third dimension (as frontal slices) of a third-order tensor
Y e RIXIXK that is

k
Y, =Hy . )
In scalar form, the third-order tensor ) can be written as
R
Yigjk = ka,rsr,iﬂ'q . (6)
r=1

The k'™ matrix slice of this tensor can be represented as
R
Y= m, H (7)
r=1

where Hér) € R!*J is a Hankel matrix built from the r‘"
row of S. One can see that for each r, the outer product
between matrix Hér) and the r*® column of M, ie., m,., is
being performed to obtain the contribution of each source to
the observed tensor. This way, the third-order tensor ) can be
written as

R
y=>Hom,. (8)
r=1

Comparing Equations (1) and (8), it can be concluded that
the ECG data tensor follows a BTD tensor model with the
following correspondence

(T) =) 9

(Er,¢,) <= (HY ,m,) (10)
(117127137R)<:>(I7J5K7R)' (11)

Due to the quasi-periodic nature of AF, atrial sources can
be represented by the all-pole model:

L,

n—1

Srn = § )\Z,'I‘Zg’r
=1

where n = 1,..., N represents the discrete-time index, r =
1,..,R, L, is the number of exponential terms, z, is the (th
pole of the r*" source, and ), . is the scaling coefficient. This
way, their associated Hankel matrices accept the Vandermonde
decomposition [16]:

12)

. ~ T
HY” = V,diag( M., Aoy ooy A, 1)V, (13)
with
1 1 1
Z1,r 22,1 2Ly ,r
V.= . . | e RIXEr (14)
e S
and
1 1 1
~ 21,r 227 ZLy,r
V,=| . . .| e RIXEr (15)
J.—l J—1 J—1
Zl,r 29r ZLpr

In the case of different poles, the Vandermonde matrix with
L, < I,J will have full-column rank L,, so if M does not
have proportional columns, the BTD in (8) will be essentially
unique. In the case of equal poles, milder conditions can assure
the uniqueness of (8) [10].

As previously described, BTD can outperform the matrix
approaches regarding AA extraction in fixed short AF ECG
recordings [8]-[13]. However, its performance in a population
of AF patients remains an open question, since, to the best of
the authors’ knowledge, the BTD performance has only been
assessed in fixed short AF ECG segments of single patients.

IV. ATRIAL ACTIVITY CONTENT MEASUREMENT

Signal processing techniques used to solve BSS problems
separate the observed signal in several sources. In AF ECGs,
typically at least one of these sources contains the AA. It is
unknown if the AA is concentrated only in a single source.
However, in the present work, as in previous works, it is
considered that the AA is concentrated only in one source,
and the source with the most significant AA content is called
the atrial source.

Measuring the quality of the estimation or the AA content of
real signals is a challenging task. Since there is no ground truth
for comparison, one needs to take advantage of some features
present in AA during AF. For example, in the frequency
domain, the AA during AF has a peak between 3 and 9 Hz.
The position of this peak is called dominant frequency (DF).
As in [13], it is defined as potential atrial source any source
with DF in such an interval. In this section, three parameters
used to measure AA extraction quality are presented. In this
work, the atrial source is selected using the automated method
that provided the highest accuracy proposed in [13], helped
by visual inspection. The first parameter for AA content
measurement is the spectral concentration (SC), that is, the
relative amount of energy around the DF. The SC is computed
as in [6]:

Z};gg.%?f, Ps(fi)
SC = F. /2 £

> 20 Ps(fi)

where f, is the value of the DF, F is the sampling frequency,
fi is the discrete frequency and Pg is the power spectrum of
the source signal computed using Welch’s method as in [6].
The second parameter used to better analyze the potential
atrial sources is the kurtosis, denoted K, of the signal in
the frequency domain acquired by a 4096-point FFT. As
in [15], the general expression of kurtosis valid for non-
circular complex data is used, given by

B(IS,|*] - 2E(S.[*)* - |E[S7]?
E[IS, 22

(16)

K =

a7

where S, is the FFT of the r*! source. Kurtosis is a measure of
peakedness and sparsity of a distribution and, when computed
in the frequency domain, it naturally provides a quantitative
measure of harmonicity of the signal. A high kurtosis in the
frequency domain means that the power spectral density is
sparse, which is suggestive of a quasi-harmonic signal like
AA in AF. In addition, kurtosis is parameter free, whereas SC



depends on the DF and the definition of a suitable interval
for interpretation [13]. The third parameter, used to discard
sources with irrelevant content that can be mistaken as the
atrial source, is the power contribution to lead V1, which is
given by

1
P(r) = 5 lm¥ s, |2 (18)

in mV2, where m\"'? is the contribution of the ! source to
lead V1 (given by the corresponding element of the estimated
mixing matrix) and s, is the rt source in time domain,
corresponding to the r*" row of matrix S in Equation (3). The
power contribution to lead V1 by an AA source is expected
to be relatively strong (> 10~% mV?), since this lead is the
one that typically best reflects AA in AF ECGs.

V. DATABASE AND EXPERIMENTAL SETUP

Experiments on real AF ECG data evaluate the performance
of BTD regarding AA extraction in long segments varying the
observation window size and short segments in a 10-patient
population.

A. Real AF ECG Data and Preprocessing

All the recordings belong to a database provided by the
Cardiology Department of Princess Grace Hospital Center,
Monaco. The recordings are acquired at a 977 Hz sampling
rate and are preprocessed by a zero-phase forward-backward
type-II Chebyshev bandpass filter with cutoff frequencies of
0.5 and 40 Hz, in order to suppress high-frequency noise and
baseline wandering.

B. Data for Time Variability

To assess time variability in long segments (> 2.5 sec-
onds), experiments are performed in 4 segments varying the
observation window size of a standard 12-lead ECG recording
from a single patient suffering from persistent AF. All 12
leads are considered. A 15-second segment in lead II from
this patient is shown on Figure 2. The segments assessed for
this patient have about 2.5, 5, 10 and 15 seconds and they
all have the same starting sample. They are downsampled by
a factor of 4, 8, 16 and 24, respectively, since the originally
built third-order tensors pose some difficulties to Tensorlab
MATLAB toolbox [17]. Downsampling includes a low-pass
filtering with cutoff frequency f. = f./2, where f! is the new
varying frequency. For the matrix-based techniques PCA and
RobustICA-f, no downsampling is needed.

C. Data for Inter-Patient Variability

To assess the performance in a population of patients, and
providing more relevant clinical results, experiments consider
a randomly selected heartbeat (QRS-T complex + TQ seg-
ment) of ten real standard 12-lead AF ECG recordings from
ten different patients suffering from persistent AF. A single-
beat segment in lead II from one of the patients in the 10-
patient population is shown on Figure 3, where the TQ interval
can be seen just after the QRS-T complex. All the beats (one
per patient) have between 1000 and 1400 samples (1.02 and
1.43 seconds). They are downsampled by a factor of 2, for the
same reason previously explained.

0.8 J

0.6 i

Lead Il (mV)

0.2 J

il oy

0.2 I I

Fig. 2. A 15-second segment of an AF ECG recording from the patient used
for evaluate the time variability. For concision, only lead II is shown; all 12
leads are processed.
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Fig. 3. A single heartbeat segment of an AF ECG recording, shown in lead
II, from one patient of the observed population. A heartbeat consists in the
QRS-T complex, followed by the TQ segment, where only AA is observed.

D. BTD Setup

BTD is implemented using the NLS method available in
Tensorlab choosing R = 12 and L, = 95, for all r =
1,2, ..., R. This choice is made based on the work [12], that
shows that such values provide satisfactory results for the
heartbeat with the largest TQ segment of the patient considered
in the present work for the long segment performance assess-
ment. The tolerance threshold for BTD convergence is set to
107Y and the maximum number of iterations is set to 1000.
Ten Monte Carlo runs, with Gaussian random initialization
for the matrix and vector factors at each run, are used to
analyze the performance of BTD in AF patients regarding
AA signal extraction. Monte Carlo runs are needed since
the NLS method to compute BTD has a strong dependence
on initialization. This tensorial technique is compared to the
matrix-based methods PCA and RobustICA-f, which have



TABLE I
VALUES OF SC (%) FOR PCA AND ROBUSTICA-F. FOR BTD, THE
MAXIMUM (BTD,42) AND THE MEAN (BTDjneqn) VALUES OF SC (%)
OF TEN INDEPENDENT RUNS IS SHOWN.

BTDyax | BTDyean | PCA | RobustICA-f
2.5s 94.04 74.03 55.29 69.08
5s 77.88 65.56 49.03 66.13
10s 90.93 73.49 56.40 72.22
15s 93.01 77.87 54.36 71.80

already proven their efficiency solving BSS problems.

VI. RESULTS
A. Temporal Variability Assessment

Table I shows the values of SC in % for PCA and
RobustICA-f. The mean of the ten independent runs and
the maximum value is shown for BTD. It can be seen in
Table I that the mean of the SC for BTD is very close
to the matrix-based techniques, outperforming PCA in all
the observed segments and RobustICA-f in 3 out of the 4
segments with different lengths. Also, BTD is superior for
all observed segments in 5 to 8 out of the 10 independent
runs, showing that it can easily have superior performance
if the right model parameters (R, L,) and initialization are
chosen. It can also be seen that the maximum SC presents
a high value (> 75%) for all the observed segments, and in
all cases, superior to that of matrix techniques, meaning that,
with the right initialization, BTD outperforms the matrix-based
techniques for the considered window lengths.

In the observed segments with different lengths, BTD finds
more potential atrial sources than PCA and RobustICA-f.
Discovering more than one potential atrial sources may be
an interesting outcome, since it increases the possibility of
finding some features that, although weakly contributing to
the overall AA, may provide useful physiological and clinical
information about the arrhythmia. This possibility, however,
will not be explored in the present work.

Figures 4 and 5 illustrate the estimated atrial source by the
three BSS techniques compared in this paper, in the time and
frequency domain, respectively, for the best performance of
BTD in the 15-second segment. These two figures show the
satisfactory performance of BTD in estimating the AA in long
segments of an AF ECG, as well as its superiority compared
to the matrix-based methods, as quantified by the higher SC
and kurtosis values.

The observation window size used in the experiments ex-
tends from 2.5 to 15 seconds in order to analyze its influence
on BTD performance. Figures 6 and 7 show the variation of
SC and kurtosis, respectively, over the 10 independent runs for
all the window observation sizes analyzed in this work. This
variation is illustrated by a box-and-whisker plot, where the
red lines represent the median and the edges of the blue boxes
the 25th and 75th percentiles. The black whiskers represent the
extreme data values that are not considered as outliers, which
are represented by red dots.

It can be seen that there exists a certain variation of SC and
kurtosis over the runs, for each observation window size. This
is expected, since BTD performance depends considerably

2
Pgrp =0.00106 mV

2
Probustica.f = 0000646 mV

2
Ppga =0.00143 mv

Lead V1

() AU ‘ f

Time (s)

Fig. 4. Atrial source contribution to lead V1 estimated by BTD, RobustICA-f
and PCA, for the 15-second segment, showed in the time domain (in mV).
AA signal estimates are vertically shifted for clarity. The power contribution
to lead V1 for each technique is also showed.
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0 5 10 15 20 25 30
Frequency (Hz)

Fig. 5. Atrial source contribution to lead V1 in the 15-second segment
estimated by BTD, RobustICA-f and PCA in the frequency domain (in
mV/v/Hz).

on the initialization of its model factors. However, there is
no clear trend in the computed parameters, which seems to
indicate that the influence of the observation window size on
the performance of BTD is not very significant or critical.
The only drawback observed when processing long seg-
ments of ECG using BTD is the fact that the original segment
must be downsampled by high factors, since Tensorlab has
some difficulties in processing a tensor with large dimensions.
Downsampling by a high factor could cause some loss of
information in the signal, due to the frequency filter used to
avoid spectral aliasing. However, previous experiments in short
segments have shown that the impact of the downsampling
factor on the SC is minimal. Actually, it was observed that
the downsampled segments provides a slightly lower SC com-
paring to the original segment (without any downsampling),
which makes the results reported in the present paper a “lower
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Fig. 7. Kurtosis of the AA signals estimated by BTD from the observed AF
ECG segments over ten independent runs.

bound” to the performance of BTD in the observed scenario.

B. Inter-Patient Variability Assessment

Table II shows the values of SC in % for PCA and
RobustICA-f in the 10-patient population. The mean of the ten
independent runs and the maximum value is shown for BTD.
We can see in Table II that the mean of the SC for BTD
is very close to the matrix-based techniques, outperforming
PCA in almost all the observed patients (except patient 8)
and RobustICA-f in 5 patients. Also, BTD is superior for all
patients in 3 to 7 out of the 10 independent runs, showing
again that it can easily have superior performance if the right
parameters (R, L;,) and the right initialization are chosen. We
can see also that the maximum SC is satisfactory (> 65%) for
all but one patient (P10), and in all cases, superior to that of
matrix techniques, meaning that, with the right initialization,
BTD was superior in all cases.

TABLE 11
VALUES OF SC (%) FOR PCA AND ROBUSTICA-F. FOR BTD, THE
MAXIMUM (BTD;,42) AND THE MEAN (BTD/eqn) VALUES OF SC (%)
OF TEN INDEPENDENT RUNS ARE SHOWN.

BTD,qz | BTDyean | PCA | RobustICA-f
P1 78.03 67.69 62.54 68.27
P2 96.15 80.08 65.14 81.25
P3 90.01 70.36 65.16 74.04
P4 92.67 85.88 68.38 69.76
P5 85.30 77.60 58.36 74.91
P6 85.32 69.16 45.57 61.76
P7 77.12 60.93 46.88 64.78
P8 93.78 70.60 74.47 79.33
P9 67.13 53.84 none none
P10 53.01 45.46 none none

In the observed population of patients, BTD found more
potential atrial sources than PCA and RobustICA-f. As pre-
viously explained, finding many potential atrial sources may
be an interesting result, increasing the possibility of finding
features that weakly contribute to the AA, while providing
important physiological and clinical information about a com-
plex arrhythmia like persistent AF.

As explained in Section IV, this work assumes, as in
previous works, that the AA is concentrated on a single source,
which is selected as the source presenting the most significant
AA content, measured by the parameters previously presented.
However, in the present experiments, in some runs of 5 from
the 10 patients, AA appears in more than one source estimated
by BTD. This can be seen in Figure 8(a), where two estimated
sources by BTD presents significant AA (signals 2 and 3). This
could mean that BTD is able to extract more information about
the AA than the other methods compared here. To keep the
focus on the subject of this work, a deep analysis of the cases
where BTD provided more than one source with significant
AA is not discussed in this paper.

Figure 8 shows the 3 most relevant potential atrial sources
of one of the observed patients (Patient 6). For clarity, all
the potential atrial sources with power contribution to lead
V1 less than 10~* are not showed here, since they do not
present significant features as they are very weak. In the
time domain, shown in Figure 8(a), we can see that the
two last sources have the atrial signature and present a high
power contribution to lead V1, while looking at the frequency
domain, in Figure 8(b), we can see that those sources present
high kurtosis and SC, represented by indices K and SC in the
figure legend, respectively.

Figure 9 shows how the SC of the atrial source is distributed
over the 10 independent runs for the population of 10 observed
AF patients. We can see that the median (red line) and
the percentiles (blue box) present significant variations over
BTD initialization and over patients. A fixed parameter match
and Gaussian random initializations for each run are used to
compute the BTD in 10 AF patients, providing satisfactory
results. However, it can be observed that the chosen parameters
work better in some patients than in others, recalling that
BTD performance depends strongly on its parameters and
initialization, and opening the challenge of finding the best
parameter choice for a particular patient.
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Fig. 8. Potential atrial sources contribution to lead V1 estimated by BTD
for Patient 6. (Top) In the time domain, measured in mV. (Bottom) In the
frequency domain, measured in mV/v/Hz.

It can be pointed out that in patients 9 and 10 the matrix-
based methods could not successfully extract the AA signal
from the considered segment, while the BTD could extract it
in 6 out of the 10 runs for patient 9, and 3 out of 10 runs
for patient 10. Despite its higher computational complexity,
this outcome shows that BTD is capable of extracting the AA
signal from segments where the matrix-based techniques here
compared could not, pointing out the superiority of BTD as
an AA extraction tool.

We can see in Figure 10 that the DF of the estimated atrial
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Fig. 9. Variation of SC (%) of the atrial source estimated by BTD over
10 tensor factor initializations for the observed population of AF patients.
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Fig. 10. Variation of DF (Hz) of the atrial source estimated by BTD over
independent runs for the observed population of AF patients.

source by BTD does not change considerably over the runs for
a given patient, which means that BTD seems to be able to
target the AA source always, although with varying accuracy
depending on the algorithm convergence. Over the population
of observed patients, the DF of the atrial sources estimated
by BTD are in the interval of 4.77 to 6.67 Hz, very close to
the DF interval of the atrial sources estimated by PCA and
RobustICA-f, which lie in 4.77 to 6.44 Hz.

C. Correlation of Kurtosis and SC

In Figure 11 it can be seen how kurtosis and SC of the
estimated atrial source are correlated across the observed
population of AF patients. It is observed that these parameters
are positively correlated, since in general, as long as the values
of kurtosis increase, the values of SC also increase. Moreover,
it is valid to point that, in the observed population, for high
values of kurtosis we will always have high values of SC.
However, for some patients it is observed a high value of SC
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Fig. 11. Scatter plot showing the correlation between kurtosis and SC of the
selected atrial source by BTD, for the observed population of AF patients. A
positive correlation can be seen.

but a low value of kurtosis, as shown in Figure 11. It can also
be seen in Figure 11 the difficulties of BTD in extracting the
AA from the AF ECG of some patients, as for example, Patient
9, whose points are concentrated in low values of kurtosis and
SC. On the other hand, patients with successful AA extractions
are observed, as Patient 4, for example, which has its points
scattered in high values of kurtosis and SC.

Note that some patients have less points than others. This
is due to the fact that, as explained before, BTD could
not successfully extract the AA in some Monte Carlo runs
for some patients. Only the cases where the extraction was
performed are analyzed in this final experiment.

VII. CONCLUSION

The present work has evaluated the temporal and inter-
patient variability of BTD for noninvasive AA extraction in
AF ECGs. The first contribution is the analysis of BTD in AF
ECG segments with varying time length, showing that this
tensor technique presents a satisfactory performance not only
in short segments (2.5 s), but also in long segments (15 s).
The choice of the size of the observation window is shown
not to be very significant regarding the quality of the atrial
signal extracted. The only drawback observed is the need
of downsampling the long segment by a high factor, which
may cause some loss of information. The second contribution
of the present work is the performance assessment of BTD
in a population of 10 AF patients, confirming the strong
variability to initialization of this technique in this particular
biomedical application, not only for a fixed patient, but for
every patient in an observed population. Nevertheless, with
a suitable initialization, BTD can provide a better estimation
of the atrial source (as measured by kurtosis and SC) and
more information about the AA than matrix-based techniques,
since in some cases more than one source with significant AA
is recovered. The assessment of the inter-patient variability
of BTD in AF ECGs demonstrates that BTD can provide
a better AA extraction performance in a population of AF

patients when compared to the matrix-based methods PCA
and RobustICA-f. Also, it can extract AA in some patients
for whom the matrix techniques fail. The correlation of the
AA content quality parameters is also presented, showing
another way to classify whether a patient poses difficulties
in noninvasive AA extraction.

Future works will aim to develop a more robust method,
with respect to initialization and the choice of model param-
eters, to compute BTD and provide better indexes of AA
content measurement. Analyzing the cases in which the AA is
spread across more than one source is also an objective to be
presented in following works, as well as studying the clinical
relevance of these additional AA sources. Finally, experiments
should be performed in a larger database of AF patients to
fully validate this tensor technique and provide results with
increased statistical significance.
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