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Abstract

While almost all existing works which optimally solve just-in-time scheduling problems pro-
pose dedicated algorithmic approaches, we propose in this work mixed integer formulations. We
consider a single machine scheduling problem that aims at minimizing the weighted sum of ear-
liness tardiness penalties around a common due date. Using natural variables, we provide one
compact formulation for the unrestrictive case and, for the general case, a non-compact formu-
lation based on non-overlapping inequalities. We show that the separation problem related to
the latter formulation is solved polynomially. In this formulation, solutions are only encoded by
extreme points. We establish a theoretical framework to show the validity of such a formula-
tion using non-overlapping inequalities, which could be used for other scheduling problems. A
Branch-and-Cut algorithm together with an experimental analysis are proposed to assess the
practical relevance of this mixed integer programming based methods.

Keywords: Just-in-time scheduling, Mixed integer programming formulation, polyhedral approaches

1 Introduction
In the most general statement, single-machine scheduling is to process a set J of tasks non-preemptively on
a single machine. Each task j∈J is ready for processing at time zero and has a processing time pj , that is
neither time-dependent nor sequence-dependent (w.l.o.g. we assume that pj>1).

A schedule can be then encoded by the vector of its completion times (Cj)j∈J . Such an encoding allows us
to express a wide range of criteria, particularly the so-called regular criteria, which are decreasing functions
of Cj for each task j. Using these continuous variables, Queyranne [20] provided useful polyhedral tools for
minimizing one of the most studied regular criteria:

∑
ωjCj . To the best of our knowledge, the scheduling

literature lacks similar results for non-regular criteria. The contribution of this work falls within this scope.
Our focus is on minimizing a non-regular criterion occurring in just-in-time scheduling.

We consider a single machine scheduling problem where all tasks share a common due date d. A task
j ∈ J is early (resp. tardy) if Cj ≤ d (resp. Cj > d). Using [x]+ to denote the positive part of x ∈ R, the
earliness (resp. tardiness) of any task j ∈ J is given by [d−Cj ]+ (resp. [Cj−d]+). Given unit earliness
penalties (αj)j∈J (resp. tardiness penalties (βj)j∈J), the problem aims at finding a schedule that minimizes
the total penalty defined as follows.

fα,β(C) =
∑
j∈J

(
αj [d−Cj ]+ + βj [Cj−d]+

)
When d>

∑
pj , the common due date is called unrestrictive since the due date does not restrict the total

duration of early tasks [13]. In this case, the so-called V-shaped dominance property [13] ensures that there
exists an optimal solution such that early tasks are scheduled by increasing ratio αj/pj while tardy tasks are
scheduled by decreasing ratio βj/pj . In addition, according to some strong dominance properties [13], there
exists an optimal schedule without idle time and with an on-time task, i.e. completing exactly at d. For
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the common due date setting, idle time only refers to an idle time between tasks, regardless of the interval
between 0 and the starting time of the schedule. The problem with an unrestrictive common due date is
NP-hard even if αj = βj for any task j ∈ J [13]. However, if αj = βj = 1 for any task j ∈ J , the problem is
solvable in polynomial time [15].

In the general case, there might be a straddling task, i.e. a task starting before d and completing after
d, in all optimal schedules: the problem is shown to be NP-hard, even if αj =βj = 1 for all j∈J [14, 12].

In addition to these fundamental results of the common due date problem, the just-in-time field schedul-
ing benefits from a rich literature. These problems have been solved by several approaches: with heuris-
tics (e.g. [5], [17]), with branch-and-bound algorithms (e.g. [24]), and with dynamic programming methods
(e.g. [14], [25]). The reader can refer to the seminal surveys of [1], [17] and [16] for the early results in this field.

Furthermore, there exist several ways to encode a single machine schedule leading to distinct formulations.
Such encodings can be based on completion times, time-indexed variables, linear ordering, positional date
and assignement variables [21]. Some of these encodings allow to formulate just-in-time scheduling problems
as Mixed Integer Program (MIP). However, few solving approaches based on these formulations have been
proposed for just-in-time scheduling problems [5].

We focus in this article on natural variables, similar to completion times variables. To the best of our
knowledge, no linear formulation with such variables has been considered for just-in-time scheduling, in
contrast with scheduling problems dealing with regular criteria. Since tasks have to be processed on a single
machine, a schedule is feasible if it satisfies the task non-overlapping, i.e. if they are executed on disjoint
time slots. Providing a linear formulation of non-overlapping is an important issue to solve a single-machine
scheduling problem using linear programming. Studying the polyhedron defined as the convex hull of the
feasible completion times vectors provides LP or MIP formulations. [2] and [20] propose seminal works in
this research line. The authors consider the problem of minimizing

∑
ωjCj . Other works consider the same

problem with additional constraints: release dates (e.g. [8]) or precedence constraints (e.g. [7], [22]).
A particularity of an encoding based on such natural variables is the non connectivity of the feasible vec-

tors set. Therefore, a vector in the convex hull of feasible vectors can correspond to an infeasible schedule.
In this context, providing a linear formulation describing this polyhedron is not sufficient. [20] describes the
convex hull of feasible completion times vectors by linear inequalities, and shows that the extreme points of
this polyhedron encode feasible schedules. He deduces a formulation which can be solved by LP algorithms.
This formulation is an LP with an additional constraint: the solution must be an extreme point. This con-
straint will be called an extremality constraint.

In this article, we provide MIP based methods to solve a core problem in just-in-time scheduling. Such
approaches can be easily extended to tackle other variants embedding this core structure, in contrast with
the dedicated methods commonly used in scheduling field. We use natural variables to handle the common
due date problem, dealing with a non-regular criterion. Using few additional binary variables, we describe a
polyhedron containing the convex hull of dominant vectors for the unrestrictive case, and another one for the
general case. We show that, in both cases, extreme points of this polyhedron correspond to feasible sched-
ules. Thanks to these theoretical results, we derive two non-compact MIP formulations with an additional
extremality constraint. We explain how both formulations can be solved using a branch-and-cut algorithm.
We also propose a compact MIP formulation for the unrestrictive case, which is more efficient but cannot be
adapted to the general case. Finally we provide an experimental analysis to assess the practical relevance
of the proposed approaches. The analysis is based on the reference benchmark proposed by [5] and also
used by [24], as well as a new benchmark covering larger processing times. For sake of comparison, MIP
formulations of the literature are also considered.

This article is organized as follows. Section 2 presents basic tools to express the task non-overlapping.
We recall Queyranne’s linear inequalities for the non-overlapping [20]. We also provide two lemmas, which
permit to extend the framework in which those inequalities can be used. In Sections 3, 4 and 5, we provide
new formulations for the unrestrictive case and the general one. In each section we first enunciate dominance
properties, then we give the formulation, and finally we prove its validity. All separation algorithms for these
formulations are gathered in Section 6. In Section 7 we present some experimental results and compare the
different formulations.
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2 Linear inequalities for non-overlapping
For a single-machine problem, a schedule must only satisfy two conditions to be feasible: each task must
begin after time 0 and two tasks must not be executed at the same time. In the sequel, the first condition will
be called positivity and the second one will be called non-overlapping. Given the processing times p∈(R∗+)J ,
a vector y∈RJ encodes a feasible schedule by its completion times if and only if it satisfies the two following
constraints.

positivity ∀j∈J, yj>pj (0)

non-overlapping ∀(i, j)∈J2, yj>yi + pj or yi>yj + pi (1)

The set Q will denote the set of all vectors encoding a feasible schedule by its completion times, i.e. all
vectors satisfying constraints (0) and (1). Completion times allow an easy way to express feasibility at the
expense of the non-linearity of constraints (1). However, [20] introduces linear inequalities using completion
times to handle the non-overlapping. We first recall notations and results proposed by [20] as we will gener-
alize them to a larger framework. To this end, we use vector y to represent more than completion times. In
the next sections, y will be either the earliness or tardiness of tasks. For S ⊆ J and y∈RJ ,

S<=
{

(i, j)∈S2 | i<j
}
, y(S)=

∑
i∈S

yi, p∗y(S)=
∑
i∈S

piyi, and gp(S)=
1

2

(∑
i∈S

pi

)2

+
1

2

∑
i∈S

p2i .

We give some properties about the function gp, useful for the next proofs.
∀S⊆J, gp(S)=

∑
(i,j)∈S<

pipj +
∑
j∈S

p2j (2)

∀S⊆J, ∀i∈J\S, gp
(
St{i}

)
= gp(S) + pi

(
p(S)+pi

)
(3)

The non-overlapping Queyranne’s inequalities are defined as follows.
∀S ⊆ J, p∗y (S) > gp(S) (Q0)

We denote by PQ the polyhedron defined by inequalities (Q0). The following property establishes that these
inequalities are valid for all vectors of Q, inducing conv(Q)⊆PQ.
Property 1

If y satisfies constraints (0) and (1), then y satisfies inequalities (Q0).

Proof : Let S⊆J . If S=∅, inequality (Q0) is satisfied. If S={j}, then inequality (Q0) is pjyj>p2j , that is
yj> pj since pj>0. So constraints (0) ensure that the inequalities (Q0) associated to the singletons are
all satisfied. If |S| > 2, we need to exhibit an order on J . Since processing times are strictly positive,
the constraints (1) ensure that (yj)j∈J are distinct and so that there exists a (single) total order ≺ on
J such that i≺ j ⇔ yi<yj . Then constraints (1) translate into ∀(i, j)∈J2, i≺ j ⇒ yj > yi + pj . Using
inequalities (0) we deduce that yj>p(I) + pj for I⊆J and j∈J such that i≺j for all i∈I.
This allows to prove by induction on the cardinality of S that all inequalities (Q0) are satisfied. Indeed let
us assume that they are satisfied for all sets of cardinality k where k>1 and let S⊆J with |S|=k+1. By
setting j=max≺ S and U=S\{j}, then, on one hand, by induction p∗y(U)>gp(U), and, on the other, by
previous arguments yj>p(U)+pj . Consequently p∗y(S)=p∗y(U)+pjyj > gp(U)+pj

(
p(U)+pj

)
=gp(S)

using (3), hence y satisfies the inequality (Q0) associated to S. �

Some points in conv(Q) correspond to infeasible schedules due to the disjunction inherent to the problem.
Figure 2 illustrates Q and PQ for an instance with only two tasks. The two cones represent the set of feasible
schedules: each corresponding to an order in the task execution. Vectors in between correspond to schedules
where the tasks overlap. By definition of conv(Q), these vectors are in conv(Q), so they cannot be cut by
the non-overlapping Queyranne’s inequalities. Note that there are only two extreme points and that they
correspond to feasible schedules. This observation is true in general. Indeed, [20] shows that the extreme
points of PQ correspond to feasible schedules. This inclusion (extr(PQ)⊆Q⊆conv(Q)) and the previous one
(conv(Q)⊆PQ) are sufficient to say that minx∈Q f(x) = minx∈PQ f(x) for any given linear function f , but
not sufficient to conclude that PQ is exactly conv(Q). [20] shows this equality using a geometrical argument,
that is the equality of the two recession cones. The following theorem sums up these results.
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Theorem 2 ([20])

(i) extr(PQ) ⊆ Q
(ii) PQ = conv(Q)

Moreover, [20] shows that each extreme point of PQ encodes a left-tight schedule, i.e. a feasible schedule
without idle time starting at time zero. Conversely each left-tight schedule is encoded by an extreme point of
PQ since, according to the Smith rule [23], it is the only point in Q (and then in conv(Q)=PQ) minimizing
ω∗C(J) for ω∈(R+)J such that the tasks are scheduled by strictly decreasing ratio ωj/pj .

We now provide two lemmas which will be the key for showing the validity of our formulations. The
first one gives a new proof of Theorem 2(i). In this lemma, we explain how a vector of PQ can be slightly
disrupted in two directions without leaving PQ if an overlap is observed in the schedule it encodes. Figure
1 illustrates the two ways of disrupting the overlapping tasks so that the corresponding vectors stay in PQ.
Lemma 3

Let us assume that y satisfies inequalities (Q0).
If there exists (i, j)∈J2 with i 6=j such that yi6yj<yi + pj ,
then there exists ε∈R∗+ such that y+−=y + ε

pi
1i − ε

pj
1j and y−+=y − ε

pi
1i + ε

pj
1j also satisfy (Q0).

ε/pi ε/pj

(a)
ε/pi ε/pj

(b)

Figure 1: Illustration of the schedules disruption between y and y+− (a) (resp. y−+ (b))

Proof : Let ε=min(m1,m2) where m1=min {p∗y (S)− gp(S) |S⊆J, i 6∈S, j∈S}
and m2=min {p∗y (S)− gp(S) |S⊆J, i∈S, j 6∈S}.

Since y satisfies inequalities (Q0), m1>0 and m2>0, thus ε>0.
Let S⊆J . We first check that vector y+− defined by ε satisfies inequality (Q0) associated to S.
If i 6∈S and j 6∈S then p ∗ y+−(S) = p ∗ y(S) > gp(S).
If i∈S and j∈S then p ∗ y+−(S) = p ∗ y(S) + pi

ε
pi
− pj εpj = p ∗ y(S) > gp(S).

If i 6∈S and j∈S then p ∗ y+−(S) = p ∗ y(S)− pj εpj > gp(S) since ε6m1.
If i∈S and j 6∈S then p ∗ y+−(S) = p ∗ y(S) + pi

ε
pi
> p ∗ y(S) >gp(S).

In each case p ∗ y+−(S)>gp(S), then y+− satisfies (Q0). Similarly we can check that y−+ satisfies (Q0)
using that ε6m2. Finally, we have to check that ε>0. For this purpose we use the next two claims.

Claim
Let (i, j)∈J2. If yi6yj , then ∀S⊆J, i 6∈S, j∈S⇒p∗y (S)>gp(S).

Proof : Let us assume on the contrary that there exists S⊆J such that i 6∈S, j∈S and p∗y (S)=gp(S).
Setting U =S\{j}, we have p∗y (S) = p∗y (U) + pjyj and gp(S) = gp(U) + pj p(S) by (3). Since
we assume that these two terms are equal, and since p∗y (U)>gp(U) from inequalities (Q0), we
deduce that pjyj6pjp(S) and even yj6p(S) since pj>0.
Moreover p∗y

(
St{i}

)
= p∗y (S) + piyi = gp(S) + piyi 6 gp(S) + piyj by assumption.

Using these two inequalities, we get p∗y
(
St{i}

)
6 gp(S) + pip(S) < gp(S) + pi

[
p(S)+pi

]
since

pi>0. Furthermore, gp(S) + pi
[
p(S)+pi

]
= gp

(
St{i}

)
from (3) and gp

(
St{i}

)
6 p∗y

(
St{i}

)
from inequality (Q0). We finally get p∗y

(
St{i}

)
<p∗y

(
St{i}

)
, a contradiction. �

This first claim ensures that m1>0.

Claim
Let (i, j)∈J2. If yj<yi + pj , then ∀S⊆J, i∈S, j 6∈S⇒p∗y (S)>gp(S)
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Proof : Let us assume on the contrary that there exists S⊆J such that i∈S, j 6∈S and p∗y (S)=gp(S).
Like in the previous proof we can show that yi6p(S).
Moreover p∗y

(
St{j}

)
= p∗y (S) + pjyj = gp(S) + pjyj < gp(S) + pj

[
yi+pj

]
by assumption.

Using these two inequalities, we can write p∗y (St{j}) < gp(S) + pj
[
p(S)+pj

]
since pj > 0.

Furthermore, gp(S) + pj
[
p(S) + pj

]
= gp

(
St{j}

)
from (3) and gp

(
St{j}

)
6 p∗y

(
St{j}

)
from

inequality (Q0). We finally get p∗y
(
St{j}

)
<p∗y (St{j}), a contradiction. �

This second claim ensures that m2>0, we can deduce that ε>0. �

To obtain an alternative proof of Theorem 2(i), Lemma 3 can be reformulated as follows. If C is a vector
of PQ that gives the completion times of a schedule with an overlap, then C is the middle of two other vectors
of PQ, C+− and C−+ . That implies that C is not an extreme point of PQ. By contraposition, we deduce
that an extreme point of PQ encodes a schedule without overlap, and since inequalities (Q0) associated to
singletons ensure the positivity, an extreme point of PQ encodes a feasible schedule, i.e. extr(PQ)⊆Q.

This way of proving that the extreme points correspond to feasible schedules can be adapted to a more
complex polyhedron, that is a polyhedron defined by inequalities (Q0) and additional inequalities. Indeed,
it is then sufficient to check that the two vectors C+− and C−+ also satisfy these additional inequalities.
However, for some extreme points, the two vectors introduced by Lemma 3 may not satisfy the additional
inequalities. For example, if the completion times of the tasks are limited by a constant M (with M>p(J)),
the additional inequalities are the following.

∀j∈J, Cj6M (4)

0

C2

0
C1

_p2 •

p
p1+p2

p
p1

•_p1+p2

M

M

•
Legend:

Cone of feasible schedules
where 1 is executed before 2

Cone of feasible schedules
where 2 is executed before 1

Q

conv(Q)

Area without feasible schedule

Figure 2: Q and conv(Q) in the case of two tasks

Note that inequalities (4) induce extreme points encoding infeasible schedules as depicted in Figure 2 for
a 2-task instance. Adding the inequalities C1 6M and C2 6M leads to the extreme point (M,M) which
encodes a schedule with an overlap. We can see that this point will never be proposed as an optimum during
the minimization of ω1C1+ω2C2 if ω∈ (R∗+)2. In general, the aim is to minimize a non-negatively weighted
sum of variables. For any given polyhedron P of Rn, we consider the following set of extreme points which
are unique minimizer of such function. The unicity is required to deal with some zero weights.

extr∗(P ) =

{
x∗∈P ∃ω∈Rn+, {x∗}=argmin

x∈P

n∑
i=1
ωixi

}
Since the extreme points are exactly the points that can be written as the unique minimizer of a linear
function, extr∗(P )⊆extr(P ). Let PQ,M denote the polytope defined by inequalities (Q0) and (4). Let us
assume that C ∈ PQ,M is the completion time vector of a schedule with an overlap. If one of the two
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overlapping tasks has a completion time equal to M , applying Lemma 3 to C provides a vector C−+ which
does not satisfy inequalities (4) and therefore is not in PQ,M . Point y cannot be proved to not be extreme
in PQ,M . In order to prove that such point is not a unique minimizer, we provide the following lemma.
Lemma 4

Let us assume that y satisfies inequalities (Q0).
If there exist (i, j)∈J2 with i 6=j such that yj< yi+pj , and yj>p(J),
then there exists ε∈R∗+ such that y− ε

pj
1j also satisfies inequalities (Q0).

Proof : Since y satisfies inequalities (Q0), setting ε=min{ p∗y (S)− gp(S) |S⊆J, j∈S } suffices to ensure
that y− ε

pj
1j also satisfies inequalities (Q0) and that ε>0. It remains to show that ε>0, that is for any

subset S⊆J containing j, the associated inequality (Q0) is not tight.
Let S⊆J such that j∈S and let U=S \ {j}. First remark the following equivalent inequalities.

p∗y (S) > gp(S)⇔ p∗y (U) + pjyj > gp(U) + pj
[
p(U)+pj

]
⇔ p∗y (U)− gp(U) > pj

[
p(S)− yj

]
If S J , then p(S)<p(J)6yj , thus pj

[
p(S)− yj

]
<0. Moreover p∗y (U)− gp(U)>0 since y satisfies the

inequality (Q0) associated to T . We deduce that p∗y (S) > gp(S) in this case.
If S=J , then pj

[
p(S)−yj

]
60 since yj>p(J). In this case, pj

[
p(S)−yj

]
can be equal to zero if yj =p(J),

but we prove that p∗y (U)− gp(U)>0 as follows.

p∗y (U)− gp(U) > 0⇔ p∗y
(
J \{j}

)
> gp

(
J \{j}

)
⇔ p∗y

(
J \{i, j}

)
+ piyi > gp

(
J \{i, j}

)
+ pi

[
p
(
J \{i, j}

)
+pi

]
⇔ p∗y

(
J \{i, j}

)
− gp

(
J \{i, j}

)
> pi

[
p
(
J \{j}

)
− yi

]
By assumption yi > yj−pj > p(J)−pj = p

(
J\{j}

)
, thus pi

[
p
(
J\{j}

)
− yi

]
< 0 and since y also satisfies

the inequality (Q0) associated to J \{i, j}, we have p∗y
(
J \{i, j}

)
− gp

(
J \{i, j}

)
> 0. We deduce that

p∗y (U)− gp(U) > 0 in this case, and finally that p∗y (S) > gp(S). �

Combining Lemmas 3 and 4, we prove that a vector C in extr∗(PQ,M ) is in Q, that is it encodes a
feasible schedule by its completion times. Indeed, since such a vector C satisfies inequalities (Q0), an overlap
between tasks i and j such that Ci6Cj<Ci+pj contradicts either the extremality of C or its minimality. If
Cj<p(J), we can construct C+− and C−+ as proposed in Lemma 3 for ε set in ] 0, p(J)−Cj [, so that C+−

and C−+ satisfy inequalities (Q0) and (4). Thus, C can be written as the middle of two other vectors of
PQ,M , then it is not an extreme point. If conversely Cj>p(J), we can construct a vector C− as proposed in
Lemma 4, so that C− is component-wise smaller than C and satisfies inequalities (Q0). Thus, C− is another
point of PQ,M , which has a smaller value than C for any linear function with positive (or zero) coefficients,
then C cannot be the single minimizer of such a function on PQ,M . Moreover, using the same argument as
for PQ, we can say that every left-tight schedule is encoded by an extreme point of PQ,M , and even by a
vector of extr∗(PQ,M ).

For the common due date problem, an encoding by completion times does not lead to a linear objective
function (except in the very particular case where d=0, since the tardiness are then equal to the completion
times). Therefore, we propose in the next sections a schedule encoding together with a set of inequalities
ensuring that every minimum extreme point corresponds to a feasible schedule.
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3 A first formulation for the unrestrictive common due date
problem

In this section, we consider the common due date problem when the due date is unrestrictive, i.e. d>p(J).
Before providing the formulation, we recall some well known dominance properties which allow not only to
reduce the search space but also to restrict the instances set.

3.1 Dominance properties
We say that a set of solutions is dominant if it contains (at least) one optimal solution, and that it is strictly
dominant if it contains all optimal solutions. In both cases, the search of an optimal solution can be limited
to the dominant set.

For the common due date scheduling problem, we define a block as a feasible schedule without idle
time, a d-schedule as a feasible schedule with an on-time task, and a d-block as a block which is also a
d-schedule. The following lemma gives dominance properties for the common due date problem, already
known for symmetric penalties [13]. These results can be extended to asymmetric penalties, using the same
task shifting arguments.
Lemma 5

Let α∈(R+)J , β∈RJ+.
(i) In the general case, the blocks are dominant when minimizing fα,β .
Moreover, if α∈(R∗+)J and β∈(R∗+)J , the blocks are strictly dominant.
(ii) In the unrestrictive case, the d-schedules are dominant when minimizing fα,β .

Thanks to these dominance properties, only blocks will be considered in the sequel, and only d-blocks in
the unrestrictive case.

From Lemma 5, in the unrestrictive case we only have to consider instances with strictly positive earliness
and tardiness penalties, i.e. with α∈ (R∗+)J and β ∈ (R∗+)J . Indeed, if the tardiness penalty of a task j ∈J
is zero, solving the instance obtained by removing task j provides a d-block, which is optimal for J \ {j}.
Placing task j at the end of the d-block does not increase the cost, since j is then tardy. Thus, the obtained
schedule is an optimal d-block. Conversely, if the earliness penalty of a task j is zero, placing task j at the
beginning of an optimal d-block for J \ {j}, which is always possible when d is unrestrictive, provides an
optimal d-block. Hence, for the unrestrictive case, we will set α∈(R∗+)J and β∈(R∗+)J .

3.2 A natural formulation for the unrestrictive case
• A linear objective function using e and t variables

Since earliness and tardiness are not linear with respect to completion times, the objective function fα,β is
not linear. Therefore, we propose an encoding by earliness and tardiness of each task, by introducing the
corresponding variables: (ej)j∈J for the earliness of the tasks, and (tj)j∈J for their tardiness. In this way,
the total penalty of a schedule encoded by vector (e, t) is gα,β(e, t) =

∑
j∈J (αj ej + βj tj) which is linear.

If C encodes a schedule by its completion times, the encoding by earliness and tardiness of this schedule is
given by θ(C) =

( (
[d−Cj ]+

)
j∈J ,

(
[Cj−d]+

)
j∈J

)
. Using function θ, we have fα,β=gα,β ◦ θ.

• Consistency between e and t using δ variables
A vector (e, t) in (R+)J×(R+)J is consistent if ∀j ∈ J , either (ej > 0 and tj = 0) or (ej = 0 and tj > 0).
There exists C in RJ such that θ(C) = (e, t) if and only (e, t) is consistent. In order to ensure consistency,
we introduce the following inequalities using new boolean variables (δj)j∈J . For each task j, δj indicates if
j is early.

∀j∈J, ej > 0 (5)
∀j∈J, ej 6 δj (p(J)−pj) (6)

∀j∈J, tj > 0 (7)
∀j∈J, tj 6 (1−δj) p(J) (8)
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Inequalities (5) and (6) force ej to be zero when δj = 0. Since we only consider d-blocks, p(J)−pj is an
upper bound on the earliness of task j. Thus, inequality (6) does not restrict ej when δj = 1. Note that in
the unrestrictive case, p(J)−pj is tighter than d−pj . of Similarly, inequalities (7) and (8) force tj to be zero
when δj = 1, without restricting tj when δj = 0, since p(J) is an upper bound on the tardiness in a d-block.
Consequently, we have the following lemma.
Lemma 6

Let (e, t, δ)∈RJ×RJ×{0, 1}J .
If e, t, δ satisfy inequalities (5)- (8), then (e, t) is consistent and C=

(
d−ej+tj

)
j∈J satisfies θ(C)=(e, t).

For a consistent (e, t) vector, we define θ−1(e, t) = (d−ej+tj)j∈J . Besides, inequalities (5)- (8), ensure the
positivity of the encoded schedule. Indeed, for any j in J , inequalities (6) and (7) ensure that d−ej+tj >
d−ej > d−p(J)+pj . Since d is unrestrictive, we deduce that d−ej+tj > pj . Hence, we obtain the following
lemma.
Lemma 7

Let (e, t, δ)∈RJ×RJ×{0, 1}J . If e, t, δ satisfy (5)- (8), then θ−1(e, t) satisfies (0).

• Handling the non-overlapping
To ensure the non-overlapping, it suffices that early tasks are fully processed before d and do not overlap
each other, and that tardy tasks are fully processed after d and do not overlap each other either. Note
that for a d-schedule, the non-overlapping reduces to these two constraints related to early and tardy tasks
respectively.
In order to use the partition between early and tardy tasks induced by the completion times C, we introduce
the following notations.

E (C)={ j∈J |Cj6d } and T (C)={ j∈J |Cj>d }

For a tardy task, the tardiness can be seen as a completion time with respect to d. Therefore, ensuring
that the tardy tasks are fully processed before d (resp. they do not overlap each other) is equivalent to
imposing positivity constraints for tardy tasks (resp. the non-overlapping constraint for tardy tasks). As
shown on Figure 3, for an early task j, the value ej+pj can be seen as a completion time. Using x/S to denote(
xj
)
j∈S for any subset S of J and for any vector x in RJ , the following lemma sums up these observations.

d

|
0

|
Ji |

eipi

Jt Jt Ji |
Ci = pi+ei

Figure 3: Illustration of the role of pi+ei for an early task i

Lemma 8

Let C∈RJ and set (e, t) = θ(C). If there is no j∈J such that Cj−pj<d and Cj>d,
then C satisfies (1) ⇔ (e+p)/E(C) and t/T (C) satisfy (0) and (1).

In the formulation, δ describes the partition between early and tardy tasks, denoted as follows.

E(δ)={ j∈J | δj =1 } and T (δ)={ j∈J | δj =0 }

According to Section 2, we want to apply Queyranne’s inequalities (Q0) to the vectors (e+p)/E(δ) and
t/T (δ) respectively, so that they satisfy (0) and (1). Therefore, we consider the following inequalities.

∀S⊆J, p ∗ (e+p)
(
S∩E(δ)

)
> gp(S) (9)

∀S⊆J, p ∗ t
(
S∩T (δ)

)
> gp(S) (10)

These inequalities are not linear as E(δ) and T (δ) depend on δ variables. Replacing S∩E(δ) (resp.
S∩T (δ) ) by S raises non valid inequalities. Indeed, inequality (10) for S={i, j} where i∈E, would become

8



pjtj > p2i+p
2
j+pipj since ti=0 by (7) and (8). This implies that tj>pj , which is not valid for all the feasible

schedules.
To ensure that only the terms corresponding to early (resp. tardy) tasks are involved in (9) (resp. in

(10)), we multiply each term of index j in S by δj (resp. by (1−δj)). If δj ∈{0, 1}, then (1−δj)2 = (1−δj),
ej δj = ej from inequality (6) and tj (1−δj) = tj from inequality (8). We obtain the following quadratic
inequalities.

∀S ⊆ J,
∑
j∈S

pjej >
∑

(i,j)∈S<

pipjδiδj (11)

∀S⊆J,
∑
j∈S

pjtj(1−δj) >
∑

(i,j)∈S<

pipj (1−δi)(1−δj) +
∑
j∈S

p2j (1−δj) (12)

• Linearization of the quadratic terms using x variables
In order to remove the quadratic terms, we introduce a new variable xi,j representing whether δi is different
than δj for each (i, j) in J<. Since the quadratic terms are the products of boolean variables, the following
inequalities ensure their consistency with respect to δ.

∀(i, j)∈J<, xi,j > δi−δj (13)
∀(i, j)∈J<, xi,j > δj−δi (14)
∀(i, j)∈J<, xi,j 6 δi+δj (15)
∀(i, j)∈J<, xi,j 6 2−(δi+δj) (16)

The following lemma provides the correspondence between quadratic and linear terms.

Lemma 9 ([9])

If δ∈{0, 1}J then for all (i, j)∈J<:
(i) δ and x satisfy (13)-(16) associated with (i, j) ⇔ xi,j =0 if δi=δj and xi,j =1 otherwise.

(ii) In case (i) holds, then δiδj =
δi+δj−xi,j

2
and (1−δi)(1−δj)=

2−(δi+δj)−xi,j
2

.

The proof can be easily done by considering the two cases δi=δj and δi 6=δj .

• Non-overlapping inequalities
Using Lemma 9(ii), we obtain the following inequalities.

∀S⊆J,
∑
j∈S

pjej >
∑

(i,j)∈S<

pipj
δi+δj−xi,j

2
(Q1)

∀S⊆J,
∑
j∈S

pjtj >
∑

(i,j)∈S<

pipj
2−(δi+δj)−xi,j

2
+
∑
j∈S

p2j (1−δj) (Q2)

The following lemma summarizes the relationship between the inequalities (Q1), (Q2) and (Q0).

Lemma 10

Let (δ, x)∈{0, 1}J×RJ
< satisfying inequalities (13)-(16).

(i) If e∈RJ satisfies inequalities (5) and (6) for all j∈E(δ),
then e, δ, x satisfy inequalities (Q1) for all S⊆J ⇔ (e+p)/E(δ) satisfies inequalities (Q0).

(ii) If t∈RJ satisfies inequalities (7) and (8) for all j∈T (δ),
then t, δ, x satisfy inequalities (Q2) for all S⊆J ⇔ t/T (δ) satisfies inequalities (Q0).

The following lemma allows to make the bridge between (e+p)/E(C) from Lemma 8 and (e+p)/E(δ) from
Lemma 10 (resp. between t/T (C) and t/T (δ)).
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Lemma 11

Let (e, t, δ)∈RJ×RJ×{0, 1}J .
If e, t, δ satisfy (5)-(8) and (Q2) then E(δ)=E

(
θ−1(e, t)

)
and T (δ)=T

(
θ−1(e, t)

)
.

Proof : Let C=θ−1(e, t). If j∈T (C), then Cj>d by definition. That is tj>ej since Cj =d−ej+tj . From
inequality (5), we deduce that tj > 0 and from inequality (8), that δj 6= 1. Since δj is an integer, δj = 0.
That proves T (C)⊆T (δ). Conversely, if j∈T (δ), inequalities (5) and (6) ensure that ej =0, since δj =0
by definition. Thus, Cj =d+tj . Since tj>pj>0 from inequality (Q2) for S={j}, we deduce that Cj>d,
that proves T (δ)⊆T (C).
Similarly, we can prove the equality for the early tasks (without using (Q1)). �

• Formulation (F1)
Let us define P 1 =

{
(e, t, δ, x)∈RJ×RJ×[0, 1]J×RJ

< (5)-(8), (13)-(16), (Q1) and (Q2) are satisfied
}
.

Note that this polyhedron does not depend on either α, β, or even d, but is only defined from p. Moreover,
this polyhedron is defined by an exponential number of inequalities, inducing the use of a separation algo-
rithm, this subject will be the purpose of Section 6.
Since δ are boolean variables, we are only interested in vectors for which δ is an integer, that are integer
points. Therefore, we introduce the operator intδ, which only keeps the integer points of a set. For V
included in RJ×RJ×RJ×RJ

<
, intδ(V ) =

{
(e, t, δ, x) ∈ V | δ ∈ {0, 1}J

}
. However, the formulation is not a

classical MIP formulation, since some integer points do not encode feasible schedules. The same observation
holds for PQ,M , as discussed in Section 2 (apart from the integrity constraints on δ). Therefore, we need
to add an extremality condition (and consider the minimality condition) to ensure the feasibility. Finally,
our formulation for the unrestrictive common due date problem defined by the unit penalties (α, β) is the
following.

(F1) min gα,β(e, t)
s.t. (e, t, δ, x)∈ intδ

(
extr(P 1)

)
3.3 Validity of Formulation (F1)
The following theorem establishes that a feasible schedule, under some assumptions, is encoded by an integer
point of P 1. In particular a d-block is encoded by an integer point of P 1.
Theorem 12

If vector C gives the completion times of a feasible schedule without any straddling task such that tasks
are processed between d−p(J) and d+p(J), i.e. ∀j∈J, d−p(J)6Cj−pj and Cj6d+p(J)
then there exists X=(e, t, δ, x)∈ intδ(P 1), such that θ(C)=(e, t).

Proof : From C, let us set: (e, t)=θ(C), δ=1E(C), x=
(
1δi 6=δj

)
(i,j)∈J< and X=(e, t, δ, x).

Note that the definition of δ ensures that δ∈{0, 1}J⊆ [0, 1]J , and that E(δ)=E (C) (resp. T (δ)=T (C)),
which allows the notation E (resp T ) for sake of brevity. Inequalities (5) and (7), as well as (6) for j
in T and (8) for j in E, are automatically satisfied by construction of e, t and δ. The assumption that
∀j∈J, d−p(J)6Cj−pj (resp. Cj6d+p(J)) ensures that inequalities (6) for j in E (resp. inequalities (8)
for j in T ) are satisfied.
Using Lemma 9(i), x and δ satisfy inequalities (13)-(16).
Since C encodes a feasible schedule, C satisfies (0) and (1). Using Lemma 8, (e+p)/E (resp. t/T )
satisfies (0) and (1). Applying Property 1 to these two vectors, we deduce that they satisfy (Q0), and
using Lemma 10, that e, δ, x satisfy (Q1) and t, δ, x satisfy (Q2). Thus, X belongs to P 1, and even to
intδ(P 1) since δ∈{0, 1}J . �

The following theorem establishes that an optimal solution of formulation (F1) is a solution for the
unrestrictive common due date problem.
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Theorem 13

Let X∗=(e, t, δ, x)∈ intδ(P 1).
If X∗∈extr(P 1) and (e, t) minimizes gα,β then X∗ encodes a d-block.

Proof : The first step is to show that X∗ encodes a feasible schedule.
From Lemma 6, (e, t) is consistent and we can set C∗=θ−1(e, t). Then X∗ encodes a schedule defined by
the completion times C∗. This schedule will be denoted by S∗. Proving that S∗ is feasible consists then
in showing that C∗ satisfies (0) and (1). From Lemma 7, C∗ satisfies (0). From Lemma 11, E(δ)=E (C∗)
(resp. T (δ) = T (C∗)), which allows the notation E (resp. T ) for sake of brevity. Using Lemma 8, to
show that C∗ satisfies (1), it remains to show that (e+p)/E (resp. t/T ) satisfies (0) and (1).
From Lemma 10, we know that (e+p)/E (resp. t/T ) satisfies inequalities (Q0).
On one hand, using these inequalities for the singletons, ensures that (e+p)/E (resp. t/T ) satisfies (0).
We deduce that no straddling task occurs in S∗.
On the other hand, inequalities (Q0) will allow us to show that (e+p)/E (resp. t/T ) satisfies (1) in the
same way that we have shown that a vector in extr∗(PQ,M ) encodes a schedule without overlapping in
Section 2.
Let us assume that (e+p)/E does not satisfy (1). Then there exists (i, j)∈E2 such that ei+pi6ej+pj<
(ei+pi)+pj . Two cases have to be considered:
→ If ej +pj < p(J), then from Lemma 3 on (e+p)/E there exists ε ∈ R∗+ such that setting e+− =
e + ε

pi
1i − ε

pj
1j and e−+ = e − ε

pi
1i + ε

pj
1j , both (e+−+p)/E and (e−+ +p)/E satisfy (Q0). Using

Lemma 10, both e+−, δ, x and e−+, δ, x satisfy (Q1). Since changing the value of ε for min
(
ε, p(J)−pj−ej

)
does not affect the satisfaction of (Q1), we can assume ε6 p(J)−pj−ej , while ensuring ε > 0. Since
e+−i = ei+

ε
pi
6 ei+ε, using this latter assumption and ej+pj > ei+pi, we obtain e+−i 6 p(J)−pi. For

k in J \{i}, e+−k 6 ek, and since e satisfies (6), we deduce that e+−k 6 p(J)−pk. Thus e+− satisfies
inequalities (6).
Besides, since (e+−+p)/E satisfies inequalities (Q0) for the singletons, e+−k +pk>pk for all k in E. Since
e+−k = ek for all k in T and e satisfies (5), we deduce that e+− satisfies inequalities (5). Similarly, e−+

satisfies inequalities (5) and (6). Finally, X+−=(e+−, t, δ, x) and X−+ =(e−+, t, δ, x), are two points of
P 1 whose middle point is X∗. A contradiction, since X∗ is extreme.
→ If ej+pj > p(J), then ej+pj > p(E), and from Lemma 4 on (e+p)/E there exists ε∈R∗+ such that
setting e− = e − ε

pj
1j , (e−+p)/E satisfies (Q0). Using Lemma 10, e−, δ, x satisfy (Q1). Since e− is

component-wise smaller than e, e− also satisfies inequalities (6). Besides, the inequality (Q0) for the
singleton {j} ensures that e−j >0, thus e− satisfies inequalities (5). Finally, setting X−=(e−, t, δ, x), we
exhibit a point of P 1, which has a smaller value than X∗ according to gα,β . A contradiction, since (e, t)
minimizes gα,β .
Finally, (e+p)/E satisfies (1). In the same way, we can prove that t/T satisfies (1). We deduce that S∗
is a feasible schedule. The second step consists in showing that S∗ is a d-block.
Since we already know that S∗ does not hold a straddling task, it suffices to show that it is a block with
at least one early task to conclude that is a d-block. Let us assume that S∗ holds an idle time or has no
early task. Let Ŝ denotes the schedule obtained by tightening tasks around d to fill idle times between
tasks and, if there is no early task, shifting backward all the tasks such that the first one becomes on-time.
Since the due date is unrestrictive, no task is scheduled before 0 despite the backward shifting, then Ŝ is
a d-block by construction. If Ĉ denotes the completion times defining Ŝ, then ∀j ∈J, d−p(J)6 Ĉj−pj
and Ĉj6d+p(J). Then using Theorem 12, there exists X̂=(ê, t̂, δ̂, x̂)∈ intδ(P 1), such that θ(Ĉ)=(ê, t̂).
Moreover, fα,β(Ĉ)<fα,β(C∗), since the early tasks stay early but with a smaller earliness, and the tardy
tasks, except the first tardy task which becomes eventually on-time, stay tardy with a smaller tardiness.
Then gα,β(ê, t̂)=fα,β(Ĉ)<fα,β(C∗)=gα,β(e, t), which contradicts the minimality of (e, t).
Finally, X∗ encodes a d-block. �

The following theorem establishes that the unrestrictive common due date problem reduces to solving
formulation (F1).
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Theorem 14

(i) Any optimal d-block is encoded by a vector minimizing gα,β on intδ
(
extr(P 1)

)
.

(ii) Conversely, any vector minimizing gα,β on intδ
(
extr(P 1)

)
encodes an optimal d-block.

Proof : Let us consider an optimal d-block S∗. From Theorem 12, there exists a vector X∗=(e∗, t∗, δ∗, x∗)
in intδ(P 1) encoding S∗. We introduce P δ∗=

{
(e, t) | (e, t, δ∗, x∗)∈P 1

}
, which is the slice of P 1 according

to δ∗, i.e. the projection of set of points of P 1 satisfying δ=δ∗ and therefore x=x∗.
To show that X∗ is an extreme point of P 1, it suffices to prove that (e∗, t∗) is an extreme point of P δ∗ .
Indeed, if there were X1=(e1, t1, δ1, x1) and X2=(e2, t2, δ2, x2) in P 1 such that X∗= 1

2(X1+X2), δ1 and
δ2 would necessarily be equal to δ∗ since δ∗∈{0, 1}J , δ1∈ [0, 1]J and δ2∈ [0, 1]J . By Lemma 9, we deduce
that x1=x∗ (resp. x2=x∗), and thus (e1, t1) (resp. (e2, t2)) is in P δ∗ . Yet (e∗, t∗)= 1

2

(
(e1, t1)+(e2, t2)

)
,

and (e∗, t∗) would not be an extreme point of P δ∗ .

Let (E, T ) denote the partition of tasks given by δ∗, i.e. E=E(δ∗) and T =T (δ∗). Using Lemma 10, we
decompose P δ∗ as a Cartesian products of polyhedra as follows.

P δ∗= P δ∗, E×{0}T×P δ∗, T×{0}E where

{
P δ∗, E =

{
ẽ∈RE | ẽ+p/E satisfies (Q0) and ∀j∈E, ẽj+pj6p(J)

}
P δ∗, T =

{
t̃∈RT | t̃ satisfies (Q0) and ∀j∈T, t̃j 6 p(J)

}
Knowing that the extreme points set of a Cartesian product is exactly the Cartesian product of the
extreme points sets, it remains to show that e∗/E ∈ extr(P δ∗, E) and that t∗/T ∈ extr(P δ∗, T ). Note that
P δ∗, T is the polyhedron called PQ,M in Section 2, where the index set J is replaced by T while keeping
M=p(J)>p(T ). Similarly, P δ∗, E is a translation according to −p/E of PQ,M , where J is replaced by E
while keeping M=p(J)>p(E). Then it suffices that t∗/T (resp. e∗/E+p/E) encodes a left-tight schedule of
tasks in T (resp. E) to ensure its extremality in P δ∗, T (resp. P δ∗, E). Both conditions are satisfied since
X∗ encodes a d-block. We deduce that (e∗, t∗) belongs to extr(P δ∗). Thus X∗ belongs to intδ

(
extr(P 1)

)
.

To prove item (i), it remains to show that X∗, or more precisely (e∗, t∗), is a minimizer of gα,β . By
contradiction, let us assume that there exists X̂ = (ê, t̂, δ̂, x̂)∈ intδ

(
extr(P 1)

)
such that (ê, t̂) minimizes

gα,β and gα,β(ê, t̂)<gα,β(e∗, t∗). According to Theorem 13, X̂ encodes a schedule inducing a total penalty
gα,β(ê, t̂), which is lower than the total penalty of S∗ a contradiction.

The second item (ii) is then a direct corollary of Theorem 13. The schedule encoded by a vector X∗

minimizing gα,β on intδ
(
extr(P 1)

)
is a d-block, and if it is not optimal, there would exist a strictly better

d-block, and a vector in intδ
(
extr(P 1)

)
with a smaller value according to gα,β , a contradiction. �

3.4 Dealing with formulation (F1)
The aim of this section is to show that formulation (F1) can be solved by a classical branch-and-cut algorithm.
Let us consider three relaxations of (F1).

(F1-LP) min gα,β(e, t)
s.t. (e, t, δ, x)∈P 1 (F1-extr) min gα,β(e, t)

s.t. (e, t, δ, x)∈extr(P 1)
(F1-int) min gα,β(e, t)

s.t. (e, t, δ, x)∈ intδ(P 1)

The formulation (F1-LP) is obtained by relaxing the integrity and the extremality conditions. It is a
linear program defined by an exponential number of inequalities. We will explain in Section 6 that the
separation problem associated with the non-overlapping inequalities defining P 1 is solvable in polynomial
time. Then (F1-LP) can be solved in polynomial time using a cutting plane algorithm [11].

Using the simplex algorithm for each LP-relaxation of a cutting plane algorithm, the extremality of
the solution is ensured. Then in this case, solving (F1-LP) is equivalent to solving (F1-extr). A classical
way to manage the integrity constraint is to use a branch-and-bound algorithm, and even in this case a
branch-and-cut algorithm. Using an algorithm which provides an extreme point to solve each LP-relaxation,
a branch-and-bound algorithm directly computes a solution of (F1).

12



Property 15

Let us consider a branch-and-bound algorithm A, where the LP-relaxation at each node provides an
extreme point. Using A to solve (F1-int) by branching on δ variables solves (F1).

Proof : By assumption, the solution provided at each node of the branch-and-bound tree is an extreme
point of the polyhedron defined by the decisions previously taken, and we will prove that this solution is
also an extreme point of P 1.
Formally, if variables δj for j ∈ J0 (resp. for j ∈ J1) have been fixed to 0 (resp. to 1), the polyhedron
considered is P 1∩ F J0,J1 where:

F J0,J1 ={ (e, t, δ, x)∈RJ× RJ× [0, 1]J× [0, 1]J
< | ∀j∈J0, δj =0 and ∀j∈J1, δj =1 }

We consider an arbitrary node defined by J0 and J1, and a vector X=(e, t, δ, x)∈extr
(
P 1 ∩ F J0,J1

)
.

By definition of E(δ) and T (δ), X∈P 1∩ F T (δ),E(δ). Moreover, J1 ⊆E(δ) and J0 ⊆ T (δ), thus we have
P 1 ∩ F T (δ),E(δ) ⊆ P 1 ∩ F J0,J1 . Recall that if A ⊆ B, then extr(B) ∩ A ⊆ extr(A), we deduce that
X ∈ extr

(
P 1∩ F T (δ),E(δ)

)
. Since P 1 ∩ F T (δ),E(δ) is exactly the set denoted by P δ in the previous proof,

we get extr(P 1 ∩ F T (δ),E(δ)) ⊆ extr(P 1). We deduce that X∈extr(P 1). �

Note that in general, such an algorithm A is not sufficient to minimize a linear function under both
integrity and extremality constraints in a polyhedron. To illustrate this observation, let us consider the fol-
lowing formulation. where inty denotes the operator keeping only the points (y, z) such that y is an integer.

(F) max z
s.t. (y, z)∈ inty

(
extr(P )

) with P =
{

(y, z)∈R+× R+ | z6
2

3
y+2, z6−2y+6

}
,

A provides a solution which does not belong to extr(P ). Indeed, since (32 , 3) is the solution at the root node,
the search space is divided into P ∩ ] −∞, 1]×R and P ∩ [2,+∞[×R, and the extreme points maximizing z
in these polyhedra are respectively (1, 2 + 2

3), and (2, 2). The provided point is then (1, 2 + 2
3), with a value

of 2 + 2
3 whereas the best value for an integer extreme point is 2, reached by (0, 2).

The particularity of formulation (F1) is that the integrity constraint on δj can be rewritten as δj∈extr
(
[0, 1]

)
,

for any j∈J . Therefore, the integrity of δ and the extremality in P δ∗ induce the extremality in P 1.
For any formulation (F), let us denote by value(F) the value of any optimal solution for the optimization

problem F. Using any algorithm to solve each LP-relaxation, a branch-and-bound algorithm can solve (F1-
int), that gives value(F1), but not directly a solution of (F1). Indeed, if X=(e, t, δ, x) denotes the provided
vector, δ is 0-1 and (e, t) minimizes gα,β on P δ by construction. Then, there exists (e∗, t∗) in extr(P δ)
such that gα,β(e∗, t∗) = gα,β(e, t). Since X∗= (e∗, t∗, δ, x)∈ intδ

(
extr(P 1)

)
, we get gα,β(e∗, t∗)> value(F1)>

value(F1-int)=gα,β(e, t).
In addition to this theoretical way to come down to an extreme point, and then to a feasible solution,

there is a computational way to do that from the partition between early and tardy tasks defined by δ. It
will be the purpose of the next section.
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4 A second formulation for the unrestrictive case
The unrestrictive common due date problem is NP-hard, so the problem associated with (F1) is NP-hard.
In contrast, (F1-extr) is solvable in polynomial time. We deduce that the hardness of the formulation (F1) is
only due to the integrity constraints on δ variables This suggests that the main difficulty of the unrestrictive
common due date problem lies in choosing which tasks are early and which ones are tardy. This observation
is corroborated by the following dominance property known in the just-in-time scheduling field, which ensures
in the unrestrictive case once the partition between early and tardy tasks is fixed, it suffices to sort tasks to
obtain an optimal schedule. A question is then: how to exploit the strength of this property in a linear way?
This issue leads to a compact formulation for the unrestrictive case, presented in this section.

4.1 Dominance properties
We recall some dominance properties known for the symmetric penalties case [14], but given here in their
most general statement.
Lemma 16

Let α∈(R+)J , β∈(R+)J .
In the general case, the schedules where the tasks ending before or at d (resp. starting at or after d) are
in order of nondecreasing αj

pj
(resp. nonincreasing βj

pj
) are strictly dominant when minimizing fα,β .

For given unit penalties α and β, a feasible schedule is said V-shaped if the early tasks are scheduled
in nondecreasing order of αj/pj and the tardy ones in nonincreasing order of βj/pj . Since the tasks ending
before or at d are exactly the early ones in any schedule, and the tasks starting after or at d are exactly the
tardy ones in a d-schedule, we deduce from Lemmas 5 and 16, that V-shaped d-blocks are dominant in the
unrestrictive case.

In case of equality between two ratios αi/pi and αj/pj (resp. βi/pi and βj/pj), swapping tasks i and
j does not change the total penalty of a schedule if both are early (resp. tardy). Thus in this case, there
exist different optimal V-shaped d-blocks with the same partition between early and tardy tasks. To ensure
there is only one way to decode a partition between early and tardy tasks into a dominant schedule, we fix a
priori two orders on tasks : one by decreasing αj/pj , and one by decreasing βj/pj . Let ρ and σ denote two
functions from J1, nK to J such that:(

αρ(k)

pρ(k)

)
k∈J1,nK

and
(
βσ(k)

pσ(k)

)
k∈J1,nK

are nonincreasing.

We say that a feasible schedule is ρ-σ-shaped when early (resp. tardy) tasks are processed in decreasing
order of ρ−1 (resp. increasing order of σ−1). These schedules are dominant in the unrestrictive case, and will
only be considered in the remainder of this section. Note that there is a one-to-one correspondence between
the ρ-σ-shaped d-blocks and the vectors δ∈{0, 1}J .

4.2 A compact formulation for the unrestrictive case
If the partition between early and tardy tasks of a ρ-σ-shaped d-block is given by δ, then the earliness and
tardiness are given by:

eρ(δ)=

δj ρ−1(j)−1∑
k=1

pρ(k) δρ(k)


j∈J

and tσ(δ)=

(1−δj)
σ−1(j)∑
k=1

pσ(k) (1−δσ(k))


j∈J

.

Using the same x variables as those in Section 3 to linearize these terms, we consider

eρ(δ, x)=

ρ−1(j)−1∑
k=1

pρ(k)
δj+δρ(k) − xj,ρ(k)

2


j∈J

and tσ(δ, x)=

σ−1(j)−1∑
k=1

pσ(k)
2−(δj+δσ(k))− xj,σ(k)

2
+ pj(1−δj)


j∈J

where we use xi,j without carrying if i<j, that is to denote the variable xmin(i,j),max(i,j).
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Therefore, the total penalty is simply expressed by hρ,σα,β(δ, x) = fα,β
(
eρ(δ, x), tσ(δ, x)

)
, which is linear.

We then consider the polyhedron P 2=
{

(δ, x)∈ [0, 1]J×RJ
< (13)-(16) are satisfied

}
.

By definition of eρ(δ, x) and tσ(δ, x), a vector (δ, x) in P 2 cannot encode an infeasible schedule. So there is
no need to add non-overlapping inequalities, and hence we do not have to provide a separation algorithm or
to only consider the extreme points of P 2.

Finally, a compact formulation for the unrestrictive common due date problem defined by the penalties
(α, β) is

(F2)
minhρ,σα,β(δ, x)

s.t. (δ, x)∈ intδ
(
P 2
) ,

where ρ and σ are pre-computed.
Note that polyhedron P 2 does not depend on ρ or σ. Indeed, it is an extended polytope of the classical

cut polytope for the complete undirected graph on J [3]. A linear transformation of this polytope has been
studied in [18]. From this work we can directly derive that P 2 is a full-dimensional polytope and that in-
equalities (13)-(16) define facets of P 2.
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5 General case
In this section, we provide a formulation for the general case based on the ideas of the formulation (F1). In
the general case, we have to consider arbitrary earliness unit penalties, that is positive or zero unit earliness
penalties. We can no longer derive an optimal solution from the one obtained for the instance which does
not include zero unit earliness penalty tasks. Indeed, the due date could not allow to add these tasks at the
beginning of the schedule. For some instances, such tasks are tardy in all optimal schedules. For example
if J = J1, 3K, d = 6, p1 = 5, p2 = 3, p3 = 2, α1 = 0, β1 = 1 and α2 = β2 = α3 = β3 = 2, then the optimal
schedule is given by C2 = 4 6 d, C3 = 6 = d, C1 = 11 > d. Note that, conversely, tasks with a zero unit
tardiness penalty can still be added at the end of an optimal schedule obtained for the instance reduced to
the non-zero earliness penalty tasks in order to obtain an optimal schedule for the original instance. Hence,
for the general case, we will set α∈(R+)J and β∈(R∗+)J .

5.1 Dominance properties
In the general case, the dominance of the d-blocks is no longer valid. Let us define a d-or-left-block as a block
which is a d-schedule or which starts at time 0, or both, to enunciate the following dominance property [12].
Lemma 17

In the general case, d-or-left-blocks are dominant when minimizing fα,β .

In the sequel, only d-or-left-blocks will be considered.

Due to the potential occurrence of a straddling task in all optimal schedules for some instances, the
partition between early and tardy tasks is no longer sufficient to deduce an optimal schedule. As explained
in Section 4, we can compute the best d-block with respect to this partition. Conversely, computing the best
left-block (i.e. the best block starting at time 0) with respect to this partition is not straightforward, since
we cannot say a priori which is the straddling task among the tardy ones.

Let us consider the best left-block with respect to a given partition. Then the time a between the be-
ginning of the straddling task and d is equal to d−p(E) and the straddling task belongs to { j∈T | pj>a },
where E (resp. T ) denotes the set of early (resp. tardy) tasks given by the partition. One can conjecture that
the straddling task maximizes βj/pj over this set. However, it is not the case, as we shown by the following
instance: J = [1..8], ∀i∈ [1..6], pi = 1, αi = 40, βi = 4, p7 = 3, α7 = 20, β7 = 8, p8 = 4, α8 = 20, β8 = 11, and
d= 2. We can easily verify that the optimal partition is E = ∅, T = J and a= 2. According to Lemma 16,
an optimal schedule can be found among the left-blocks starting by task 7 and ending by task 8, or starting
by task 8 and ending by task 7. The order of the other tasks is arbitrary, since they all have the same ratio.
Figure 4 represents one optimal schedule of each type.

d0 a
p p p p p p p p p p p p p pJ7 J8J1 J2 J3 J4 J5 J6

d0 a
p p p p p p p p p p p p p pJ7J8 J1 J2 J3 J4 J5 J6

Figure 4: The two types of dominant schedules for E=∅ and T =J .

The best ones are those starting by task 7 and ending by task 8. Nevertheless the ratio β7/p7=8/3 is smaller
than the ratio β8/p8 = 11/14. This example can be extended to an example where E 6= ∅ by adding tasks
with zero unit earliness penalty and large unit tardiness penalty.

In this example, the non optimality seems to be induced by an incorrect ratio choice: if we consider the
ratio βj/(pj−a) instead of βj/pj , task 7 has a greater ratio than task 8. Then one can conjecture that the
straddling task j maximizes βj/(pj−a) over tardy tasks with a processing time larger than a. Unfortunately,
this is also false, as shown by the following instance: J = J1, 5K, ∀i ∈ [1..3], pi = 1, αi = 10, βi = 2,
p4 = 4, α4 = 10, β4 = 5, p5 = 3, α5 = 10, β5 = 3 and d= 2 We can easily verify that the optimal partition is
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E = ∅, T = J and a= 2. According to Lemma 16, an optimal schedule can be found among the left-blocks
starting by task 4 and ending by task 5, or starting by task 5 and ending by task 4. The order of the other
tasks is arbitrary, since they all have the same ratio. Figure 5 represents one optimal schedule of each type.

d0 a
p p p p p p p p p p p pJ5J4 J1 J2 J3

d0 a
p p p p p p p p p p p pJ5 J4J1 J2 J3

Figure 5: The two types of dominant schedules for E=∅ and T =J .

The best ones are those starting by task 4 and ending by task 5. Nevertheless the ratio β4/(p4−a)=2.5
is smaller than the ratio β5/(p5−a)=3. This example can also be extended to an example where E 6=∅.

The idea of the compact formulation (F2) for the unrestrictive case was to obtain the value b(E, T ) of
a best schedule for a fixed partition between early and tardy tasks (E, T ). In the general case, to derive
b(E, T ) from a partition (E, T ) which is feasible (i.e. such that p(E)6d ), we have to consider several cases
before using the dominance property.

Firstly, if we assume that b(E, T ) is achieved by a schedule having an on-time task. then we simply
obtain b(E, T ) as for the unrestrictive case. Secondly, if we assume that b(E, T ) is achieved by a schedule
having a straddling task, then we can also assume, without lost of generality, that the schedule starts at time
0 (using Lemma 17). We have then to consider the case where the straddling task is j for each j ∈T such
that pj > d−p(E). In each case, Lemma 16 allows to derive the optimal schedule and we obtain the value
b(E, T ) in a similar way as for the unrestrictive case. It seems difficult to derive a linear function from this
observation. Therefore, we adapt the first formulation and not the second for the general case.

5.2 A natural formulation for the general case
• An encoding based on a new reference point

In case of a schedule with a straddling task js, i.e. Cjs−pjs <d<Cjs , the tardiness of tardy tasks do not
satisfy the non-overlapping constraints, i.e. t/T does not satisfy inequalities (Q0), particularly tjs > pjs .
Indeed, these tardiness no longer play the same role as completion times. Therefore, we will use variables
describing the schedule with respect to a new reference point, which is the starting time of js instead of the
due date d.

We introduce a new variable a, so that d−a is the starting time of js. The schedule is then a (d−a)-
schedule. For each task j in J , we consider a variable e′j (resp. t

′
j) instead of ej (resp. tj), representing the

earliness (resp. the tardiness) according to the new reference point d−a. Figure 6 illustrates this encoding
for a schedule holding a straddling task.

0

jsi j

dd−a a

e′i t′j

Figure 6: The (a, e′, t′) encoding for a schedule holding a straddling task js

Since we do not know a priori if there is a straddling task in the optimal schedule, our formulation must
also handle d-blocks. Hence, we also need to encode d-blocks by variables a, e′, t′.

In case of a schedule holding an on-time task jt, we can keep d as the reference point, since we can
use earliness and tardiness as proposed in formulation (F1). Hence, the first encoding consists in setting
a= 0, and using e′ (resp. t′) to represent earliness (resp. tardiness). Figure 7 illustrates this encoding for
a schedule holding an on-time task. Unfortunately, to ensure that a takes the expected value in case of a
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0

jti j

d=d−a

e′i t′j

Figure 7: The first (a, e′, t′) encoding for a schedule holding an on-time task jt

schedule holding a straddling task, we will introduce a boolean variable to identify the task j0 beginning at
d−a. It force to have in every schedule a task beginning at d−a. Therefore, this first encoding is not valid
in case of a d-block without tardy task. We then propose a second encoding for the d-blocks. It consists in
choosing the starting time of jt as the new reference point, which is setting a= pjt , This second encoding
can be also used for a schedule holding an on-time task and having tardy tasks, as illustrated by Figure 8.

0

jti j

dd−a a

e′i t′j

Figure 8: The second (a, e′, t′) encoding for a schedule holding an on-time task jt

To sum up, the first encoding, with a=0, is suitable for d-blocks, except those without tardy tasks, and
the second encoding, with a = pjt , is suitable for any d-block. Fortunately, the three encodings proposed
in this section can be decoded in the same way : C =

(
d−a−e′j+t′j

)
j∈J gives the completion times of the

encoded schedule.

• Consistency between e′ and t′ using δ variables
To ensure consistency between e′ and t′, we use again variables δ. In the previous formulation, δj indicated
if task j completes before or at d. In this formulation δj indicates if the task completes before or at d−a. We
also use inequalities (5)-(8) where e (resp. t) are replaced by e′ (resp. t′). These inequalities will be denoted
by (5’)-(8’) in the sequel.

Note that δj no longer necessarily indicates if task j is early or not. Keeping the previous notations
E(δ) = {j ∈J | δj = 1} and T (δ) = {j ∈J | δj = 0},

(
E(δ), T (δ)

)
is not the partition between early and tardy

tasks as soon as we use the second encoding for a d-block. Therefore, we introduce a new partition of tasks: if
C encodes a schedule by its completion times, we define Ẽ (C)={ j∈J |Cj<d} and T̃ (C)={ j∈J |Cj>d }.

Note that if there is a straddling task in the schedule, then E (C) = Ẽ (C) and T (C) = T̃ (C). Moreover,
the only encoding in this case is such that E(δ)=E (C)= Ẽ (C) and T (δ)=T (C)= T̃ (C).
In the case of a d-block, using the first encoding we also have E(δ)=E (C) and T (δ)=T (C), but using the
second one we have E(δ)= Ẽ (C) and T (δ)= T̃ (C).

• Handling the positivity
Since the due date can be smaller than p(J), avoiding overlaps and idle times does not ensure the positivity
constraint. Therefore, we add the following inequalities ensuring that e′j+pj6d−a for each task j completing
before d−a. They are valid since d is an upper bound of a.

∀j∈J, e′j+pjδj 6 d−a (17)

• Handling the non-overlapping
To ensure the non-overlapping, we use again variables x, satisfying (13-16) and the inequalities (Q1) and (Q2),
where e (resp. t) are replaced by e′ (resp. t′). These inequalities will be denoted by (Q1’) and (Q2’) in the
sequel.

In order to ensure that tasks completing before or at d−a do not overlap using inequalities (Q1’),
inequalities (17) must not restrict too much e′j from above. Indeed, an inequality of the form Cj 6 M
is compatible with the non-overlapping inequalities (Q0) only if M > p(J). If M < p(J), adding such
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an inequality makes appear extreme points which can be reached by minimization, whereas they do not
correspond to feasible schedules.

For example, let us consider the instance defined by J=J1, 2K, d=5, p1=p2=3, α1=α2=1, β1=β2=10,
and the polyhedron P =

{
(e, t, δ, x, a)∈RJ×RJ×[0, 1]J×RJ

<×R (5’)-(8’), (13)-(16), (Q1’),(Q2’), (17)
}

defined by the inequalities introduced for the general case so far. The vector X = (2, 2, 0, 0, 1, 1, 0, 0), is an
integer extreme point of P . It corresponds to the schedule S where both tasks complete at time 3, since
e′1=e′2=2 and a=0. The induced penalty is 4, which is the minimal penalty over P . However, S is infeasible
since the two tasks overlap. This overlapp occurs in spite of inequalities (Q1’) because d−a= 5<6 =p(E),
implying that d−a is a too restrictive upper bound in inequalities (17). To prevent this restrictiveness, we
introduce the following inequality.∑

j∈J
pjδj 6 d−a (18)

To ensure that inequalities (Q1’) (resp. (Q2’)) prevent overlaps of tasks completing before (resp. after)
d−a do not overlap, the total penalty must be a nonincreasing function of variable e′j (resp. t

′
j) for each task

j such that δj =1 (resp. δj =0). We have to provide linear inequalities ensuring that the variable a takes a
value such that the objective function fulfils these two conditions. If a is such that d−a is the starting time
of the straddling task, the on-time task or the first tardy task as proposed by the previous encodings, then
these two conditions are ensured.

• Ensuring that a takes the expected value
In spite of their apparent symmetry, the two conditions are completely different.

To ensure the first one, it suffices to ensure that any task completing before or at d−a completes before
or at d. Indeed, reducing e′j for such a task j while satisfying the inequality (Q1’) associated with {j}, i.e.
e′j > 0, task j remains early and its tardiness decreases, which reduces the induced penalty. Therefore, the
first constraint is guaranteed by the following inequality.

a > 0 (19)

To ensure the second one, ensuring that any task completing after d−a completes after or at d is not
sufficient. Indeed, reducing t′j for such a task j while satisfying the inequality (Q2’) associated with {j}, i.e.
t′j > pj , task j can become early, so the induced penalty does not necessarily decrease. Figure 9 illustrates
the extreme case of this phenomenon, that is when a=d, E(δ)=∅, and all early tasks overlap each others to
be on-time.

0

p p p p p p p p p p p p
i

j
k

d
d−a

a

t′j = t′i= t′k

Figure 9: An infeasible schedule when a=d

Note that this case appears even if we add inequalities ∀j ∈ J, t′j > a(1− δj). Adding inequalities
∀j ∈ J, pj > a(1−δj), could avoid this issue, but unfortunately they are not valid, since a task completing
after d−a can be shorter than a, as longer it is not the first one.
In order to ensure that the first task j0 completing after d−a completes after or at d, we introduce a boolean
variable γj for each task j, representing if j is j0, and the following inequalities.∑

j∈J
γj = 1 (20)

∀j∈J, δj 6 1−γj (21)
∀j∈J, t′j 6 pj + (1−γj) (p(J)−pj) (22)

Whereas inequalities (20)-(21) ensure that γ designates one and only one task i0 among those completing
after d−a, inequalities (22) ensure that i0 is the first one, i.e. i0 = j0. Indeed, they ensure that t′i0 6 pi0 ,
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and since t′i0 > pi0 by inequality (Q2’) associated to the singleton {i0}, we deduce that t′i0 = pi0 . Then, the
inequality (Q2’) associated to a pair {i0, j} with δj =0, suffices to prove that task j completes after i0.

Lemma 18

Let (t′, δ, x, γ)∈RJ×{0, 1}J×[0, 1]J
<×[0, 1]J .

(i) γ∈{0, 1}J and (γ,δ) satisfies (20)-(21) ⇔ ∃i0∈T (δ), γ=1i0
(ii) If (i) holds and t′, δ, x satisfy (13)-(16), (22) and (Q2′), then t′i0 =pi0 and ∀j∈T (δ), j 6= i0, t

′
j> t

′
i0

+pj .

Using γ, which identifies j0, we add the following valid inequalities to ensure that a6pj0 = t′j0 .

∀j∈J, a 6 pj+(1−γj) d (23)

• A linear objective function using e′,t′, a and b variables
Using e′ and t′ variables instead of e and t offers an easy way to ensure positivity, consistency and non-
overlap at the expense of a linearization of the product aδj . Indeed, in the objective function, we need a
linear expression for the earliness (resp. the tardiness) of any task j in J , which is equal to e′j+aδj (resp. to
t′j−a(1−δj)).

Then we introduce a variable bj for each task j in J to replace the product aδj . We add the following
inequalities to ensure that b variables take the expected values.

∀j∈J, bj > 0 (24)
∀j∈J, bj 6 a (25)
∀j∈J, bj 6 δjd (26)
∀j∈J, bj > a− (1−δj) d (27)

Since d is an upper bound of a by construction, we get the following lemma.
Lemma 19

Let (a, b, δ)∈R×RJ×{0, 1}J .
a, b and δ satisfy inequalities (24)-(27) ⇔ b= a δ.

Then the total penalty of a schedule encoded by (e′, t′, a, b) is

hα,β(e′, t′, a, b) =
∑
j∈J

αje
′
j + βjt

′
j + (αj+βj) bj − βja

which is linear. If C encodes a schedule by its completion times, the two possible vectors (e′, t′, a, b) encoding
this schedule are the following.

θ′(C) =
((

[d−a−Cj ]+
)
j∈J ,

(
[Cj−(d−a)]+

)
j∈J , a, a1E(C)

)
where a = d− min

i∈T (C)
Ci−pi

θ̃′(C) =
((

[d−ã−Cj ]+
)
j∈J ,

(
[Cj−(d−ã)]+

)
j∈J , ã, ã1

Ẽ(C)

)
where ã = d− min

i∈T̃ (C)
Ci−pi

Note that if the schedule holds a straddling task, then θ(C)= θ̃′(C), since E (C)= Ẽ (C) and T (C)= T̃ (C).
Even for a schedule admitting two different encodings, (i.e. for a d-schedule with at least one tardy task)
the function hα,β holds the total penalty, as long as the schedule satisfies the non-overlapping constraint.

Lemma 20

Let C∈RJ . If C satisfies (1), then hα,β
(
θ′(C)

)
=hα,β

(
θ̃′(C)

)
=fα,β

(
θ′(C)

)
.

• Formulation (F3)
Let us define the polyhedron

P 3=

{
(e′, t′, δ, x, a, b, γ)∈RJ×RJ×[0, 1]J×RJ

<×R×RJ×[0, 1]J (5’)-(8’), (13)-(16), (17)-(19), (23)-(24),
(20)-(23), (Q1’) and (Q2’) are satisfied

}
.
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Note that this polyhedron depends on d, in addition to p. Inequalities (Q1’) and (Q2’) require the same
separation algorithm as for (Q1) and (Q2), which will be developed in Section 6. We introduce the
operator intδ,γ , which only keeps points with integer δ and γ. For V ⊆RJ×RJ×RJ×RJ

<×R×RJ×RJ , the
set intδ,γ(V ) =

{
(e′, t′, δ, x, a, b, γ) ∈ V | δ ∈ {0, 1}J , γ ∈ {0, 1}J

}
. Finally, our formulation for the general

common due date problem is

(F3)
minhα,β(e′, t′, a, b)

s.t. (e′, t′, δ, x, a, b, γ)∈ intδ,γ
(
extr(P 3)

) .
5.3 Validity of Formulation (F3)
Thanks to the natural variables e′ and t′, ensuring the non-overlapping constraint reduces to ensuring the
positivity and non-overlapping constraints for two subsets of tasks. In contrast with Formulation (F1) where
these two subsets are the early and the tardy tasks (cf. Lemma 8), in Formulation (F3), the subsets to
consider depend on the occurrence of a straddling or an on-time task, as detailed in the following lemma.
Lemma 21

Let C∈RJ .
(i) If there exists js∈J such that Cjs−pjs<d<Cjs and (e′, t′, a, b)=θ′(C)= θ̃′(C),

then C satisfies (1) ⇔ (e′+p)/E(C) and t′/T (C)satisfies (0) and (1).

(ii) If there exists jt∈J such that Cjt =d and (e′, t′, a, b)= θ̃′(C),
then C satisfies (1) ⇔ (e′+p)/E(C) and t′/T (C)satisfies (0) and (1).

The following theorem establishes that a feasible schedule, under some assumptions, is encoded by an
integer point of P 3. In particular a d-or-left-block is encoded by an integer point of P 3.
Theorem 22

Let C∈RJ satisfying (0) and (1).
(i) If there exists js∈J such that Cjs−pjs<d<Cjs , ∀j∈J, d−p(J)6Cj−pj and Cj6Cjs− pjs + p(J),

then there exists X=(e′, t′, δ, x, a, b, γ)∈ intδ,γ(P 3) such that θ′(C)=(e′, t′, a, b).
(ii) If there exists jt∈J such that Cjt =d, ∀j∈J, d−p(J)6Cj−pj and Cj6Cjt− pjt + p(J),

then there exists X=(e′, t′, δ, x, a, b, γ)∈ intδ,γ(P 3) such that θ̃′(C)=(e′, t′, a, b).

Proof : Let us start by proving (i).
From C, let us set: (e′, t′, a, b)=θ′(C), δ=1E(C), x=

(
1δi 6=δj

)
(i,j)∈J< , γ=1js andX=(e′, t′, δ, x, a, b, γ).

We will prove that X∈ intδ,γ(P 3).
Note that the definition of δ ensures that δ ∈ {0, 1}J , and that E(δ) = E (C) and T (δ) = T (C), which
allows the notation E and T for sake of brevity. By Lemma 9(i), the definition of x ensures that inequal-
ities (13)-(16) are satisfied. By Lemma 18(i), the definition of γ ensures that inequalities (20)-(21) are
satisfied, since js∈T . By Lemma 19, inequalities (24)-(27) are satisfied, since b=a 1E(C)=a δ.

For the straddling task js, we have Cjs− pjs = min
j∈T (C)

(Cj−pj), so a=d− (Cjs− pjs), by definition of θ′.

Since task js starts at or after 0 and before d, i.e. 06Cjs−pjs<d, we have 0<a6d. Thus inequality (19)
is satisfied, and for any task j 6= js, a 6 d+pj = (1−γj) d + pj . More precisely, task js starts after all
early tasks, and since they do not overlap, p(E)6Cjs− pjs = d−a, thus inequality (18) holds. Since task
js completes after d, i.e. Cjs >d , we get a = pjs + (d−Cjs) < pjs = pjs + (1−γjs) d. We deduce that
inequalities (23) are satisfied.

Inequalities (5’) and (7’) are satisfied by construction of e′ and t′.

For a task j in E, Cj6Cjs− pjs = d−a since j and j0 do not overlap, then e′j =d−a−Cj and t′j =0. The
corresponding inequality (8’) is thus satisfied, as well as (22) since pj + (1−γj)

(
p(J)−pj

)
= p(J) > 0.

By assumption Cj>d−p(J)+pj , thus e′j =d−a− Cj6p(J)− pj , and inequality (6’) is also satisfied for
j. Moreover, d− e′j− pjδj = a+Cj− pj , and by positivity constraint Cj− pj > 0, thus d− e′j− pjδj > a
and inequality (17) is satisfied for j.
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For a task j in T , Cj >d > d−a, then e′j = 0 and t′j =Cj− (d−a). The corresponding inequality (6’) is
thus satisfied. Moreover, d − e′j− pjδj = d > a, then inequality (17) is satisfied for j. By assumption
Cj 6 Cj0− pj0 +p(J)6 d+p(J), thus t′j 6

(
d+p(J)

)
− (d−a) and then t′j 6 p(J). We deduce that the

corresponding inequality (8’) is also satisfied, as well as inequality (22), since pj + (1−γj)
(
p(J)−pj

)
is

equal to p(J) (resp. to pjs = Cj0− (d−a) = t′js) if j 6=js (resp. if j=js).

Since C encodes a feasible schedule, C satisfies (1). Using Lemma 21, (e′+p)/E , as well as t′/T , satisfies (0)
and (1). Applying Property 1 to these two vectors, we deduce that they satisfy (Q0), and using Lemma 10,
that e′, δ, x satisfy (Q1’) and t′, δ, x satisfy (Q2’). Thus, X belongs to intδ,γ(P 3).

Rewriting the proof by replacing θ′ by θ̃′, E (C) by Ẽ (C), T (C) by T̃ (C), and the straddling task js
by the on-time task jt provides almost the proof of (ii). The only difference lies in the justification of
inequality (23) for jt: in this case Cjt=d, then a = pjs + (d−Cjs) = pjs = pjs + (1−γjs) d. �

The following theorem establishes that an optimal solution of formulation (F3) is a solution for the
general common due date problem. The proof is given in Appendix.
Theorem 23

Let X∗=(e′, t′, δ, x, a, b, γ)∈ intδ,γ(P 3).
If α∈(R∗+)J, X∗∈extr(P 3) and (e′, t′, a, b) minimizes hα,β then X∗ encodes a d-or-left-block, by θ′ or θ̃′.

If some tasks have a zero unit earliness penalty, formulation (F3) provides a vector X∗=(e′, t′, δ, x, a, b, γ)
which partially encodes an optimal schedule. Indeed, except for early tasks having a zero unit earliness
penalty, the completion time of a task j is given as previously by C∗j = (d−a)− e′j+ t′j . Conversely, for an
early task j such that αj = 0, e′j could be d−pj for instance and the previous encoding would give C∗j =pj .
If there are several early tasks having zero unit earliness penalty, an overlap would appear at time 0.
Since their unit earliness penalty is zero, the minimality of X∗ does not ensure that these tasks are well
spread out (in this context Lemma 4 cannot be applied). However, the minimality of X∗ ensures that the
other early tasks (i.e. having a non-zero unit earliness penalty) are right-tight with respect to d. Hence,
using inequality (18), there is enough time between 0 and their processing duration to process the overlapping
tasks. Thus, it suffices to schedule these tasks in an arbitrary order from time 0 to obtain a feasible schedule
S . Since these tasks do not induce any penalty, the total penalty of S is hα,β(X∗), regardless of their order.
We deduce that S is an optimal schedule.

The following theorem establishes that the general common due date problem reduces to solving formu-
lation (F3). We omit the proof since it follows the same lines as the one of Theorem 14.

Theorem 24

Any optimal d-or-left-block, is encoded by a vector minimizing hα,β on intδ,γ
(
extr(P 3)

)
.

Conversely, any vector minimizing hα,β on intδ,γ
(
extr(P 3)

)
, encodes an optimal d-or-left-block.
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6 Separation algorithms

In this section, we explain how to separate inequalities (Q1),(Q2), (Q1’) or (Q2’), by solving a min-cut
problem in a suitable graph. We write the following development for inequalities (Q1) and (Q2), but a
rewriting exercise suffices to obtain the equivalent results for inequalities (Q1’) and (Q2’).

Let X = (e, t, δ, x)∈ RJ×RJ× [0, 1]J×RJ
< a vector satisfying inequalities (5-8) and (13-16). The sepa-

ration problem for inequalities (Q1) is to find a subset S of J such that X does not satisfy the associated
inequality (Q1) or to guarantee that X satisfies all inequalities (Q1).
We will first show that this separation problem reduces to the maximization of a set function Γ c,q defined
from parameters (c, q)∈RJ×RJ

< as ∀S⊆J, Γ c,q(S) =
∑

(i,j)∈S<

qi,j +
∑
i∈S

ci.

Indeed we have: X satisfies (Q1)⇔ ∀S ⊆ J,
∑

(i,j)∈S<

pipj
δi+δj−xi,j

2
6
∑
i∈S

piei

⇔ ∀S ⊆ J,
∑

(i,j)∈S<

pipj (δi+δj−xi,j)− 2
∑
i∈S

piei 6 0

⇔ ∀S ⊆ J, Γc
1,q1(S) 6 0.

where c1 = −2
(
pjej

)
j∈J

and q1 =
(
pipj (δi+ δj−xi,j)

)
(i,j)∈J<

. Then it suffices to maximize Γc
1,q1 over

the subsets of J . Indeed, if the obtained value is negative or zero, then X satisfies all inequalities (Q1),
conversely if the obtained value is positive, then the maximizing set is not empty and corresponds to an
inequality (Q1) that X does not satisfy. Similarly, the separation problem of inequalities (Q2), is equivalent
to the maximization of Γc

2,q2 where c2=2
(

(1−δj)p2j − pjtj
)
j∈J

and q2=
(
pipj (2−

(
δi+δj)−xi,j

))
(i,j)∈J<

.

Note that in both definitions of Γc
1,q1 and Γc

2,q2 , the parameter q is non-negative since δ and x satisfy in-
equalities (15-16). Therefore, let us now explain how to reduce the maximization of Γ c,q for (c, q)∈RJ×(R∗+)J

<

to a min-cut problem in an undirected graph as proposed by [19]. Let us assume that J= J1, nK for sake of
brevity. We consider the weighted undirected graph G= (V,A,w), where V = J0, n+1K, A=

{
{i, j} | (i, j)∈

V 2, {i, j} 6= {0, n+ 1}
}
, ∀j ∈ J, w{0,j} = [kj ]

+, w{j,n+1} = [kj ]
− where kj = 2ci +

j−1∑
i=1

qi,j +
n∑

k=j+1

qj,k, and

∀(i, j)∈J<, w{i,j}=qi,j . Figure 10 gives an illustration of such a graph for n=5.

wi,j=qi,j

n+1

w{i
,n+

1}
=[
k i]
−

•
0

w
{0,j} =[k

j ] +

•

•

••

••
j i

Figure 10: Illustration of the weighted undirected graph G for n=5

Note that V and A only depend on J , and w only depends on parameters c and q. For a cut (W,W ), i.e.
W∩W =∅ and W∪W =V , let w(W,W ) denote its weight according to w, i.e. w(W,W )=

∑
i∈W,j∈W

w{i,j}.

Let us introduce three constants: Q=
∑

(i,j)∈J<

qi,j , C=
∑
j∈J

cj and K=
∑
j∈J
|kj |.

Hence, for any S⊆J : Γ c,q(S) = −1

2
w
(
S∪{0}, J1, n+1K\S

)
+
Q+C

2
+
K

4
.

Since Q,C,K do not depend on S, finding a subset S maximizing Γ c,q is equivalent to finding a minimum
cut separating the additional vertices 0 and n+1. Since w is positive, this problem is solvable in polynomial
time, using the [10] algorithm, as it will be explained in the next section.
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7 Experimental results

The experiments are conducted on a single thread on a machine with Intel(R) Xeon(R) CPU E5-2630 v2
@2.60GHz, and 16Gb RAM. We use the solver CPLEX version 12.6.3.0, and the open source C++ opti-
mization library LEMON [6]. The branching scheme and the management of the current bounds is done by
CPLEX. The time limit is set to 3600 seconds. For sake of comparison, all the formulations use CPLEX
Default.

• Implementation of the separation algorithm
The separation of inequalities (Q1) and (Q2) is implemented using the so-called Callback functions proposed
by CPLEX. The separation algorithm consists in the following steps.
1. Computing the weights w{i,j} introduced in Section 6 according to the value

of variables e, t, δ, x (resp. e′, t′, δ, x) in the solution provided by CPLEX.
2. Running the [10] algorithm provided by LEMON to obtain the Gomory-Hu

tree rooted in 0.
3. Finding all minimum cost edges along the path between 0 and n+1 in the

Gomory-Hu tree.
4. Testing for any of such edges if the related cut W/W such that 0 ∈ W

corresponds to a negative value.
5. Adding in the model the inequality (Q1) (resp. (Q2)) associated to S, where
S=W \{0}, if there exists.

Due to these Callback functions, some CPLEX features are disabled in (F1) and (F3).

• Biskup and Feldmann’s benchmark
We test our three formulations on the benchmark proposed by [5], available online on OR-Library [4]. For
each number of tasks n∈{10, 20, 50}, ten triples (p, α, β) of

(
Nn
∗
)3 are given. For each one, setting d=bh p(J)c

for h∈{0.2, 0.4, 0.6, 0.8, 1}, gives five instances, including one with an unrestrictive due date corresponding
to h=1. We obtain 30-task and 40-task instances, by considering only the first tasks of 50-task instances. In
the following, the average values considered are computed over the ten instances proposed by this benchmark
for fixed values of n and h, unless otherwise specified.

[24] succeeded in solving instances of this benchmark having up to 1000 tasks. The running time does
not exceed 1400 seconds, and the average running time for 1000-tasks instances is between 611 and 918
seconds depending on the value of h. He obtained these results thanks to a dedicated branch-and-bound
algorithm using Lagrangian relaxation and dynamic programming. However, Sourd’s approach is based on
a time-indexed formulation which involves O(np(J)) variables and hence nodes in the graph used for com-
puting the Lagrangian lower bound. The Biskup and Feldmann’s benchmark considers small values for the
job processing times which ensures a fast computation time of the Lagrangian lower bound.

• New benchmark with long processing times
In the Biskup and Feldmann’s benchmark, processing times range is [1, 20]. We propose a benchmark where
processing times are randomly drawn from the uniform distribution U

[pmax

10 , pmax
]
for pmax∈{100, 200, 300}.

For each pmax∈{100, 200, 300} and each n∈{10, 20, 30, 40, 50}, we randomly generate ten triples (p, α, β) of(
Nn
∗
)3. For each task j, αj and βj are randomly drawn from the uniform distribution U [1..20]. By setting

d= bh p(J)c for h∈{0.2, 0.4, 0.6, 0.8, 1}, each triple gives five instances, including one unrestrictive, which
results in 750 instances.

• MIP formulations from the literature
In order to assess our formulation efficiency, we implement two other MIP formulations proposed in the
literature: the formulation (FLO) based on linear-ordering variables proposed by [5] and the time-indexed
formulation (FTI) used in [24].
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• Entries of the following tables
n : the number of tasks
h : the parameter setting the due date d to bh p(J)c (in the general case

only)
#opt : number of instances optimally solved among the ten proposed by the

benchmark under the 3600 seconds time limit
avg-T : the average running time in seconds over the optimally solved instances
gap : the average gap over the instances not solved to optimality, that is the

relative gap between the best lower and upper bounds

7.1 Formulations for the unrestrictive case
In this section the problem is solved using formulations (F1) and (F2), as well as formulations (FLO) and
(FTI). Table 1 presents the results obtained on Biskup and Feldmann’s benchmark, while Table 2 presents
those obtained on long processing times instances, for pmax∈{100, 200, 300}.

n

(FLO) (FTI) (F1) (F2)

#opt avg-T gap #opt avg-T gap #opt avg-T gap #opt avg-T gap

10 10 9 - 10 1 - 10 0 - 10 3 -
20 0 - 144% 10 4 - 10 2 - 10 3 -
30 10 15 - 10 44 - 10 7 -
40 10 40 - 10 637 - 10 106 -
50 10 41 - 1 1388 16% 10 1315 -

Table 1: Solving Biskup and Feldmann’s unrestrictive instances using (FLO), (FTI), (F1) and (F2)

As shown in Table 1, (FLO) is unable to solve any 20-task instance within the time limit. Thus, (FLO) is
not used neither for larger instance size, nor for the new benchmark. Other experiments show that (FLO) can
only solve 5 over 10 instances for n=15. (FTI) is able to optimally solve Biskup and Feldmann’s instances up
to size 50 in less than 40 seconds. (F1) is able to optimally solve instances up to size 30 in around 40 seconds.
In contrast, ten minutes are required to optimally solve 40-task instances and (F1) fails to solve 50-task in-
stances within the time limit. However, other experiments show that, under a time limit of 10 000 seconds,
(F1) solves 9 over the 10 instances for n= 50, with an average computation time of 4721 seconds. (F2) is
able to optimally solve all the instances up to size 50 within the time limit. Other experiments conducted
without CPLEX features show that (F2) can be faster: 22 seconds for n= 40, 215 seconds for n= 50 and
4063 seconds for n=60.

As shown in Table 2, the efficiency of (FTI) greatly depends on the value of parameter pmax, which was
expected since the number of variables is related to the length of the horizon, i.e. 2 p(J). While it only
takes 40 seconds in average to solve all the 50-task Biskup and Feldmann’s instances, (FTI) solves 8 over
the 10 50-task instances in the new benchmark for pmax = 100, within 690 seconds in average. In addition,
(FTI) fails at solving any instance for pmax=300 due to memory limitations. CPLEX could not even provide
a solution or a lower bound in this case. We can notice that for 20-task instances, the computation time
required is at least 360 seconds for pmax= 200 and pmax= 300. (F1) is able to optimally solve all instances
up to size 30 regardless of pmax value, faster that (FTI). The same observation holds for (F2) up to size 40
regardless of pmax value.

To sum up for the unrestrictive case, (FTI) gives the bests results for the Biskup and Feldmann’s bench-
mark. However, this formulation is sensitive to the total length of the processing times (i.e. p(J)), and
is unable to solve the 50-task instances with long processing times (pmax = 300). In contrast, the results
obtained with (F1) and (F2) do not significantly get worse with processing time increase.
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pmax n

(FTI) (F1) (F2)

#opt avg-T gap #opt avg-T gap #opt avg-T gap

100 10 10 6 - 10 0 - 10 3 -
20 10 74 - 10 3 - 10 3 -
30 10 186 - 10 68 - 10 13 -
40 10 494 - 8 1335 4% 10 294 -
50 8 690 0% 0 - 22% 9 1743 2%

200 10 10 15 - 10 0 - 10 3 -
20 10 361 - 10 3 - 10 3 -
30 10 886 - 10 56 - 10 12 -
40 7 1322 0% 6 1173 8% 10 359 -
50 7 1289 2% 1 1859 29% 4 1738 6%

300 10 10 27 - 10 0 - 10 3 -
20 10 380 - 10 4 - 10 3 -
30 6 1508 3% 10 87 - 10 15 -
40 8 2533 0% 9 1572 11% 10 210 -
50 x x x 0 - 29% 5 2662 5%

Table 2: Solving unrestrictive instances generated with pmax 100, 200, 300 using (FTI), (F1) and (F2)

7.2 Formulations for the general case
In this section the problem is solved using formulations (F3) as well as (FLO) and (FTI). Table 3 presents
the results obtained on the Biskup and Feldmann’s benchmark, while Table 4 presents those obtained on
long processing times instances, for pmax=200.

n h

(FLO) (FTI) (F3)

#opt avg-T gap #opt avg-T gap #opt avg-T gap

10 0.2 10 1 - 10 1 - 10 0 -
0.4 10 1 - 10 1 - 10 1 -
0.6 10 1 - 10 1 - 10 1 -
0.8 10 1 - 10 1 - 10 1 -

20 0.2 0 - 437% 10 3 - 10 36 -
0.4 0 - 245% 10 4 - 10 116 -
0.6 0 - 159% 10 4 - 10 125 -
0.8 0 - 145% 10 3 - 10 118 -

30 0.2 10 17 - 10 1255 -
0.4 10 22 - 3 1620 6%
0.6 10 9 - 4 962 8%
0.8 10 13 - 5 1405 9%

Table 3: Solving Biskup and Feldmann’s restrictive instances using (FLO), (FTI) and (F3)

As shown in Table 3, (FLO) is unable to solve any restrictive instance for n= 20 within the time limit.
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Thus, (FLO) is not used neither for larger instance size, nor for the new benchmark. Other experiments show
that (FLO) cannot solve 15-task instance when h= 0.2 and h= 0.4. When h= 0.6 ( resp. h= 0.8), (FLO)
solves 5 over the 10 instances for n= 15, using in average 2278 seconds (resp. 1575 seconds). (FTI) is able
to optimally solve all the Biskup and Feldmann’s restrictive instances. Moreover, the computation times are
similar to those obtained for the unrestrictive instances: less than 25 seconds for 30-task instances. (F3) is
able to optimally solve all the instances up to size 20 as well as the 30-task instances when h=0.2. However,
the computation time is much larger than for (FTI): around 2 minutes for n=20 and 20 minutes for n=30
when h=0.2.

pmax n h

(FTI) (F3)

#opt avg-T gap #opt avg-T gap

200 10 0.2 10 22 - 10 1 -
0.4 10 24 - 10 1 -
0.6 10 15 - 10 1 -
0.8 10 14 - 10 1 -

200 20 0.2 10 116 - 10 30 -
0.4 9 343 1% 10 91 -
0.6 10 299 - 10 93 -
0.8 10 333 - 10 89 -

200 30 0.2 8 821 2% 10 1377 -
0.4 7 1293 3% 4 1143 4%
0.6 10 803 - 7 1479 5%
0.8 10 740 - 7 1166 6%

Table 4: Solving restrictive instances generated with pmax=200 using (FTI) and (F3)

As shown in Table 4, for long processing time instances with pmax= 200, (FTI) optimally solves almost
all the instances within the time limit up to n= 20. It is important to notice that, for similar size, (FTI)
computation time is significantly larger for long processing times instances than for Biskup and Feldmann’s
ones: for n=20, at least 116 seconds against a few seconds. In contrast, (F3) optimally solves all instances
up to size 20 along with 30-task instances when h=0.2. Note that, for these instances, (F3) is rather faster
than (FTI) for n=20. However, (F3) fails to solve instances with n=30.

For general case instances, we obtain the same conclusion drawn for the unrestrictive instances. (FTI)
is faster than (F3) for Biskup and Feldmann’s instances, while this is not the case for long processing times
instances.

Other experiments show that (F3) used on unrestrictive Biskup and Feldmann’s instances (i.e. with
h=1) is less efficient than (F1): 77 seconds in average for the 20-task instances, and more than 1300 seconds
for the six optimally solved 30-task instances. The following paragraph will exploit this remark.

• What is really an unrestrictive instance?
We have defined a due date as unrestrictive as soon as d >

∑
pj , since it is the common definition. But

according to [5], a due date must be said unrestrictive if solving the problem for an arbitrary due date gives
a solution for this due date. This definition raises two issues. First, since for some instances there exist
several optimal solutions whose early tasks do not have the same total length, this definition depends on the
algorithm, or even on the execution of the algorithm. Secondly, this definition requires an optimal solution
to be found to say if the instance is unrestrictive or not. Therefore the prior definition is more convenient.
But this remark leads to the following (F2)-(F3) procedure to solve a general instance.
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1. Solving the instance without considering d using the formulation (F2).
2. Testing if the total duration of early tasks is smaller than the due date i.e.

∑
δj=1

pj6d.
If it is the case, then the solution obtained is optimal.
Otherwise solving the instance considering d using (F3)

On average on the Biskup and Feldmann’s benchmark, the total length of the early tasks in the optimal solu-
tions is 60% of the total length. That means that in this benchmark, instances with h>0.6 (i.e. d>0.6 p(J))
are mostly unrestrictive as defined by [5]. For these instances, the (F2)-(F3) procedure can be relevant (but
we do not present corresponding numerical results).

7.3 Linear relaxations analysis for (F2)
Table 5 shows that the lower bound provided by the linear relaxation (F2-LP) of (F2) is far from the optimal
value (see the third column). Note that other experiments show that (F1) provides the same lower bound.
We try to strengthen this lower bound by adding CPLEX cuts and/or the triangle inequalities introduced
by [18].

(F2-LP) (F2-LP) (F2-LP) (F2-LP)
+ Cplex Cuts + Triangle + Triangle + Cplex Cuts

n time gap time gap time gap time gap

10 0.14 41.1% 2.72 0.00% 0.05 3.29% 1.61 0.00%
20 0.03 67.9% 3.19 0.00% 0.52 13.2% 2.11 10.3%
30 0.12 77.0% 4.86 3.72% 0.52 19.4% 11.7 18.1%
40 0.29 82.9% 9.86 26.7% 31.9 21.5% 48.3 20.9%
50 0.62 86.1% 26.6 42.1% 177 22.5% 145 22.4%
60 0.74 92.8% 375 44.9% 746 23.5% 337 23.5%

Table 5: Improvement of the lower bound by adding Cplex cuts and triangle inequalities

For n630, adding the CPLEX cuts provides a better lower bound than adding the triangle inequalities,
and combining both of them does not provide a better lower bound. Conversely, for n > 40, adding the
triangle inequalities provides a much better lower bound than adding the CPLEX cuts, and combining both
of them provides almost the same bound as adding only triangle inequalities, but reduces the running time.
For instance, for 60-task instances, adding triangle inequalities reduces the gap from 92.8% to 23.5%, and
combining them with the CPLEX cuts reduces the running time from 746 seconds to 337 seconds.

These observations lead to look for other valid inequalities for the quadratic polytope defined and studied
by [18], in order to strengthen our formulations. Indeed, as triangle inequalities, such inequalities can improve
the lower bounds given by the linear relaxation of (F2), but also (F1) and (F3), where δ and x variables
satisfy the same inequalities. These observations also drive to deal with the related algorithmic aspects.
Indeed, since directly adding such inequalities in the model increases significantly the computation times, we
should define how to manage these inequalities, for instance by providing a cutting-plane based algorithm.
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8 Conclusion

In this paper, thanks to our theoretical contributions on the non-overlapping inequalities, we proposed three
new formulations based on earliness/tardiness variables to solve the common due date scheduling problem.
Our formulations allow to solve unrestrictive instances with up to 50 tasks and general instances up to 20 tasks
within few minutes. While scheduling literature proposes pseudo-polynomial methods strongly dependant
on the total length of processing times, our formulation size does not rely on this value. Even if our
results for the Biskup and Feldmann’s benchmark are far from those presented by [24], our MIP formulations
outperform the compact MIP formulation based on linear ordering variables. In addition, for instances with
long processing times, our formulations outperform the time-indexed formulation in the unrestrictive case.
A key part in our work is the theoretical study of the non-overlapping inequalities, in particular Lemmas 3
and 4 and the scheme of proof used for Theorems 12 and 13 (resp. 22 and 23), which should allow to extend
our approach to other related scheduling problems.

Further works will focus on the earliness-tardiness scheduling problem with parallel machines, where each
machine imposes the same due date for all the tasks. Another issue is to address the single machine common
due date scheduling problem with machine unavailability constraints. For both problems formulations similar
to (F3) can be derived.

An interesting issue is to study the polyhedra associated to such formulations, to strengthen them using
facet defining inequalities, as triangle inequalities, which can be used in any formulation using δ and x
variables to describe a cut in a graph.
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Appendix : Proof of Theorem 23
Let us set, for any task j in J , C∗j = (d−a)− e′j + t′j .

The first step of the proof is to show that C∗ gives the completion times of the schedule encoded by X∗

using θ′ or θ̃′ i.e. that X∗=θ′(C∗) or X∗= θ̃′(C∗).
First we derive from inequalities (5’)-(8’) that ∀j∈T (δ), e′j =0 and ∀j∈E(δ), t′j =0.
Since δ and γ are in {0, 1}J , and X∗ satisfies (13)-(16), (20)-(21) and (Q2’), Lemma 18 ensures that there
exists j0∈T (δ) such that γ= 1{j0}, t

′
j0

= pj0 , and ∀j ∈T (δ), j 6= j0, t
′
j > t′j0+ pj . Since j0 is in T (δ), e′j0= 0

and C∗j0− pj0 = d−a. Then for any other task j in T (δ), C∗j − pj = (C∗j0− pj0) + t′j − pj > (C∗j0− pj0) + t′j0 =
C∗j0 > C∗j0− pj0 . We deduce that C∗j0− pj0 = min

j∈T (δ)
C∗j −pj , and then a=d− min

j∈T (δ)
C∗j −pj .

The question is is whether T (δ)=T (C∗) or T (δ)= T̃ (C∗). Indeed, if T (δ)=T (C∗), the value of a is the
one expected with the encoding θ′, whereas if T (δ)= T̃ (C∗), it is the one expected with θ̃′.

For any task j 6= j0 in T (δ), C∗j = d−a + t′j > d−a + t′j0= d−a + pj0 . Since γj0= 1, inequality (23)
gives a 6 pj0 , thus C∗j > d. We deduce that T (δ)\{j0}⊆T (C∗). Conversely, for a task j in T (C∗), C∗j > d,
which is equivalent to t′j − e′j > a. Since a > 0 by inequality (19), t′j > e′j , which would be impossible if j
was in E(δ), according to inequalities (5’) and (8’). We deduce that T (C∗) ⊆ T (δ). Two cases have to be
considered.

→ If a<pj0 , then C∗j0>d, i.e. j0∈T (C∗), and then T (δ)=T (C∗) and E(δ)=E (C∗).
→ If a = pj0 , then C∗j0 = d and j0 ∈ T̃ (C∗), we deduce that T (δ) ⊆ T̃ (C∗). For j in T̃ (C∗), either

Cj = d or j ∈T (C∗)⊆T (δ), that is t′j = e′j+ a = e′j+ pj0 > e′j , and necessarily j ∈T (δ). We conclude that
T (δ)= T̃ (C∗) and E(δ)= Ẽ (C∗).

For the remainder of the proof, we assume that we are in the first case. Then E (resp. T ) will denote
E (C∗) (resp. T (C∗)), and we will use the encoding θ′. To handle the second case, it suffices to replace E (C∗)
by Ẽ (C∗), T (C∗) by T̃ (C∗), and θ′ by θ̃′ in the second step, and using that j0 is an on-time task in the third
step.

We can rewrite δ as 1E(C∗), and thus b as a1E(C∗), since b=aδ by inequalities (24)-(27) and Lemma 19.
Using inequalities (5’-8’), it is easy to show that e′=

(
[d−a−C∗j ]+

)
j∈J and t′=

(
[C∗j −(d−a)]+

)
j∈J . Then

we can conclude that (e′, t′, a, b) = θ′(C∗), that is that C∗ and (e′, t′, a, b) encode the same schedule, which
will be denoted by S∗.

The second step is to show that S∗ is feasible, by proving that C∗ satisfies (0) and (1).
For a task j in E, inequality (17) ensures that pj 6 d−a− e′j = C∗j . For a task j in T , inequality (17) ensures
that a 6 d, then Cj = d−a + t′j > t′j . For another, we deduce that t′j > pj from inequality (Q2’) associated
to {j}. Thus C∗ satisfies (0).

To show that C∗ satisfies (1) using Lemma 21, it remains to show that vectors (e′+p)/E and t′/T satisfy
(0) and (1). Since inequalities (Q1’) and (Q2’) are satisfied, we know from Lemma 10 that (e′+p)/E and
t′/T satisfy inequalities (Q0). On one hand, these inequalities for the singletons ensure that both vectors
satisfy (0). On the other hand, inequalities (Q0) will allow us to show that both vectors satisfy (1).

Let us assume that (e′+p)/E does not satisfy (1). Then there exist two tasks i and j in E such that
e′i+pi6e

′
j+pj<(e′i+pi)+pj . Three cases have to be considered.

→ If e′j +pj > p(J), then e′j +pj > p(E). Applying Lemma 4, we can construct a vector e′− such
that X− = (e′−, t′, δ, x, a, b, γ) is in intδ,γ(P 3) and hα,β(e′−, t′, a, b) < hα,β(e′, t′, a, b) since α∈ ((R∗+)J, which
contradicts the minimality of (e′, t′, a, b).

→ If e′j+pj =d−a, we can derive the same contradiction since d−a>p(E) from inequality (18).
→ If e′j+pj<p(J) and e′j+pj<d−a, then applying Lemma 3 to (e′+p)/E , we can construct two vectors

e′+− and e′−+ such that X+− = (e′+−, t′, δ, x, a, b, γ) and X−+ = (e′−+, t′, δ, x, a, b, γ) are in intδ,γ(P 3) and
that X∗ is the middle point of the segment [X+−, X−+]. which contradicts the extremality of X∗.

Similarly, let us assume that t′/T does not satisfy (1). Then there exist two tasks i and j in T such
that t′i 6 t

′
j < t

′
i+pj . Since ∀k ∈ T (δ), k 6= j0, t

′
k > t′j0+ pk, we deduce that i 6= j0. Then for tasks i and j,

inequalities (8’) and (22) are equivalent, and t′i and t
′
j are only bounded from above by p(J). Then two cases

have to be considered:
→ If t′j>p(J), then t′j>p(T ). Applying Lemma 4, we can derive a contradiction to the minimality of

(e′, t′, a, b).
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→ If t′j<p(J), Applying Lemma 3 we can derive a contradiction to the extremality of X∗.
Finally, S∗ is feasible.
The third step is to show that S∗ is a d-or-left-block. We first prove that S∗ is a block using the same

method as in the proof of Theorem 13. Assuming that S∗ is not a block, we construct a better schedule Ŝ
by tightening tasks arround d. Using Theorem 22, there exists X̂∈ intδ,γ(P 3) encoding Ŝ, and it contradicts
he minimality of (e′, t′, a, b).
Thus S∗ is a block. Now we have to show that S∗ starts at time 0 or holds an on-time task. Let us assume
that it is not the case, then setting ε= 1

2 min(pj0−a, a, s) where s denotes the starting time of S∗, we have
ε> 0. Setting a−= a−ε and X−= (e′, t′, δ, x, a−, a−δ, γ) (resp. a+= a+ε and X+ = (e′, t′, δ, x, a+, a+δ, γ)),
X− (resp. X+) encodes using θ′ the schedule obtained by shifting backward (resp. forward) by ε time unit
all the tasks. By definition of ε, X− (resp. X+) still satisfies inequalities (17), (23), (19) and (18), thus
X−∈P 3 (resp. X+∈P 3). Since X∗ is the middle of [X−, X+], that contradicts the extremality of X∗.

We deduce that X∗ encodes a d-or-left-block.
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