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Abstract

While almost all existing works which optimally solve just-in-time scheduling problems pro-
pose dedicated algorithmic approaches, we propose in this work mixed integer formulations. We
consider a single machine scheduling problem that aims at minimizing the weighted sum of ear-
liness tardiness penalties around a common due-date. Using natural variables, we provide one
compact formulation for the unrestrictive case and, for the general case, a non-compact formu-
lation based on non-overlapping inequalities. We show that the separation problem related to
the latter formulation is solved polynomially. In this formulation, solutions are only encoded by
extreme points. We establish a theoretical framework to show the validity of such a formula-
tion using non-overlapping inequalities, which could be used for other scheduling problems. A
Branch-and-Cut algorithm together with an experimental analysis are proposed to assess the
practical relevance of this mixed integer programming based methods.

1 Introduction

In the most general statement, single-machine scheduling is to process a set J of tasks non-preemptively on
a single machine. Each task j∈J is ready for processing at time zero and has a processing time pj, that is
neither time-dependent nor sequence-dependent (w.l.o.g. we assume that pj>1).

A schedule can be then encoded by the vector of its completion times (Cj)j∈J . Such an encoding allows
to express a wide range of criteria, particularly the so called regular criteria, which are decreasing functions
of Cj for each task j. Using these continuous variables, Queyranne [19] provided useful polyhedral tools for
minimizing one of the most studied regular criteria:

∑
ωjCj. To the best of our knowledge, the scheduling

literature lacks from similar results for non-regular criteria. The contribution of this work falls within this
scope. Our focus is on minimizing a non-regular criterion occurring in just-in-time scheduling.

We consider a single machine scheduling problem where all tasks share a common due date d. A task
j ∈ J is early (resp. tardy) if Cj ≤ d (resp. Cj > d). Using [x]+ to denote the positive part of x ∈ R, the
earliness (resp. tardiness) of any task j ∈ J is given by [d−Cj ]

+ (resp. [Cj−d]+). Given unitary earliness
penalties (αj)j∈J (resp. tardiness penalties (βj)j∈J), the problem aims at finding a schedule that minimizes
the total penalty defined as:

fα,β(C) =
∑

j∈J

αj[d−Cj ]
+ + βj [Cj−d]+

When d>
∑

pj, the common due date is called unrestrictive since the due date does not restrict the total
duration of early tasks [12]. In this case, the so-called V-shaped dominance property [12] ensures that there
exists an optimal solution such that early tasks are scheduled by increasing ratio αj/pj while tardy tasks are
scheduled by decreasing ratio βj/pj . In addition, according to some strong dominance properties [12], there
exists an optimal schedule without idle time and with an on-time task, i.e. completing exactly at d. The
problem with an unrestrictive common due date is NP-hard even if αj=βj for any task j∈J [12]. However,
if αj=βj=1 for any task j∈J , the problem is polynomial [14].
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In the general case, there might be a straddling job, i.e. a task starting before d and completing after
d, in all optimal schedules: the problem is shown to be NP-hard, even if αj=βj = 1 for all j∈J [13] and [11].

In addition to these fundamental results of the common due date problem, the just-in-time field schedul-
ing benefits from a rich literature. These problems have been treated by several approaches: with heuris-
tics (e.g. [5], [16]), with branch-and-bound algorithms (e.g. [23]), and with dynamic programming methods
(e.g. [13], [24]). The reader can refer to the seminal surveys of [1], [16] and [15] for the early results in this field.

Furthermore, there exist several ways to encode a single machine schedule resulting in distinct formula-
tions. Such encodings can be based on completion times, time-indexed variables, linear ordering, positional
date and assignement variables [20]. Some of these encodings allow to formulate just-in-time scheduling prob-
lems as MIP. However, few solving approaches based on these formulation have been proposed for just-in-time
scheduling problems [5].

We focus in this article on natural variables, similar to completion times variables. To the best of our
knowledge, no linear formulation with such variables has been considered for just-in-time scheduling, in
contrast with scheduling problems dealing with regular criteria. Since tasks have to be processed on a single
machine, a schedule is feasible if it satisfies the non-overlapping of tasks, i.e. if they are executed on disjoint
time slots. Providing a linear formulation of non-overlapping is an important issue to solve a single-machine
scheduling problem using linear programming. Studying the polyhedron defined as the convex hull of the
feasible completion times vectors provides LP or MIP formulations. The seminal works in this research line
are [2] and [19]. The authors consider the problem of minimizing

∑
ωjCj. Other works consider the same

problem with additional constraints: release dates (e.g. [7]) or precedence constraints (e.g. [6], [21]).
A particularity of an encoding based on such natural variables is the non connectivity of the feasible vec-

tors set. Therefore, a vector in the convex hull of feasible vectors can correspond to an unfeasible schedule.
In this context, providing a linear formulation describing this polyhedron is not sufficient. Queyranne [19]
describes the convex hull of feasible completion times vectors by linear inequalities, and shows that the ex-
treme points of this polyhedron encode feasible schedules. He deduces a formulation which can be solved by
LP algorithms. This formulation is an LP with an additional constraint: the solution must be an extreme
point. This constraint will be called an extremality constraint.

In this article, our aim is to provide MIP based methods to solve a basic problem in just-in-time schedul-
ing. Such approaches can be easily extended to tackle more practical problems embedding this core structure.
We use natural variables to handle the common due-date problem, dealing with a non-regular criterion. Us-
ing also few binary variables, we describe a polyhedron containing the convex hull of dominant vectors for
the unrestrictive case, and another one for the general case. We show that, in both cases, extreme points of
this polyhedron correspond to feasible schedules, and we derive two non-compact MIP formulations with an
additional extremality constraint. We explain how both formulations can be solved using a branch-and-cut
algorithm. We also propose a compact MIP formulation for the unrestrictive case, which is more efficient,
but which cannot be adapted to the general case. Finally we provide an experimental analysis to assess the
practical relevance of the proposed approaches. The analysis is based on the reference benchmark proposed
in [5] and also used in [23].

This article is organized as follows. Section 2 presents basic tools to express the tasks non-overlapping.
We recall Queyranne’s linear inequalities for the non-overlapping [19]. We provide also two lemmas, which
permit to extend the framework in which those inequalities can be used. In Sections 3,4 and 5, we provide
new formulations for the unrestrictive case and the general one. In each section we first enunciate dominance
properties, then we give the formulation, and finally we prove its validity. All separation algorithms for these
formulations are gathered in Section 6. In Section 7 we present some experimental results and compare the
different formulations.
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2 Linear inequalities for non-overlapping

For a single-machine problem, a schedule must only satisfy two conditions to be feasible: each task must
begin after time 0 and two tasks must not be executed at the same time. In the sequel, the first condition
will be called positivity and the second one will be called non-overlapping. Given the processing times
p∈ (R∗

+)
J , a vector y ∈R

J encodes a feasible schedule by its completion times if and only if it satisfies the
two following constraints:

positivity ∀j∈J, yj>pj (0)

non-overlapping ∀(i, j)∈J2, yj>yi + pj or yi>yj + pi (1)

The set Q will denote the set of all vectors encoding a feasible schedule by its completion times, i.e.
all vectors satisfying constraints (0) and (1). Completion times allow an easy way to express feasibility at
the expense of the non-linearity of constraints (1). However Queyranne [19] introduces linear inequalities
using completion times to handle the non-overlapping. We first recall notations and results proposed by
Queyranne as we will generalize them to a larger framework. To this end, we use vector y to represent more
than completion times. In the next sections, y will be either the earliness or tardiness of tasks. For S ⊆ J
and y∈R

J :

S<=
{
(i, j)∈S2 | i<j

}
, y(S)=

∑

i∈S

yi, p∗y(S)=
∑

i∈S

piyi, and gp(S)=
1

2

(
∑

i∈S

pi

)2

+
1

2

∑

i∈S

p2i .

We give some properties about the function gp, useful for the next proofs:

∀S⊆J, gp(S)=
∑

(i,j)∈S<

pipj +
∑

j∈S

p2j (2)

∀S⊆J, ∀i∈J\S, gp
(
S⊔{i}

)
= gp(S) + pi

(
p(S)+pi

)
(3)

The non-overlapping Queyranne’s inequalities are defined as follows:

∀S ⊆ J, p∗y(S) > gp(S) (Q0)

We denote PQ the polyhedron defined by inequalities (Q0). The following property establishes that these
inequalities are valid for all vectors of Q, inducing conv(Q)⊆PQ.

Property 1

If y satisfies constraints (0) and (1), then y satisfies inequalities (Q0).

Proof : Let S⊆J . If S=∅, inequality (Q0) is satisfied. If S={j}, then inequality (Q0) is pjyj>p2j , that is
yj> pj since pj>0. So constraints (0) ensure that the inequalities (Q0) associated to the singletons are
all satisfied.
If |S| > 2, we need to exhibit an order on J . Since processing times are strictly positive, the constraints (1)
ensure that (yj)j∈J are distinct and so that there exists a (single) total order ≺ on J such that i≺ j ⇔
yi <yj. Then constraints (1) translate into ∀(i, j)∈ J2, i≺ j ⇒ yj > yi + pj. Using inequalities (0) we
deduce that yj>p(I) + pj for I⊆J and j∈J such that i≺j for all i∈I
This allows to prove by induction on the cardinality of S that all inequalities (Q0) are satisfied. Indeed
let us assume that they are satisfied for all sets of cardinality k where k>1 and let S⊆J with |S|=k+1.
By setting j =max≺ S and U = S\{j}, then, on one hand, by induction p ∗ y(U)> gp(U), and, on the
other, by previous arguments yj>p(U) + pj .
Consequently p ∗ y(S)=p ∗ y(U) + pjyj > gp(U) + pj

(
p(U)+pj

)
=gp(S) using (3), hence y satisfies the

inequality (Q0) associated to S. �

Some points in conv(Q) correspond to unfeasible schedules due to the disjunction inherent to the problem.
Figure 2 illustrates Q and PQ for an instance with only two tasks. The two cones represent the set of feasible
schedules: each corresponding to an order in the task execution. Vectors in between correspond to schedules
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where the tasks are overlapping. By definition of conv(Q), these vectors are in conv(Q), so they cannot be
cut by the non-overlapping Queyranne’s inequalities. Note that there are only two extreme points and that
they correspond to feasible schedules. This observation is true in general. Indeed, Queyranne shows that
the extreme points of PQ correspond to feasible schedules. This inclusion (extr(PQ)⊆Q⊆ conv(Q)) and
the previous one (conv(Q)⊆PQ) are sufficient to say that minx∈Q f(x) = minx∈PQ f(x) for any given linear
function f , but not sufficient to conclude that PQ is exactly conv(Q). Queyranne shows this equality using a
geometrical argument, that is the equality of the two recession cones. The following theorem sums up these
results.

Theorem 2 (Queyranne [19])

(i) extr(PQ) ⊆ Q
(ii) PQ = conv(Q)

Moreover, Queyranne shows that each extreme point of PQ encodes a left-tight schedule, i.e. a feasible
schedule without idle time starting at time zero. Conversely each left-tight schedule is encoded by an extreme
point of PQ since, according to the Smith rule [22], it is the only point in Q (and then in conv(Q) =PQ)
minimizing ω ∗ C(J) for ω∈(R+)

J such that the tasks are scheduled by strictly decreasing ratio ωj/pj .

We now provide two lemmas which will be the key for showing the validity of our formulations. The first
one gives also a new proof of Theorem 2(i). In this lemma, we explain how a vector of PQ can be slightly
disrupted in two directions without leaving PQ if an overlapping is observed in the schedule it encodes.
Figure 1 illustrates the two ways of disrupting the overlapping tasks so that the corresponding vectors stay
in PQ.

Lemma 3

Let us assume that y satisfies inequalities (Q0).

If there exists (i, j)∈J2 with i 6=j such that yi6yj<yi + pj,
then there exists ε∈R

∗
+ such that y+−=y + ε

pi
1i −

ε
pj

1j and y−+=y − ε
pi

1i +
ε
pj

1j also satisfy (Q0).

ε/pi ε/pj ε/pi ε/pj

(a) (b)

Figure 1: Illustration of the schedules disruption between y and y+− (a) (resp. y−+ (b))

Proof : Let ε=min(m1,m2) where m1=min {p∗y(S)− gp(S) |S⊆J, i 6∈S, j∈S}

and m2=min {p∗y(S)− gp(S) |S⊆J, i∈S, j 6∈S}.

Since y satisfies inequalities (Q0), m1>0 and m2>0, thus ε>0.
Let S⊆J . We first check that vector y+− defined by ε satisfies inequality (Q0) associated to S.
If i 6∈S and j 6∈S then p ∗ y+−(S) = p ∗ y(S) > gp(S).
If i∈S and j∈S then p ∗ y+−(S) = p ∗ y(S) + pi

ε
pi

− pj
ε
pj

= p ∗ y(S) > gp(S).

If i 6∈S and j∈S then p ∗ y+−(S) = p ∗ y(S)− pj
ε
pj

> gp(S) since ε6m1.

If i∈S and j 6∈S then p ∗ y+−(S) = p ∗ y(S) + pi
ε
pi

> p ∗ y(S) >gp(S).

In each case p ∗ y+−(S)>gp(S), then y+− satisfies (Q0). Similarly we can check that y−+ satisfies (Q0)
using that ε6m2. Finally, we have to check that ε>0. For this purpose we use the two next claims.

Claim

Let (i, j)∈J2. If yi6yj, then ∀S⊆J, i 6∈S, j∈S⇒p∗y(S)>gp(S).

Proof : Let us assume on the contrary that there exists S⊆J such that i 6∈S, j∈S and p∗y(S)=gp(S).
Setting U =S\{j}, we have p∗y(S)= p∗y(U) + pjyj and gp(S) = gp(U) + pj p(S) by (3). Since
we assume that these two terms are equal, and since p∗y(U)> gp(U) from inequalities (Q0), we
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deduce that pjyj6pjp(S) and even yj6p(S) since pj>0.
Moreover p∗y

(
S⊔{i}

)
= p∗y(S) + piyi = gp(S) + piyi 6 gp(S) + piyj by assumption.

Using these two inequalities, we get p∗y
(
S⊔{i}

)
6 gp(S) + pip(S) < gp(S) + pi

[
p(S)+pi

]
since

pi>0. Furthermore, gp(S) + pi
[
p(S)+pi

]
= gp

(
S⊔{i}

)
from (3) and gp

(
S⊔{i}

)
6 p∗y

(
S⊔{i}

)

from inequality (Q0). We finally get p∗y
(
S⊔{i}

)
<p∗y

(
S⊔{i}

)
, a contradiction. �

This first claim ensures that m1>0.

Claim

Let (i, j)∈J2. If yj<yi + pj, then ∀S⊆J, i∈S, j 6∈S⇒p∗y(S)>gp(S)

Proof : Let us assume on the contrary that there exists S⊆J such that i∈S, j 6∈S and p∗y(S)=gp(S).
Like in the previous proof we can show that yi6p(S).
Moreover p∗y

(
S⊔{j}

)
= p∗y(S) + pjyj = gp(S) + pjyj < gp(S) + pj

[
yi+pj

]
by assumption.

Using these two inequalities, we can write p∗y(S⊔{j}) < gp(S) + pj
[
p(S)+pj

]
since pj > 0.

Furthermore, gp(S) + pj
[
p(S) + pj

]
= gp

(
S⊔{j}

)
from (3) and gp

(
S⊔{j}

)
6 p∗y

(
S⊔{j}

)
from

inequality (Q0). We finally get p∗y
(
S⊔{j}

)
<p∗y(S⊔{j}), a contradiction. �

This second claim ensures that m2>0, we can deduce that ε>0. �

To obtain an alternative proof of Theorem 2(i), Lemma 3 can be reformulated as follows. If C is a
vector of PQ that gives the completion times of a schedule with an overlapping, then C is the middle
of two other vectors of PQ, C+− and C−+ . That implies that C is not an extreme point of PQ. By
contraposition, we deduce that an extreme point of PQ encodes a schedule without overlapping, and since
inequalities (Q0) associated to singletons ensure the positivity, an extreme point of PQ encodes a feasible
schedule, i.e. extr(PQ)⊆Q.

This way of proving that the extreme points correspond to feasible schedule can be adapted to more
complex polyhedron, that are a polyhedra defined by inequalities (Q0) and additional inequalities. Indeed, it
suffices then to check that the two vectors C+− and C−+ satisfy also these additional inequalities. However,
for some extreme points, the two vectors introduced by Lemma 3 may not satisfy the additional inequalities.
For example, if the completion times of the tasks are limited by a constant M (with M>p(J)), the additional
inequalities are the following:

∀j∈J, Cj6M (4)

Note that these inequalities induce extreme points encoding unfeasible schedules.
On Figure 2 such an extreme point appears for a 2-tasks instance. Adding the inequalities C16M and

C26M leads to the extreme point (M,M) which encodes a schedule with an overlapping. But we can see
that this point will never be proposed as an optimum during the minimization of ω1C1+ω2C2 if ω∈ (R∗

+)
2.

In general, the aim is to minimize a positive weighted sum of variables, so we can then only consider extreme
points which minimize such a function. We introduce the following notation to denote such points for any
given polyhedron P of R

n:

extr∗(P ) =
{
x∗∈P | ∃ω∈R

n
+, {x

∗}=argmin
x∈P

n∑
i=1

ωixi
}

Since an extreme point can always be written as the only minimizer of a linear function, extr∗(P )⊆extr(P ).
If PQ,M denotes the polytope defined by inequalities (Q0) and (4), the following key lemma, shows how a
vector y of PQ,M can be slightly disrupted in a minimization direction without leaving PQ,M when some
yj value is larger than p(J). More precisely, if y encodes a schedule by its completion times, when a task j
completing after p(J) without being the last one or overlapping another task.
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Figure 2: Q and conv(Q) in the case of two tasks

Lemma 4

Let us assume that y satisfies inequalities (Q0).

If there exist (i, j)∈J2 with i 6=j such that yj< yi+pj, and yj>p(J),
then there exists ε∈R

∗
+ such that y− ε

pj
1j satisfies also inequalities (Q0).

Proof : Since y satisfies inequalities (Q0), setting ε=min{ p∗y(S) − gp(S) |S⊆J, j ∈S } suffices to ensure
that y− ε

pj
1j satisfies also inequalities (Q0) and that ε>0. So we have to show that ε>0, that is to show

that, for any subset S⊆J containing j, the associated inequality (Q0) is not tight.
Let S⊆J such that j∈S and let U=S \ {j}. First remark the following equivalent inequalities:

p∗y(S) > gp(S) ⇔ p∗y(U) + pjyj > gp(T ) + pj
[
p(U)+pj

]

⇔ p∗y(U)− gp(U) > pj
[
p(S)− yj

]

If S J , then p(S)<p(J)6yj , thus pj
[
p(S)− yj

]
<0. Moreover p∗y(U)− gp(U)>0 since y satisfies the

inequality (Q0) associated to T . We deduce that p∗y(S) > gp(S) in this case.

If S=J , then pj
[
p(S)−yj

]
60 since yj>p(J). In this case, pj

[
p(S)−yj

]
can be equal to zero if yj=p(J),

but we prove that p∗y(U)− gp(U)>0 as follows.

p∗y(U)− gp(U) > 0 ⇔ p∗y
(
J \{j}

)
> gp

(
J \{j}

)

⇔ p∗y
(
J \{i, j}

)
+ piyi > gp

(
J \{i, j}

)
+ pi

[
p
(
J \{i, j}

)
+pi

]

⇔ p∗y
(
J \{i, j}

)
− gp

(
J \{i, j}

)
> pi

[
p
(
J \{j}

)
− yi

]

By assumption yi > yj−pj > p(J)−pj = p
(
J\{j}

)
, thus pi

[
p
(
J\{j}

)
− yi

]
< 0 and since y satisfies also

the inequality (Q0) associated to J \{i, j}, we have p∗y
(
J \{i, j}

)
− gp

(
J \{i, j}

)
> 0. We deduce that

p∗y(U)− gp(U) > 0 in this case, and finally that p∗y(S) > gp(S). �

Combining Lemma 3 and 4 we prove that a vector C in extr∗(PQ,M ) is in Q, that is its encodes a feasible
schedule by its completion times. Indeed, since such a vector C satisfies inequalities (Q0), an overlapping
between tasks i and j such that Ci6Cj<Ci+pj contradicts either the extremality of C or its minimality. If
Cj <p(J), we can construct C+− and C−+ as proposed in Lemma 3 for ε set in ]0, p(J)−Cj [, so that C+−

and C−+ satisfy inequalities (Q0) and (4). Thus, C can be written as the middle of two other vectors of
PQ,M , then it is not an extreme point. If conversely Cj > p(J), we can construct a vector C− as proposed
in Lemma 4, so that C− is component-wise smaller than C and and satisfies inequalities (Q0). Thus, C−

6



is another point of PQ,M , which have a smaller value than C for any linear function with positive (or zero)
coefficient, then C cannot be the single minimizer of such a function on PQ,M . Moreover, using the same
argument as for PQ, we can say that all left-tight schedules are encoded by an extreme point of PQ,M , and
even by a vector of extr∗(PQ,M).

For the common due date problem, an encoding by completion times does not lead to a linear objective
function (except in the very particular case where d=0, since the tardiness are then equal to the completion
times). Therefore, we propose in the next sections a schedule encoding together with a set of inequalities
ensuring that every minimum extreme point corresponds to a feasible schedule.
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3 A first formulation for the unrestrictive common due date

problem

In this section, we consider the common due date problem when the due date is unrestrictive, i.e. d>p(J).
Before providing the formulation, we recall some well known dominance properties which allow not only to
reduce the search space but also to restrict the instances set.

3.1 Dominance properties

We say that a set of solutions is dominant if it contains (at least) one optimal solution, and that it is
strictly dominant if it contains all optimal solutions. In both cases, the search of an optimal solution can
be limited to the dominant set.

For the common due-date scheduling problem, we define a block as a feasible schedule without idle
time, a d-schedule as a feasible schedule with an on-time task, and a d-block as a block which is also
a d-schedule. The following lemma gives dominance properties for the common due-date problem, already
known for symmetric penalties [12]. These results can be extended to asymmetric penalties, using the same
task shifting arguments.

Lemma 5

Let α∈(R+)
J , β∈R

J
+.

(i) In the general case, the blocks are dominant when minimizing fα,β.
Moreover, if α∈(R∗

+)
J and β∈(R∗

+)
J , the blocks are strictly dominant.

(ii) In the unrestrictive case, the d-schedules are dominant when minimizing fα,β

Thanks to these dominance properties, only blocks will be considered in the sequel, and only d-blocks in
the unrestrictive case.

From Lemma 5, in the unrestrictive case we only have to consider instances with strictly positive earliness
and tardiness penalties, i.e. with α∈ (R∗

+)
J and β ∈ (R∗

+)
J . Indeed, if the tardiness penalty of a task j ∈J

is zero, solving the instance obtained by removing task j provides a d-block, which is optimal for J \ {j}.
Placing task j at the end of the d-block does not increase the cost, since j is then tardy. Thus, the obtained
schedule is an optimal d-block. Conversely, if the earliness penalty of a task j is zero, placing task j at the
beginning of an optimal d-block for J \ {j} - which is always possible when d is unrestrictive - provides an
optimal d-block. Hence, for the unrestrictive case, we will set α∈(R∗

+)
J and β∈(R∗

+)
J .

3.2 A natural formulation for the unrestrictive case

• A linear objective function using e and t variables
Since earliness and tardiness are not linear with respect to completion times, the objective function fα,β is
not linear. Therefore, we propose an encoding by earliness and tardiness of each task, by introducing the
corresponding variables: (ej)j∈J for the earliness of the tasks, and (tj)j∈J for their tardiness. In this way,
the total penalty of a schedule encoded by vector (e, t) is:

gα,β(e, t) =
∑

j∈J

αjej + βjtj

which is linear. If C encodes a schedule by its completion times, the encoding by earliness and tardiness of
this schedule is given by:

θ(C) =
((

[d−Cj ]
+
)
j∈J

,
(
[Cj−d]+

)
j∈J

)

Using function θ, we can express the link between fα,β and gα,β:

fα,β=gα,β ◦ θ

8



However, we have to study which vectors (e, t) encode feasible schedules. Note that there is no need to
consider α and β parameters to describe this vectors set, since they only give the optimization direction.

• Consistency between e and t using δ variables
For a vector (e, t) in (R+)

J×R
J , there exists C in R

J such that θ(C) = (e, t) if and only if ∀j ∈ J , (ej > 0
and tj=0) or (ej=0 and tj>0). Such an (e, t) vector will be said consistent. This condition reflects that
a task is either early, then its tardiness is necessarily zero, or tardy, then its earliness is necessarily zero. In
order to ensure this consistency, we introduce boolean variables (δj)j∈J representing for each task j if it is
early or not, and we add the following inequalities:

∀j∈J, ej > 0 (5)

∀j∈J, ej 6 δj (p(J)−pj) (6)

∀j∈J, tj > 0 (7)

∀j∈J, tj 6 (1−δj) p(J) (8)

Inequalities (5) and (6) force ej to be zero when δj =0. Since we only consider d-blocks, p(J)−pj is an
upper bound of the earliness of task j. Thus, inequality (6) does not restrict ej when δj =1. Note that in
the unrestrictive case, p(J)−pj is tighter than d−pj. Similarly, inequalities (7) and (8) force tj to be zero
when δj =1, without restricting tj when δj =0, since p(J) is an upper bound of the tardiness in a d-block.
Consequently, we have the following:

Lemma 6

Let (e, t, δ)∈R
J×R

J×{0, 1}J .
If e, t, δ satisfy inequalities (5-8), then (e, t) is consistent and C=

(
d−ej+tj

)
j∈J

satisfies θ(C)=(e, t).

For a consistent (e, t) vector, we define:

θ−1(e, t) = (d−ej+tj)j∈J

Besides, inequalities (5-8) ensure the positivity of the encoded schedule. Indeed, for any j in J , inequal-
ities (6) and (7) ensure that d−ej+ tj > d−ej > d−p(J)+pj . Since d is unrestrictive, we deduce that
d−ej+tj > pj. Hence, we obtain:

Lemma 7

Let (e, t, δ)∈R
J×R

J×{0, 1}J . If e, t, δ satisfy (5-8), then θ−1(e, t) satisfies (0).

• Handling the non-overlapping
To ensure the non-overlapping, it suffices that early tasks are fully processed before d and that they do not
overlap each other, and that tardy tasks are fully processed after d and that they do not overlap each other
either. Note that for a d-schedule, the non-overlapping reduces to these two constraints related to early and
tardy tasks respectively.
In order to use the partition between early and tardy tasks induced by the completion times C, we introduce
the following notations:

E(C)={ j∈J |Cj6d} and T (C)={ j∈J |Cj>d}

For a tardy task, the tardiness plays the same role regarding to d as the completion time with respect
to 0. Then ensuring that the tardy tasks are fully processed before d (resp. they do not overlap each other)
is equivalent to the positivity constraint for tardy tasks (resp. to the non-overlapping constraint for tardy
tasks). As shown on Figure 3, the situation is almost the same for an early task, the only difference is that
it is not the earliness ej which plays the same role as the completion time, but ej+pj. Using x/S to denote(
xj
)
j∈S

for any subset S of J and for any vector x in R
J , the following lemma sums up these observations.

Lemma 8

Let C∈R
J and set (e, t) = θ(C). If there exists j∈J such that Cj=d,

then C satisfies (1) ⇔

{
(e+p)/E(C) satisfies (0) and (1)

t/T (C) satisfies (0) and (1)

9



d

|

0

|
Ji |

eipi

Jt Jt Ji |
Ci = pi+ei

Figure 3: Illustration of the role of pi+ei for an early task i

In the formulation, we use δ to describe the partition between early and tardy tasks, that is:

E(δ)={ j∈J | δj=1} and T (δ)={ j∈J | δj=0}.

According to Section 2, we want to apply Queyranne’s inequalities (Q0) to the vectors (e+p)/E(δ) and
t/T (δ) respectively, so that they satisfy (0) and (1). Therefore, we consider the following inequalities:

∀S⊆J, p ∗ (e+p)
(
S∩E(δ)

)
> gp(S) (9)

∀S⊆J, p ∗ t
(
S∩T (δ)

)
> gp(S) (10)

These inequalities are not linear as E(δ) and T (δ) depend on δ variables. Replacing S∩E(δ) (resp.
S∩T (δ) ) by S raises non valid inequalities. Indeed, inequality (10) for S={i, j} where i∈E, would become
pjtj > p2i+p2j+pipj since ti=0 by (7) and (8). This implies that tj>pj, which is not valid for all the feasible
schedules.

To ensure that only the terms corresponding to early (resp. tardy) tasks are involved in (9) (resp. in
(10)), we multiply each term of index j in S in the inequality by δj (resp. by (1−δj)). We obtain the
following quadratic inequalities:

∀S ⊆ J,
∑

j∈S

pjej >
∑

(i,j)∈S<

pipjδiδj (11)

∀S⊆J,
∑

j∈S

pjtj(1−δj) >
∑

(i,j)∈S<

pipj (1−δi)(1−δj) +
∑

j∈S

p2j(1−δj) (12)

• Linearization of the quadratic terms using x variables
In order to remove the quadratic terms, we introduce a new variable xi,j representing whether δi is different
than δj for each (i, j) in J<. Since the quadratic terms are the products of boolean variables, the following
inequalities ensure their consistency with respect to δ:

∀(i, j)∈J<, xi,j > δi−δj (13)

∀(i, j)∈J<, xi,j > δj−δi (14)

∀(i, j)∈J<, xi,j 6 δi+δj (15)

∀(i, j)∈J<, xi,j 6 2−(δi+δj) (16)

The following lemma provides the correspondence between quadratic and linear terms.

Lemma 9

If δ∈{0, 1}J then for all (i, j)∈J<:

(i) δ and x satisfy the inequalities (13-16) associated to (i, j) ⇔ xi,j=

{
0 if δi=δj

1 if δi 6=δj

(ii) In case (i) holds, then δiδj=
δi+δj−xi,j

2
and (1−δi)(1−δj)=

2−(δi+δj)−xi,j
2

The proof can be easily done by considering the two cases δi=δj and δi 6=δj.
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• Non-overlapping inequalities
Using Lemma 9(ii), we obtain the following inequalities:

∀S⊆J,
∑

i∈S

piei >
∑

(i,j)∈S<

pipj
δi+δj−xi,j

2
(Q1)

∀S⊆J,
∑

i∈S

piti >
∑

(i,j)∈S<

pipj
2−(δi+δj)−xi,j

2
+
∑

i∈S

p2i (1−δi) (Q2)

The following lemma summarizes the relationship between the inequalities (Q1), (Q2) and (Q0).

Lemma 10

Let (δ, x)∈{0, 1}J×R
J<

such that inequalities (13-16) are satisfied.
(i) If e∈R

J satisfies inequalities (5) and (6) for all j∈E(δ), then:

e, δ, x satisfy inequalities (Q1) for all S⊆J iff (e+p)/E(δ) satisfies inequalities (Q0)

(ii) If t∈R
J satisfies inequalities (7) and (8) for all j∈T (δ), then:

t, δ, x satisfy inequalities (Q2) for all S⊆J iff t/T (δ) satisfies inequalities (Q0)

The following lemma allows to make the bridge between (e+p)/E(C) from Lemma 8 and (e+p)/E(δ) from
Lemma 10 (resp. between t/T (C) and t/T (δ)).

Lemma 11

Let (e, t, δ)∈R
J×R

J×{0, 1}J .
If e, t, δ satisfy (5-8) and (Q2) then E(δ)=E

(
θ−1(e, t)

)
and T (δ)=T

(
θ−1(e, t)

)
.

Proof : Let C = θ−1(e, t). If j ∈ T (C), then Cj >d by definition. That is tj > ej since Cj = d−ej+tj. It
implies that tj>0, using inequality (5), and using inequality (8), we deduce that δj 6=1, and thus δj=0
since δj is integer. That proves T (C)⊆T (δ). Conversely, if j∈T (δ), inequalities (5) and (6) ensure that
ej=0, since δj=0 by definition. Thus, Cj=d+tj . Since tj>pj>0 from inequality (Q2) for S={j}, we
deduce that Cj>d, that proves T (δ)⊆T (C).
Similarly, we can prove the equality for the early tasks (without using (Q1)). �

• Formulation (F1)
Let us we define the polyhedron:

P
1=
{
(e, t, δ, x)∈R

J×R
J×[0, 1]J×R

J<

(5-8), (13-16),(Q1) and (Q2) are satisfied
}

Note that this polyhedron does not depend on either α, β, or even d, but is defined only from p. Moreover, this
polyhedron is defined by an exponential number of inequalities, inducing the use of a separation algorithm,
this subject will be the purpose of Section 6.
Since δ are boolean variables, we are only interested in vectors for which δ is integer, that are integer points.
Therefore, we introduce the operator intδ, which only keeps the integer points of a set. For V included in
R
J×R

J×R
J×R

J<
,

intδ(V )=
{
(e, t, δ, x)∈V | δ∈{0, 1}J

}
.

However, the formulation is not a classical MIP formulation, since some integer points do not encode feasible
schedules. The same same observation holds for PQ,M , as discussed in Section 2 (apart the integrity con-
straints on δ). Therefore, we need to add an extremality condition (and consider the minimality condition)
to ensure the feasibility. Finally, our formulation for the unrestrictive common due date problem defined by
the unit penalties (α, β) is:

(F1)
min gα,β(e, t)

s.t. (e, t, δ, x)∈ intδ
(
extr(P 1)

)

11



3.3 Validity of Formulation (F1)

The following theorem establishes that a feasible schedule, under some assumptions, is encoded by an integer
point of P 1. In particular a d-block is encoded by an integer point of P 1.

Theorem 12

If vector C gives the completion times of a feasible schedule without straddling task such that tasks are
processed between d−p(J) and d+p(J), i.e. ∀j∈J, d−p(J)6Cj−pj and Cj6d+p(J)
then there exists X=(e, t, δ, x)∈ intδ(P

1), such that θ(C)=(e, t).

Proof : From C, let us set: (e, t)=θ(C), δ=1E(C), x=
(
1δi 6=δj

)
(i,j)∈J< and X=(e, t, δ, x).

Note that the definition of δ ensures that δ∈{0, 1}J ⊆ [0, 1]J , and that E(δ)=E(C) (resp. T (δ)=T (C)),
which allows the notation E (resp T ) for sake of brevity. Inequalities (5) and (7), as well as (6) for j
in T and (8) for j in E, are automatically satisfied by construction of e, t and δ. The assumption that
∀j∈J, d−p(J)6Cj−pj (resp. Cj6d+p(J)) ensures that inequalities (6) for j in E (resp. inequalities (8)
for j in T ) are satisfied.
Using Lemma 9(i), x and δ satisfy inequalities (13-16).
Since C encodes a feasible schedule, C satisfies (0) and (1). Using Lemma 8, (e+p)/E (resp. t/T )
satisfies (0) and (1). Applying Property 1 to these two vectors, we deduce that they satisfy (Q0), and
using Lemma 10, that e, δ, x satisfy (Q1) and t, δ, x satisfy (Q2). Thus, X belongs to P 1, and even in
intδ(P

1) since δ∈{0, 1}J . �

The following theorem establishes that an optimal solution of formulation (F1) is a solution for the
unrestrictive common due date problem.

Theorem 13

Let X∗=(e, t, δ, x)∈ intδ(P
1).

If X∗∈extr(P 1) and (e, t) minimizes gα,β then X∗ encodes a d-block.

Proof : The first step is to show that X∗ encodes a feasible schedule.
From Lemma 6, X∗ is consistent and we can set C∗=θ−1(e, t). Then X∗ encodes a schedule defined by
the completion times C∗. This schedule will be denoted S∗. Proving that S∗ is feasible consists then in
showing that C∗ satisfies (0) and (1). From Lemma 7, C∗ satisfies (0). From Lemma 11, E(δ)=E(C∗)
(resp. T (δ)=T (C∗)), which allows the notation E (resp. T ) for sake of brevity. Using Lemma 8, to show
that C∗ satisfies (1), it remains to show that (e+p)/E (resp. t/T ) satisfies (0) and (1).
From Lemma 10, we know that (e+p)/E (resp. t/T ) satisfies inequalities (Q0).
On one hand, using these inequalities for the singletons, ensures that (e+p)/E (resp. t/T ) satisfies (0).
We deduce that no straddling task occurs in S∗.
On the other hand, inequalities (Q0) will allow us to show that (e+p)/E (resp. t/T ) satisfies (1) in the

same way that we have shown that a vector in extr∗(PQ,M) encodes a schedule without overlapping in
Section 2.

Let us assume that (e+p)/E does not satisfy (1). Then there exists (i, j)∈E2 such that ei+pi6ej+pj<
(ei+pi)+pj . Two cases have to be considered:

→ If ej+pj<p(J), then by Lemma 3 applied to (e+p)/E , there exists ε∈R
∗
+ such that, setting

e+−=e+
ε

pi
1i −

ε

pj
1j and e−+=e−

ε

pi
1i +

ε

pj
1j,

both (e+−+p)/E and (e−++p)/E satisfy (Q0). Using Lemma 10, both e+− and e−+ satisfy (Q2). Since
changing the value of ε for min

(
ε, p(J)−pj−ej

)
does not affect the satisfaction of (Q0), we can assume

that ε6p(J)−pj−ej , while ensuring ε>0. Since e+−
i = ei+

ε
pi
6 ei+ε, using this latter assumption and

that ej+pj>ei+pi, we obtain that e+−
i 6p(J)−pi. For k in J\{i}, e+−

k 6ek, and since e satisfies (6), we
deduce that e+−

k 6p(J)−pk.

Thus e+− satisfies inequalities (6). Besides, since (e+−+p)/E satisfies inequalities (Q1) for the singletons,

e+−
k +pk > pk for all k in E. Since e+−

k = ek for all k in T and e satisfies (5), we deduce that e+−
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satisfies inequalities (5). Similarly e−+ satisfies inequalities (5) and (6). Finally, X+− = (e+−, t, δ, x)
and X−+ = (e−+, t, δ, x), are two points of P 1 whose middle point is X∗. A contradiction, since X∗ is
extreme.

→ If ej+pj > p(J), then ej+pj > p(E), and by Lemma 4 applied to (e+p)/E , there exists ε∈R
∗
+ such

that, setting e− = e − ε
pj

1j, (e
−+p)/E satisfies (Q0). Using Lemma 10, e− satisfies (Q2). Since e− is

component wise smaller than e, then e− also satisfies inequalities (6). Besides, the inequality (Q0) for
the singleton {j} ensures that e−j >0, thus e− satisfies inequalities (5). Finally, setting X−=(e−, t, δ, x),

we exhibit a point of P 1, which has a smaller value than X∗ according to gα,β. A contradiction, since
(e, t) minimizes gα,β . Consequently (e+p)/E satisfies (1).

In the same way, we can prove that t/T satisfies (1). We deduce that S∗ is a feasible schedule.

The second step consists in showing that S∗ is a d-block.
Since we already know that S∗ does not hold a straddling task, it suffices to show that it is a block with
at least one early task to conclude that is a d-block.
Let us assume that S∗ holds an idle time or has no early task. Let Ŝ denotes the schedule obtained
by tightening tasks around d to fill idle times and, if there is no early task, shifting backward all tasks
such that the first one becomes on-time. By construction, Ŝ is a block and is feasible, since the due
date is unrestrictive. If Ĉ denotes the completion times defining Ŝ, then ∀j ∈ J, d−p(J)6 Ĉj−pj and

Ĉj6d+p(J).

Then using Theorem 12, there exists X̂ = (ê, t̂, δ̂, x̂) ∈ intδ(P
1), such that θ(Ĉ) = (ê, t̂). Moreover,

fα,β(Ĉ) < fα,β(C
∗), since the early tasks stay early but with a smaller earliness, and the tardy tasks,

except the first tardy task which becomes eventually on-time, stay tardy with a smaller earliness.

Then gα,β(ê, t̂)=fα,β(Ĉ)<fα,β(C
∗)=gα,β(e, t), which contradicts the minimality of (e, t).

Finally, X∗ encodes a d-block. �

The following theorem establishes that the unrestrictive common due date problem reduces to solving
formulation (F1).

Theorem 14

Any optimal d-block, is encoded by a vector minimizing gα,β on intδ
(
extr(P 1)

)
.

Conversely, any vector minimizing gα,β on intδ
(
extr(P 1)

)
, encodes an optimal d-block.

Proof : Let us consider an optimal d-block S∗. From Theorem 12, there exists a vector X∗=(e∗, t∗, δ∗, x∗)
in intδ(P

1) encoding S∗. We introduce:

P δ∗ =
{
(e, t) | (e, t, δ∗ , x∗)∈P 1

}
,

which is the slice of P 1 according to δ∗, i.e. the set of points of P 1 satisfying δ=δ∗, and therefore x=x∗.
To show that X∗ is also an extreme point of P 1, it suffices to prove that (e∗, t∗) is an extreme point of P δ∗ .
Indeed, if there were X1=(e1, t1, δ1, x1) and X2=(e2, t2, δ2, x2) in P 1 such that X∗= 1

2(X
1+X2), δ1 and

δ2 would necessarily be equal to δ∗ since δ∗∈{0, 1}J , δ1∈ [0, 1]J and δ2∈ [0, 1]J . By Lemma 9, we deduce
that x1=x∗ (resp. x2=x∗), and thus (e1, t1) (resp. (e2, t2)) is in P δ∗ . Yet (e∗, t∗)= 1

2

(
(e1, t1)+(e2, t2)

)
,

and (e∗, t∗) would not be an extreme point of P δ∗ .

Using E and T to denote the partition of tasks given by δ∗, i.e. E=E(δ∗) and T =T (δ∗), we decompose
P δ∗ as a Cartesian products of polyhedra:

P δ∗= P δ∗, E×{0}T×P δ∗, T×{0}E where

{
P δ∗, E=

{
ẽ∈R

E | ẽ+p/E satisfies (Q0) and ∀j∈E, ẽj+pj 6 p(J)
}

P δ∗, T =
{
t̃∈R

T | t̃ satisfies (Q0) and ∀j∈T, t̃j 6 p(J)
}

Knowing that the extreme points set of a Cartesian product is exactly the Cartesian product of the
extreme points sets, it remains to show that e∗/E ∈extr(P δ∗, E) and that t∗/T ∈extr(P δ∗, T ). Note that P δ∗, T
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is the polyhedron called PQ,M in Section 2, replacing the index set J by T and setting M=p(J)>p(T ).
Similarly P δ∗, E is a translation according to −p/E of PQ,M , replacing J by E and setting M=p(J)>p(E).
Then it suffices that t∗/T (resp. e∗/E+p/E) encodes a left-tight schedule of tasks in T (resp. E) to ensure

its extremality in P δ∗, T (resp. P δ∗, E). Both conditions are satisfied since X∗ encodes a d-block. We
deduce that (e∗, t∗) belongs to extr(P δ∗). Thus X∗ belongs to intδ

(
extr(P 1)

)
.

According to Theorem 13, another point in intδ
(
extr(P 1)

)
with a smaller value according to gα,β would

correspond to a better schedule, yet S∗ is optimal. We then deduce the minimality of X∗ on intδ
(
extr(P 1)

)

from the optimality of S∗.

The second part of the theorem is then a direct corollary of Theorem 13. The schedule encoded by a
vector X∗ minimizing gα,β on intδ

(
extr(P 1)

)
is a d-block, and if it was not optimal, there would exist

a strictly better d-block, and then a vector in intδ
(
extr(P 1)

)
with a smaller value according to gα,β, a

contradiction. �

3.4 Dealing with Formulation (F1)

The aim of this section is to show that formulation (F1) can be solved by a classical branch-and-cut algorithm.
Let us consider three relaxations of (F1):

(F1-LP)
min gα,β(e, t)
s.t. (e, t, δ, x)∈P 1 (F1-extr)

min gα,β(e, t)
s.t. (e, t, δ, x)∈extr(P 1)

(F1-int)
min gα,β(e, t)
s.t. (e, t, δ, x)∈ intδ(P

1)

The formulation (F1-LP) is obtained by relaxing the integrity and the extremality conditions. It is a
linear program defined by an exponential number of inequalities. We will explain in Section 6 that the
separation problem associated to the non-overlapping inequalities defining P 1 is solvable in polynomial time.
Then (F1-LP) can be solved in polynomial time using a cutting plane algorithm [10].

Using the simplex algorithm for each LP-relaxation of a cutting plane algorithm, the extremality of the
solution is ensured. Then in this case, solving (F1-LP) is equivalent to solving (F1-extr).

A classical way to manage the integrity constraint is to use a branch-and-bound algorithm, and even in
this case a branch-and-cut algorithm.

Using an algorithm which provides an extreme point to solve each LP-relaxation, a branch-and-bound
algorithm directly computes a solution of (F1):

Property 15

Let us consider a branch-and-bound algorithm A, where the LP-relaxation at each node provides an
extreme point. Using A to solve (F1-int) by branching on δ variables solves (F1).

Proof : By assumption, the solution provided at each node of the branch-and-bound tree is an extreme
point of the polyhedron defined by the decisions previously taken, and we will prove that this solution is
also an extreme point of P 1.
Formally, if variables δj for j ∈ J0 (resp. for j ∈ J1) have been fixed to 0 (resp. to 1), the polyhedron
considered is P 1 ∩ F J0,J1 where:

F J0,J1={ (e, t, δ, x)∈R
J× R

J× [0, 1]J× [0, 1]J
<

| ∀j∈J0, δj=0 and ∀j∈J1, δj=1 }

We consider an arbitrary node defined by J0 and J1, and a vector X=(e, t, δ, x)∈extr
(
P 1 ∩ F J0,J1

)
.

By definition of E(δ) and T (δ), X∈P 1 ∩ F T (δ),E(δ). Moreover, J1 ⊆E(δ) and J0 ⊆ T (δ), thus we have
P 1 ∩ F T (δ),E(δ) ⊆ P 1 ∩ F J0,J1 . Recall that if A ⊆ B, then extr(B) ∩ A ⊆ extr(A), we deduce that
X ∈ extr

(
P 1 ∩ F T (δ),E(δ)

)
. Since P 1 ∩ F T (δ),E(δ) is exactly the set denoted P δ in the previous proof, we

get extr(P 1 ∩ F T (δ),E(δ)) ⊆ extr(P 1). We deduce that X∈extr(P 1). �

Property 15 stands for the formulation (F1) since the integrity constraint on δj can be rewritten as
δj ∈extr

(
[0, 1]

)
, for any j∈J . Therefore, the integrity of δ and the extremality in P δ∗ induce the extremality
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in P 1. Note that the property is not valid for an arbitrary formulation. To illustrate this observation, let us
consider the following formulation:

(F)
max z
s.t. (y, z)∈ inty

(
extr(P )

) with P =
{
(y, z)∈R+× R+ | z6

2

3
y+2, z6−2y+6

}
,

where inty denotes the operator keeping only the points with an integer y. A provides a solution which does
not belong to extr(P ). Indeed, since (32 , 3) is the solution at the root node, the search space is divided into
P ∩ ]−∞, 1]×R and P ∩ [2,+∞[×R, and the extreme points maximizing z in these polyhedron are respectively
(1, 2 + 2

3), and (2, 2). Then the provided point is (1, 2 + 2
3), with a value of 2 + 2

3 whereas the best value for
an integer extreme point is 2, reached by (0, 2).

For any formulation F, let us denote by value(F) the value of any optimal solution for the optimization
problem F. Using any algorithm to solve each LP-relaxation, a branch-and-bound algorithm can solve (F1-
int), that gives value(F1), but not directly a solution of (F1). Indeed, if X=(e, t, δ, x) denotes the provided
vector, δ is 0-1 and (e, t) minimizes gα,β on P δ by construction. Then, there exists (e∗, t∗) in extr(P δ) such
that gα,β(e

∗, t∗)=gα,β(e, t). Since X∗=(e∗, t∗, δ, x)∈ intδ
(
extr(P 1)

)
, we get :

gα,β(e
∗, t∗)>value(F1)>value(F1-int)=gα,β(e, t)

In addition to this theoretical way to come down to an extreme point, and then to a feasible solution, there
is a computational way to do that from the partition between early and tardy tasks defined by δ. It will be
the purpose of the next section.
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4 A second formulation for the unrestrictive case

The unrestrictive common due date problem is NP-hard, so the decision problem associated to (F1) is NP-
hard. In contrast, (F1-extr) is solvable in polynomial time. We deduce that the hardness of the formulation
(F1) is only due to the integrity constraints on δ variables This suggests that the main difficulty of the
unrestrictive common due date problem lies in choosing which tasks are early and which ones are tardy. This
observation is corroborated by the following dominance property, known in the just-in-time scheduling field,
which ensures that, in the unrestrictive case, once the partition between early and tardy tasks is fixed, it
suffices to sort tasks to obtain an optimal schedule. A question is then: how to exploit the strength of this
property in a linear way? This issue leads to a compact formulation for the unrestrictive case, presented in
this section.

4.1 Dominance properties

We recall some dominance properties known for the symmetric penalties case [13], but given here in their
most general statement.

Lemma 16

Let α∈(R+)
J , β∈(R+)

J .

In the general case, the schedules where the tasks ending before or at d (resp. starting at or after d) are
in order of nondecreasing αj/pj (resp. nonincreasing βj/pj) are strictly dominant when minimizing fα,β.

For given unit penalties α and β, a feasible schedule is said V-shaped if the early tasks in order of
increasing αj/pj and the tardy ones in order of decreasing βj/pj . Since the tasks ending before or at d
are exactly the early ones in any schedule, and the tasks starting after or at d are exactly the tardy ones
in a d-schedule, we deduce from Lemma 5 and Lemma 16, that V-shaped d-blocks are dominant in the
unrestrictive case.

In case of equality between two ratios αi/pi and αj/pj (resp. βi/pi and βj/pj), swapping tasks i and
j does not change the total penalty of a schedule if both are early (resp. tardy). Thus in this case, there
exist different optimal V-shaped d-blocks with the same partition between early and tardy tasks. To ensure
there is only one way to decode a partition between early and tardy tasks into a dominant schedule, we fix a
priori two orders on tasks : one by decreasing αj/pj , and one by decreasing βj/pj . Let ρ and σ denote two
functions in J J1,nK such that:

(
αρ(k)

pρ(k)

)

k∈J1,nK

and

(
βσ(k)

pσ(k)

)

k∈J1,nK

are decreasing.

We say that a feasible schedule is ρ-σ-shaped when early (resp. tardy) tasks are processed in order of
decreasing ρ(j) (resp. increasing σ(j)). These schedules are dominant in the unrestrictive case, and only
them will be considered for the remainder of this section. Note that there is a one-to-one correspondence
between the ρ-σ-shaped d-blocks and the vectors δ∈{0, 1}J .

4.2 A compact formulation for the unrestrictive case

If the partition between early and tardy tasks of a ρ-σ-shaped d-block is given by δ, then the earliness and
tardiness are given by:

eρ(δ)=


δj ×

ρ−1(j)−1∑

k=1

pρ(k) δρ(k)




j∈J

and tσ(δ)=


(1−δj)×

σ−1(j)∑

k=1

pσ(k) (1−δσ(k))




j∈J

Using the same x variables as done in Section 3 to linearize these terms, we consider:

eρ(δ, x)=




ρ−1(j)−1∑

k=1

pρ(k)
δj+δρ(k) − xj,ρ(k)

2




j∈J

and tσ(δ, x)=




σ−1(j)−1∑

k=1

pσ(k)
2−(δj+δσ(k))− xj,σ(k)

2
+ pj(1−δj)




j∈J
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where we use xi,j without carrying if i < j, that is to denote the variable xmin(i,j),max(i,j).
Hence the total penalty is simply expressed by:

hρ,σα,β(δ, x)=fα,β
(
eρ(δ, x), tσ(δ, x)

)
,

which is linear. We then consider the following polyhedron:

P
2=
{
(δ, x)∈ [0, 1]J×R

J<

(13-16) are satisfied
}
.

By definition of eρ(δ, x) and tσ(δ, x), a vector (δ, x) in P 2 cannot encode a non feasible schedule. So there is
no need to add non-overlapping inequalities, and hence we do not have to provide a separation algorithm or
to only consider the extreme points of P 2

Finally, a compact formulation for the unrestrictive common due date problem defined by the penalties
(α, β) is:

(F2)
minhρ,σα,β(δ, x)

s.t. (δ, x)∈ intδ
(
P 2
)

where ρ and σ are pre-computed.
Note that polyhedron P 2 does not depend on ρ or σ. Indeed, it is an extended polytope of the classical

cut polytope for the complete undirected graph on J [3]. A linear transformation of this polytope has been
studied in [17]. From this work we can directly derive that P 2 is a full-dimensional polytope and that
inequalities (13-16) define facets of P 2.

17



5 General case

In this section, we provide a formulation for the general case based on the ideas of the formulation (F1).
In the general case, we have to consider arbitrary earliness unit penalties, that is αj may be zero for some
tasks j in J . We can no longer derive an optimal solution from the one obtained for the instance which
does not include these tasks. Indeed, the due date could not allow to add these tasks at the beginning of
the schedule. For some instances, such tasks are tardy in all optimal schedules. For example if J = J1, 3K,
d= 6, p1 = 5, p2 = 3, p3 = 2, α1 = 0, β1 = 1 and α2 = β2 = α3 = β3 = 2, then the optimal schedule is given
by C2 =46 d, C3=6= d, C1 =11> d. Note that, conversely, tasks with a zero unit tardiness penalty can
still be added at the end of an optimal schedule obtained for the instance reduced to the non-zero earliness
penalty tasks in order to obtain an optimal schedule for the original instance. Hence, for the general case,
we will set α∈(R+)

J and β∈(R∗
+)

J .

5.1 Dominance properties

In the general case, the dominance of the d-blocks is no longer valid. Let us define a d-or-left-block as a
block which is a d-schedule or which starts at time 0, or both, to enunciate the following dominance property
in this case [11].

Lemma 17

In the general case, d-or-left-blocks are dominant when minimizing fα,β.

In the sequel, only d-or-left-blocks will be considered.

Due to the potential occurrence of a straddling task in all optimal schedules for some instances, the
partition between early and tardy tasks is no longer sufficient to deduce an optimal schedule. As explained
in Section 4, we can compute the best d-block with respect to this partition. Conversely computing the best
left-block (i.e. the best block starting at time 0) with respect to this partition is not straightforward, since
we cannot say a priori which is the straddling task among the tardy ones.

Let us consider the best left-block with respect to a given partition. Then the time a between the be-
ginning of the straddling task and d is equal to d−p(E) and the straddling task belongs to { j∈T | pj>a },
where E (resp. T ) denotes the set of early (resp. tardy) tasks given by the partition. One can conjecture
that the straddling task maximizes βj/pj over this set. However, it is not the case, as we shown by the
following instance:

J=J1, 8K, d=2, ∀i∈ [1..6], pi=1, αi=20 , βi=4 , βi

pi
=4,

p7=3, α7=20, β7=5, β7

p7
= 5

3 ,

p8=4, α8=20, β8=8, β8

p8
=2

We can easily verify that the optimal partition is E=∅, T =J , then a=2. According to Lemma 16, an
optimal schedule can be found among the left-blocks starting by task 7 and ending by task 8, or starting by
task 8 and ending by task 7. The order of the other tasks is arbitrary, since they all have the same ratio.
Figure 4 represents one optimal schedule of each type.

d0 a

p p p p p p p p p p p p p p
J7 J8J1 J2 J3 J4 J5 J6

d0 a

p p p p p p p p p p p p p p
J7J8 J1 J2 J3 J4 J5 J6

Figure 4: The two types of dominant schedules for E=∅ and T =J .
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The best ones are those starting by task 7 and ending by task 8. Nevertheless the ratio β7/p7 =5/3 is
smaller than the ratio β8/p8=2.
This example can be extended to an example where E 6=∅ by adding tasks with zero unit earliness penalty
and large unit tardiness penalty.

In this example, the non optimality seems to be induced by an incorrect ratio choice: if we consider the
ratio βj/(pj−a) instead of βj/pj, task 7 has a greater ratio than task 8.Then one can conjecture that the
straddling task j maximizes βj/(pj−a) over tardy tasks with a processing time larger than a.
Unfortunately, this is also false, as shown by the following instance:

J=J1, 5K, d=2, ∀i∈ [1..3], pi=1, αi=10 , βi=2 ,

p4=4, α4=10, β4=5,

p5=3, α5=10, β5=3,

We can easily verify that the optimal partition is E=∅, T =J , then a=2. According to Lemma 16, an
optimal schedule can be found among the left-blocks starting by task 4 and ending by task 5, or starting by
task 5 and ending by task 4. The order of the other tasks is arbitrary, since they all have the same ratio.
Figure 5 represents one optimal schedule of each type.

d0 a

p p p p p p p p p p p p
J5J4 J1 J2 J3

d0 a

p p p p p p p p p p p p
J5 J4J1 J2 J3

Figure 5: The two types of dominant schedules for E=∅ and T =J .

The best ones are those starting by task 4 and ending by task 5. Nevertheless the ratio β4/(p4−a)=2.5
is smaller than the ratio β5/(p5−a)=3. This example can also be extended to an example where E 6=∅.

The idea of the compact formulation (F2) for the unrestrictive case was to obtain the value b(E,T ) of
a best schedule for a fixed partition between early and tardy tasks (E,T ). In the general case, to derive
b(E,T ) from a partition (E,T ) which is feasible (i.e. such that p(E)6d ), we have to consider several cases
before using the dominance property.
Firstly, if we assume that b(E,T ) is achieved by a schedule having an on-time task. then we simply obtain
b(E,T ) as for the unrestrictive case. Secondly, if we assume that b(E,T ) is achieved by a schedule having
a straddling task, then we can also assume, without lost of generality, that the schedule starts at time 0
(using Lemma 17). We have then to consider the case where the straddling task is j for each j∈T such that
pj>d−p(E). In each case, Lemma 16 allows to derive the optimal schedule and we obtain the value b(E,T )
in a similar way as for the unrestrictive case.
But, it seems difficult to derive a linear function from this observation. Therefore, we adapt the first
formulation and not the second for the general case.

5.2 A natural formulation for the general case

• An encoding based on a new reference point
In case of a schedule with a straddling task js, i.e. Cjs−pjs <d<Cjs , the tardiness of tardy tasks do not
satisfy the non-overlapping constraints, i.e. t/T does not satisfy inequalities (Q0), particularly tjs > pjs .
Indeed, these tardiness no longer play the same role as completion times. Therefore, we will use variables
describing the schedule with respect to a new reference point, which is the starting time of js instead of the
due date d.
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We introduce a new variable a, so that d−a is the starting time of js. The schedule is then a (d−a)-
schedule. For each task j in J , we consider a variable e′j (resp. t′j) instead of ej (resp. tj), representing the
earliness (resp. the tardiness) according to the new reference point d−a. Figure 6 illustrates this encoding
for a schedule holding a straddling task.

0

jsi j

dd−a a

e′i t′j

Figure 6: The (a, e′, t′) encoding for a schedule holding a straddling task js

Since we do not know a priori if there is a straddling task in the optimal schedule, our formulation must
also handle d-blocks. Hence, we also need to encode d-blocks by variables a, e′, t′.

In case of a schedule holding an on-time task jt, we can keep d as the reference point, since we can use
earliness and tardiness as proposed in formulation (F1). Hence, the first encoding consists in setting a=0,
and using e′ (resp. t′) to represent earliness (resp. tardiness). Figure 7 illustrates this encoding for a schedule
holding an on-time task.

0

jti j

d

d−a

e′i t′j

Figure 7: The first (a, e′, t′) encoding for a schedule holding an on-time task jt

Unfortunately, to ensure that a takes the expected value in case of a schedule holding a straddling task,
we will introduce a boolean variable to identify the task j0 beginning at d−a. It force to have in every
schedule a task beginning at d−a. Therefore, this first encoding is not valid in case of a d-block without
tardy task. We then propose a second encoding for the d-blocks. It consists in choosing the starting time of
jt as the new reference point, which is setting a=pjt , This second encoding can be used also for a schedule
holding an on-time task and having tardy tasks, as illustrated by Figure 8.

0

jti j

dd−a a

e′i t′j

Figure 8: The second (a, e′, t′) encoding for a schedule holding an on-time task jt

To sum up, the first encoding, with a = 0, is suitable for d-blocks, except those without tardy tasks.
Conversely, the second encoding, with a= pjt, is suitable for any d-block. Fortunately, the three encodings
proposed in this section can be decoded in the same way : C=

(
d−a−e′j+t′j

)
j∈J

gives the completion times
of the encoded schedule.

• Consistency between e′ and t′ using δ variables
To ensure consistency between e′ and t′, we use again variables δ. Whereas in the previous formulation δj
indicated if task j completes before or at d, in this formulation δj indicates if the task completes before or
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at d−a. We also use inequalities (5-8) where e (resp. t) are replaced by e′ (resp. t′). These inequalities will
be denoted (5’-8’) in the sequel.
Note that δj indicates no longer necessarily if task j is early or not. Keeping the previous notations E(δ)=
{j ∈ J | δj = 1} and T (δ) = {j ∈ J | δj = 0},

(
E(δ), T (δ)

)
is not the partition between early and tardy tasks

as soon as we use the second encoding for a d-block. Therefore, we introduce a new partition of tasks: if C
encodes a schedule by its completion times, we define

Ẽ(C)={ j∈J |Cj<d} and T̃ (C)={ j∈J |Cj6d}

Note that if there is a straddling task in the schedule, then E(C)= Ẽ(C) and T (C)= T̃ (C). Besides in this
case, the only encoding is such that E(δ)=E(C)= Ẽ(C) and T (δ)=T (C)= T̃ (C).
In the case of a d-block, using the first encoding we also have E(δ)=E(C) and T (δ)=T (C), but using the
second one we have E(δ)= Ẽ(C) and T (δ)= T̃ (C).

• Handling the positivity
Since the due date can be smaller than p(J), avoiding overlapping and idle times does not ensure the positivity
constraint. Therefore, we add the following inequalities ensuring that e′j+pj6d−a for each task j completing
before d−a. They are valid since d is an upper bound of a.

∀j∈J, e′j+pjδj 6 d−a (17)

• Handling the non-overlapping
To ensure the non overlapping, we use again variables x, satisfying (13-16) and the inequalities (Q1) and (Q2),
where e (resp. t) are replaced by e′ (resp. t′). These inequalities will be denoted (Q1’) and (Q2’) in the sequel.

In order to ensure that tasks completing before or at d−a do not overlap using inequalities (Q1’),
inequalities (17) must not restrict too much e′j from above.

Indeed, an inequality of the form Cj6M is compatible with the non-overlapping inequalities (Q0) only
if M> p(J). If M<p(J), adding such an inequality makes appear extreme points which can be reached by
minimization, whereas they do not correspond to feasible schedules.

For example if J= J1, 2K, d=5, p1=p2=3, α1=α2=1, β1=β2=10, then the schedule where both tasks
are completed at time 3, which is not feasible, corresponds to an extreme point where a=0, e′1=e′2=d−a.
Moreover, this schedule induces a total penalty of 4, while the penalty of an optimal schedule is 12. The
extremality of this unfeasible schedule comes from the fact that d−a restricts too much the value of e′.
Indeed, we have d−a=5 and p(E)=6, while we should have d−a>p(E).
Therefore, we introduce the following inequalities:

∑

j∈J

pjδj 6 d−a (18)

In order that inequalities (Q1’) (resp. (Q2’)) guarantee that the tasks completing before (resp. after)
d−a do not overlap, the total penalty must be a decreasing function of variable e′j (resp. t′j) for each task j
such that δj=1 (resp. δj=0). If a is such that d−a is the starting time of the straddling task, the on-time
task or the first tardy task as proposed by the previous encodings, these two constraints are ensured. But
we have to ensure that the variable a takes the expected value by linear inequalities.

• Ensuring that a takes the expected value
In spite of their apparent symmetry, the two previous constraints on d−a are completely different.

To ensure the first one, it suffices to ensure that any task completing before or at d−a completes before
or at d. Indeed, reducing e′j for such a task j while satisfying the inequality (Q1’) associated to {j}, i.e.
e′j > 0, task j remains early and its tardiness decreases, which reduces the induced penalty. Therefore, the
first constraint is guaranteed by the following inequality:

a > 0 (19)
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To ensure the second one, ensuring that any task completing after d−a completes after or at d is not
sufficient. Indeed, reducing t′j for such a task j while satisfying the inequality (Q2’) associated to {j}, i.e.
t′j > pj, task j can become early, so the induced penalty does not necessarily decrease. Figure 9 illustrates
the extreme case of this phenomenon, that is when a=d, E(δ)=∅, and all early tasks overlap each others to
be on-time.

0

p p p p p p p p p p p p
i

j

k

d

d−a

a

t′j= t′i= t′k

Figure 9: An unfeasible schedule when a=d

Note that this case appears even if we add inequalities ∀j ∈ J, t′j > a(1− δj). Adding inequalities
∀j ∈ J, pj > a(1−δj), could avoid this issue, but unfortunately they are not valid, since a task completing
after d−a can be shorter than a, as longer it is not the first one.
In order to ensure that the first task j0 completing after d−a completes after or at d, we introduce a boolean
variable γj for each task j, representing if j is j0, and the following inequalities:

∑

j∈J

γj = 1 (20)

∀j∈J, δj 6 1−γj (21)

∀j∈J, t′j 6 pj + (1−γj) (p(J)−pj) (22)

Whereas inequalities (20-21) ensure that γ designates one and only one task i0 among those completing
after d−a, inequalities (22) ensure that i0 is the first one, i.e. i0 = j0. Indeed, they ensure that t′i0 6 pi0 ,
and since t′i0 > pi0 by inequality (Q2’) associated to the singleton {i0}, we deduce that t′i0 = pi0 . Then, the
inequality (Q2’) associated to a pair {i0, j} with δj=0, suffices to prove that task j completes after i0.

Lemma 18

Let (t′, δ, x, γ)∈R
J×{0, 1}J×[0, 1]J

<
×[0, 1]J .

(i) γ∈{0, 1}J and γ and δ satisfy (20-21) ⇔ ∃i0∈T (δ), γ=1i0

(ii) In case (i) holds and t′, δ, x satisfy (13-16), (22) and (Q2′),
then t′i0=pi0 and ∀j∈T (δ), j 6= i0, t

′
j> t′i0+pj.

Using γ, which identify j0, we add the following valid inequalities to ensure that a6pj0= t′j0 .

∀j∈J, a 6 pj+(1−γj)d (23)

• A linear objective function using e′,t′, a and b variables
Using e′ and t′ variables instead of e and t offers an easy way to ensure positivity, consistency and non-
overlapping at the expense of a linearization of the product aδj . Indeed, in the objective function, we need
a linear expression for the earliness (resp. the tardiness) of any task j in J , which is equal to e′j+aδj (resp.
to t′j−a(1−δj)).

Then we introduce a variable bj for each task j in J to replace the product aδj . We add the following
inequalities to ensure that b variables take the expected values.

∀j∈J, bj > 0 (24)

∀j∈J, bj 6 a (25)

∀j∈J, bj 6 δjd (26)

∀j∈J, t′j > a− (1−δj) d (27)
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Since d is an upper bound of a by construction, we get the following lemma:

Lemma 19

Let (a, b, δ)∈R×R
J×{0, 1}J .

a, b and δ satisfy inequalities (24-27) ⇔ b= a δ

Then the total penalty of a schedule encoded by (e′, t′, a, b) is :

hα,β(e
′, t′, a, b) =

∑

j∈J

αje
′
j + βjt

′
j + (αj+βj) bj − βja

which is linear. If C encodes a schedule by its completion times, the two possible vectors (e′, t′, a, b) encoding
this schedule are:

θ′(C) =
((

[d−a−Cj]
+
)
j∈J

,
(
[Cj−(d−a)]+

)
j∈J

, a, a1E(C)

)
where a = d− min

i∈T (C)
Ci−pi

θ̃′(C) =
((

[d−ã−Cj]
+
)
j∈J

,
(
[Cj−(d−ã)]+

)
j∈J

, ã, ã1
Ẽ(C)

)
where ã = d− min

i∈T̃ (C)
Ci−pi

Note that if the schedule holds a straddling task, then θ(C)= θ̃′(C), since E(C)= Ẽ(C) and T (C)= T̃ (C).
Even for a schedule admitting two different encodings, (i.e. for a d-schedule with at least one tardy task)
the function hα,β holds the total penalty, as long as the schedule satisfies the non-overlapping constraint:

Lemma 20

Let C∈R
J . If C satisfies (1), then hα,β

(
θ′(C)

)
=hα,β

(
θ̃′(C)

)
=fα,β

(
θ′(C)

)
.

• Formulation (F3)
Let us define the polyhedron:

P
3=

{
(e′, t′, δ, x, a, b, γ)∈R

J×R
J×[0, 1]J×R

J<
×R×R

J×[0, 1]J (5’-8’), (13-16), (17-18), (23-19), (24-27),
(20-22), (Q1’) and (Q2’) are satisfied

}

Note that this polyhedron depends on d, in addition to p.
Inequalities (Q1’) and (Q2’) require the same separation algorithm as for (Q1) and (Q2), which will be

developed in Section 6.
In order to keep only points with integer δ and γ, we introduce the operator intδ,γ :

intδ,γ(V )=
{
(e′, t′, δ, x, a, b, γ)∈V | δ∈{0, 1}J , γ∈{0, 1}J

}

for V included in R
J×R

J×R
J×R

J<
×R×R

J×R
J .

Finally, our formulation for the general common due date problem is :

(F3)
minhα,β(e

′, t′, a, b)

s.t. (e′, t′, δ, x, a, b, γ)∈ intδ,γ
(
extr(P 3)

)

5.3 Validity of Formulation (F3)

Thanks to the natural variables e′ and t′, ensuring the non-overlapping constraint reduces to ensuring the
positivity and non-overlapping constraints for two subsets of tasks. In contrast with Formulation (F1) where
these two subsets are the early and the tardy tasks (cf.Lemma 8), in Formulation (F3), the subsets to consider
depend on the occurrence of a straddling or an on-time task, as detailed in the following lemma.
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Lemma 21

Let C∈R
J .

(i) If there exists js∈J such that Cjs−pjs<d<Cjs and (e′, t′, a, b)=θ′(C)= θ̃′(C),

then C satisfies (1) ⇔

{
(e′+p)/E(C) satisfies (0) and (1)

t′/T (C) satisfies (0) and (1)

(ii) If there exists jt∈J such that Cjt=d and (e′, t′, a, b)= θ̃′(C),

then C satisfies (1) ⇔

{
(e′+p)/Ẽ(C) satisfies (0) and (1)

t′
/T̃ (C)

satisfies (0) and (1)

The following theorem establishes that a feasible schedule, under some assumptions, is encoded by an
integer point of P 3. In particular a d-or-left-block is encoded by an integer point of P 3.

Theorem 22

Let C∈R
J satisfying (0) and (1).

(i) If there exists js∈J such that Cjs−pjs<d<Cjs and ∀j∈J, d−p(J)6Cj−pj and Cj6Cjs− pjs+ p(J),
then there exists X=(e′, t′, δ, x, a, b, γ)∈ intδ,γ(P

3), such that θ′(C)=(e′, t′, a, b).

(ii) If there exists jt∈J such that Cjt=d and ∀j∈J, d−p(J)6Cj−pj and Cj6Cjt− pjt+ p(J),

then there exists X=(e′, t′, δ, x, a, b, γ)∈ intδ,γ(P
3), such that θ̃′(C)=(e′, t′, a, b).

Proof : Let us start by proving (i).
From C, let us set: (e′, t′, a, b)=θ′(C), δ=1E(C), x=

(
1δi 6=δj

)
(i,j)∈J< , γ=1js and X=(e′, t′, δ, x, a, b, γ).

We will prove that X∈ intδ,γ(P
3).

Note that the definition of δ ensures that δ ∈ {0, 1}J , and that E(δ) = E(C) and T (δ) = T (C), which
allows the notation E and T for sake of brevity. By Lemma 9(i), the definition of x ensures that in-
equalities (13-16) are satisfied. By Lemma 18(i), the definition of γ ensures that inequalities (20-21) are
satisfied, since js∈T . By Lemma 19, inequalities (24-27) are satisfied, since b=a1E(C)=a δ.

For the straddling task js, we have Cjs− pjs = min
j∈T (C)

Cj−pj then a=d− (Cjs− pjs), by definition of θ′.

Since task js starts at or after 0 and before d, i.e. 06Cjs−pjs<d, we have 0<a6d. Thus inequality (19)
is satisfied, and for any task j 6= js, a 6 d+pj = (1−γj) d + pj . More precisely, task js starts after all
early tasks, and since they do not overlap, p(E)6Cj0− pj0= d−a, thus inequality (18) holds. Since task
js completes after d, i.e. Cjs >d , we get a = pjs + (d−Cjs) < pjs = pjs + (1−γjs) d. We deduce that
inequalities (23) are satisfied.

Inequalities (5’) and (7’), are satisfied by construction of e′ and t′.

For a task j in E, Cj6Cj0− pj0= d−a since j and j0 do not overlap, then e′j=d−a−Cj and t′j=0. The

corresponding inequality (8’) is thus satisfied, as well as (22) since pj + (1−γj)
(
p(J)−pj

)
= p(J) > 0.

By assumption Cj>d−p(J), thus e′j6d−a−
(
d−p(J)

)
6p(J), and inequality (6’) is also satisfied for j.

Moreover, d− e′j− pjδj = a+Cj− pj, and by positivity constraint Cj− pj > 0, thus d− e′j− pjδj > a and
inequality (17) is satisfied for j.

For a task j in T , Cj > d > d−a, then e′j =0 and t′j =Cj− d−a. The corresponding inequality (6’) is
thus satisfied. Moreover, d − e′j− pjδj = d > a, then inequality (17) is satisfied for j. By assumption

Cj 6 Cj0− pj0+p(J) 6 d+p(J), thus t′j 6
(
d+p(J)

)
− d−a and then t′j 6 p(J). We deduce that the

corresponding inequality (8’) is also satisfied, as well as inequality (22), since pj + (1−γj)
(
p(J)−pj

)
is

equal to p(J) (resp. to pjs= Cj0− d−a = t′js) if j 6=js (resp. if j=js).

Since C encodes a feasible schedule, C satisfies (1). Using Lemma 21, (e′+p)/E , as well as t′/T , satisfies (0)

and (1). Applying Property 1 to these two vectors, we deduce that they satisfy (Q0), and using Lemma 10,
that e′, δ, x satisfy (Q1’) and t′, δ, x satisfy (Q2’). Thus, X belongs to intδ,γ(P

3).

Rewriting the proof by replacing θ′ by θ̃′, E(C) by Ẽ(C), T (C) by T̃ (C), and the straddling task js
by the on-time task jt provides almost the proof of (ii). The only difference lies in the justification of
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inequality (23) for jt: in this case Cjt=d, then a = pjs + (d−Cjs) = pjs = pjs + (1−γjs) d.

�

The following theorem establishes that an optimal solution of formulation (F3) is a solution for the
general common due date problem.

Theorem 23

Let X∗=(e′, t′, δ, x, a, b, γ)∈ intδ,γ(P
3).

If α∈(R∗
+)

J, X∗∈extr(P 3) and (e′, t′, a, b) minimizes hα,β then X∗ encodes a d-or-left-block, by θ′ or θ̃′.

Proof : Let us set, for any task j in J , C∗
j = (d−a)− e′j + t′j.

The first step of the proof is to show that C∗ gives the completion times of the schedule encoded by X∗

using θ′ or θ̃′ i.e. that X∗=θ′(C∗) or X∗= θ̃′(C∗).
First we derive from inequalities (5’-8’) that ∀j∈T (δ), e′j=0 and ∀j∈E(δ), t′j=0.

Since δ and γ are in {0, 1}J , and X∗ satisfies (13-16), (20-21) and (Q2’), Lemma 18 ensures that there
exists j0∈T (δ) such that γ=1{j0}, t

′
j0
= pj0 , and ∀j∈T (δ), j 6=j0, t

′
j > t′j0+pj . Since j0 is in T (δ), e′j0= 0

and C∗
j0
−pj0 = d−a. Then for any other task j in T (δ), C∗

j −pj = (C∗
j0
−pj0)+ t′j−pj > (C∗

j0
−pj0)+ t′j0 =

C∗
j0

> C∗
j0
− pj0 . We deduce that C∗

j0
− pj0 = min

j∈T (δ)
C∗
j −pj, and then a=d− min

j∈T (δ)
C∗
j −pj.

The question is is whether T (δ)=T (C∗) or T (δ)= T̃ (C∗). Indeed, if T (δ)=T (C∗), the value of a is the
one expected with the encoding θ′, whereas if T (δ)= T̃ (C∗), it is the one expected with θ̃′.

For any task j 6=j0 in T (δ), C∗
j = d−a+ t′j > d−a+ t′j0= d−a+ pj0 . Since γj0= 1, inequality (23) gives

a 6 pj0 , thus C∗
j > d. We deduce that T (δ)\{j0}⊆ T (C∗). Conversely, for a task j in T (C∗), C∗

j > d,
which is equivalent to t′j − e′j > a. Since a > 0 by inequality (19), t′j > e′j, which would be impossible if
j was in E(δ), according to inequalities (5’) and (8’). We deduce that T (C∗) ⊆ T (δ). Two cases have to
be considered:

→ If a<pj0 , then C∗
j0
>d, i.e. j0∈T (C∗), and then T (δ)=T (C∗) and E(δ)=E(C∗).

→ If conversely a = pj0 , then C∗
j0
= d and j0 ∈ T̃ (C∗), we deduce that T (δ)⊆ T̃ (C∗). For j in T̃ (C∗),

either j∈T (C∗)⊆T (δ) or Cj=d, that is t′j = e′j+a = e′j+pj0> e′j , and necessarily j∈T (δ). We conclude

that T (δ)= T̃ (C∗) and E(δ)= Ẽ(C∗).

For the remainder of the proof, we assume that we are in the first case. Then E (resp. T ) will denote
E(C∗) (resp. T (C∗)), and we will use the encoding θ′. To handle the second case, it suffices to replace
E(C∗) by Ẽ(C∗), T (C∗) by T̃ (C∗), and θ′ by θ̃′ in the second step, and using that j0 is an on-time task
in the third step.

We can rewrite δ as 1E(C∗), and thus b as a1E(C∗), since b= aδ by inequalities (24-27) and Lemma 19.
Using inequalities (5’-8’), it is easy to show that e′ =

(
[d−a−C∗

j ]
+
)
j∈J

and t′ =
(
[C∗

j −(d−a)]+
)
j∈J

.

Then we can conclude that (e′, t′, a, b)=θ′(C∗), that is that C∗ and (e′, t′, a, b) encode the same schedule,
which will be denoted by S∗.

The second step is to show that S∗ is feasible, by proving that C∗ satisfies (0) and (1).
For a task j in E, inequality (17) ensures that pj 6 d−a − e′j = C∗

j . For a task j in T , inequality (17)
ensures that a 6 d, then Cj= d−a+ t′j> t′j. For another, we deduce that t′j> pj from inequality (Q2’)
associated to {j}. Thus C∗ satisfies (0).

To show that C∗ satisfies (1), using Lemma 21, it remains to show that vectors (e′+p)/E and t′/T satisfy

(0) and (1). Since inequalities (Q1) and (Q2) are satisfied, we know from Lemma 10 that (e′+p)/E and
t′/T satisfy inequalities (Q0). On one hand, these inequalities for the singletons ensure that both vectors

satisfy (0). On the other hand, inequalities (Q0) will allow us to show that both vectors satisfy (1).

Let us assume that (e′+p)/E does not satisfy (1). Then there exist two tasks i and j in E such that
e′i+pi6e′j+pj<(e′i+pi)+pj . Three cases have to be considered:
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→ If e′j+pj > p(J), then e′j+pj > p(E). Applying Lemma 4, we can construct a vector e′− such that

X− = (e′−, t′, δ, x, a, b, γ) is in intδ,γ(P
3) and hα,β(e

′−, t′, a, b) < hα,β(e
′, t′, a, b) since α ∈ ((R∗

+)
J, which

contradicts the minimality of (e′, t′, a, b).

→ If e′j+pj=d−a, we can derive the same contradiction since d−a>p(E) from inequality (18).

→ If e′j+pj<p(J) and e′j+pj<d−a, then applying Lemma 3 to (e′+p)/E , we can construct two vectors

e′+− and e′−+ such that X+− = (e′+−, t′, δ, x, a, b, γ) and X−+ = (e′−+, t′, δ, x, a, b, γ) are in intδ,γ(P
3)

and that X∗ is the middle point of the segment [X+−,X−+]. which contradicts the extremality of X∗.

Similarly, let us assume that t′/T does not satisfy (1). Then there exist two tasks i and j in T such that

t′i 6 t′j < t′i+pj. Since ∀k ∈ T (δ), k 6= j0, t
′
k > t′j0+ pk, we deduce that i 6= j0. Then for tasks i and j,

inequalities (8’) and (22) are equivalent, and t′i and t′j are only bounded from above by p(J). Then two
cases have to be considered:

→ If t′j >p(J), then t′j >p(T ). Applying Lemma 4, we can derive a contradiction to the minimality of
(e′, t′, a, b).

→ If t′j<p(J), Applying Lemma 3 we can derive a contradiction to the extremality of X∗.

Finally, S∗ is feasible.

The third step is to show that S∗ is a d-or-left-block.
We first prove that S∗ is a block using the same method as in the proof of Theorem 13. Assuming that
S∗ is not a block, we construct a better schedule Ŝ by tightening tasks arround d. Using Theorem 22,
there exists X̂∈ intδ,γ(P

3) encoding Ŝ, and it contradicts he minimality of (e′, t′, a, b).
Thus S∗ is a block. Now we have to show that S∗ starts at time 0 or holds an on-time task. Let
us assume that it is not the case, then setting ε = 1

2 min(pj0−a, a, s) where s denotes the starting
time of S∗, we have ε > 0. Setting a−= a− ε (resp. a+= a+ ε), and X− = (e′, t′, δ, x, a−, a−δ, γ)
(resp. X+=(e′, t′, δ, x, a+, a+δ, γ) ), X− (resp. X+) encodes using θ′ the schedule obtained by shifting
backward (resp. forward) by ε time unit all the tasks. By definition of ε, X− (resp. X+) still satisfies
inequalities (17), (23), (19) and (18), thus X−∈P 3 (resp. X+∈P 3). Since X∗ is the middle of [X−,X+],
that contradicts the extremality of X∗.

We deduce that X∗ encodes a d-or-left-block. �

If some tasks have zero unitary earliness penalty, formulation (F3) provides a vector X∗=(e′, t′, δ, x, a, b, γ)
which partially encodes an optimal schedule. Indeed, except for early tasks having a zero unit earliness
penalty, the completion time of a task j is given as previously by C∗

j = (d−a) − e′j+ t′j . Conversely, for an
early task j such that αj =0, e′j could be d−pj for instance and the previous encoding would give C∗

j =pj.
If there are several early tasks having zero unitary earliness penalty, an overlapping would appear at time 0.
Since their unitary earliness penalty is zero, the minimality of X∗ does not ensure that these tasks are well
spread out (in this context Lemma 4 cannot be applied). However, the minimality of X∗ ensures that the
other early tasks (i.e. having a non-zero unitary earliness penalty) are right-tight with respect to d. Hence,
using inequality (18), there is enough time between 0 and their processing duration to process the overlapping
tasks. Thus, it suffices to schedule these tasks in an arbitrary order from time 0 to obtain a feasible schedule
S . Since these tasks do not induce any penalty, the total penalty of S is hα,β(X

∗), regardless of their order.
We deduce that S is an optimal schedule.

The following theorem establishes that the general common due date problem reduces to solving formu-
lation (F3). We omit the proof since it follows the same lines as the one of Theorem 14.

Theorem 24

Any optimal d-or-left-block, is encoded by a vector minimizing hα,β on intδ,γ
(
extr(P 3)

)
.

Conversely, any vector minimizing hα,β on intδ,γ
(
extr(P 3)

)
, encodes an optimal d-or-left-block.
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6 Separation algorithms

In this section, we explain how to separate inequalities (Q1),(Q2), (Q1’) or (Q2’), by solving a min-cut
problem in a suitable graph. We write the following development for inequalities (Q1) and (Q2), but a
rewriting exercise suffices to obtain the equivalent results for inequalities (Q1’) and (Q2’).

Let X = (e, t, δ, x) ∈ R
J×R

J× [0, 1]J ×R
J<

a vector satisfying inequalities (5-8) and (13-16). The sepa-
ration problem for inequalities (Q1) is to find a subset S of J such that X does not satisfy the associated
inequality (Q1) or to guarantee that X satisfies all inequalities (Q1).
We will first show that this separation problem reduces to the maximization of a set function Γ c,q defined
from parameters (c, q)∈R

J×R
J<

as :

∀S⊆J, Γ c,q(S) =
∑

(i,j)∈S<

qi,j +
∑

i∈S

ci

Indeed we have:

X satisfies (Q1) ⇔ ∀S ⊆ J,
∑

(i,j)∈S<

pipj
δi+δj−xi,j

2
6
∑

i∈S

piei

⇔ ∀S ⊆ J,
∑

(i,j)∈S<

pipj (δi+δj−xi,j)− 2
∑

i∈S

piei 6 0

⇔ ∀S ⊆ J, Γc1,q1(S) 6 0

where c1 =−2
(
pjej

)
j∈J

and q1 =
(
pipj (δi+δj−xi,j)

)
(i,j)∈J<

. Then it suffices to maximize Γc1,q1 over the

subsets of J . Indeed, if the obtained value is negative or zero, then X satisfies all inequalities (Q1), conversely
if the obtained value is positive, then the maximizing set is not empty and corresponds to an inequality (Q1)
that X does not satisfy.

Similarly, the separation problem of inequalities (Q2), is equivalent to the maximization of Γc2,q2 where

c2=2
(
(1−δj)p

2
j − pjtj

)
j∈J

and q2=
(
pipj (2−

(
δi+δj)−xi,j

))
(i,j)∈J<

.

Note that in both definitions of Γc1,q1 and Γc2,q2 , the parameter q is positive since δ and x satisfy
inequalities (15-16). Therefore, let us now explain how to reduce the maximization of Γ c,q for (c, q) ∈
R
J×(R∗

+)
J<

to a min-cut problem in an undirected graph as proposed by Picard and Ratliff [18]. Let us
assume that J= J1, nK for sake of brevity. We consider the weighted undirected graph G=(V,E,w), where
V =J0, n+1K, E=

{
{i, j} | (i, j)∈V 2, {i, j} 6={0, n+1}

}
and

∀j∈J, kj=2ci +

j−1∑

i=1

qi,j +

n∑

k=j+1

qj,k, w{0,j}=[kj ]
+, w{j,n+1}=[kj ]

− and ∀(i, j)∈J<, w{i,j}=qi,j

Figure 10 gives an illustration of such graph for n=5.

wi,j=qi,j

0

w
{0,j} =[k

j ] +

•
n+1

w{i,
n+

1}
=[
k i]

−

•

•

••

••
j i

Figure 10: Illustration of the weighted undirected graph G for n=5
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Note that V and E only depend on J , and w only depends on parameters c and q. For a cut (W,W ),
i.e. W ∩W =∅ and W ∪W =V , let w(W,W ) denote its weight according to w, i.e. w(W,W )=

∑
i∈W
j∈W

w{i,j}.

Then for any S⊆J we have:

Γ c,q(S) = −
1

2
w
(
S∪{0}, J1, n+1K\S

)
+

Q+C

2
+

K

4
where Q=

∑

(i,j)∈J<

qi,j, C=
∑

j∈J

cj and K=
∑

j∈J

|kj |

Since Q,C,K do not depend on S, finding a subset S maximizing Γ c,q is equivalent to finding a minimum
cut separating the additional vertices 0 and n+1. Since w is positive, this problem is solvable in polynomial
time, using the Gomory and Hu algorithm [9], as it will be explained in the next section.
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7 Experimental results

The experiments are conducted on a single thread on a machine with Intel(R) Xeon(R) CPU E5-2630 v2
@2.60GHz, and 16Gb RAM. We use the solver Cplex version 12.6.3.0, and the open source C++ optimiza-
tion library LEMON [8]. The branching scheme and the management of the current bounds is done by Cplex.

• Implementation of the separation algorithm
The separation of inequalities (Q1) and (Q2) is implemented using the so-called Callback functions proposed
by Cplex. The separation algorithm consists in:
1. Computing the weights w{i,j} introduced in Section 6 according to the value of variables e, t, δ, x (resp.

e′, t′, δ, x) in the solution provided by Cplex
2. Running the Gomory and Hu algorithm [9] provided by LEMON to obtain the Gomory-Hu tree rooted

in 0
3. Finding all minimum cost edges along the path between 0 and n+1 in the Gomory-Hu tree

4. Testing for any of such edges if the related cut W/W such that 0∈W corresponds to a negative value
5. Adding in the model the inequality (Q1) (resp. (Q2)) associated to S, where S=W \{0}, if there exists.

• Benchmark
We test our three formulations on the benchmark proposed by Biskup and Feldmann [5], available online on

OR-Library [4]. For each number of tasks n∈{10, 20, 50}, ten triples (p, α, β) of
(
N
n
∗

)3
are given. For each

one, setting d=hp(J) for h∈{0.2, 0.4, 0.6, 0.8, 1}, gives five instances, including one with an unrestrictive
due date corresponding to h=1. We obtain 15-task (resp. 30-task or 40-task) instances, by considering only
the first tasks in the 20-task (resp. 50-task) instances. In the following, the average values considered are
computed over the ten instances proposed by this benchmark for fixed value of n and h, unless otherwise
specified.

In [23], Sourd succeeded to solve instances of this benchmark having up to 1000 tasks. The running time
does not exceed 1400 seconds, and the average running time for 1000-tasks instances is between 611 and 918
seconds depending on the value of h. He obtained these results thanks to a dedicated branch-and-bound
algorithm using Lagrangian relaxation and dynamic programming. Conversely, our approach is generic for
this class of problem and could be more easily extended to problems including additional constraints.

• Entries of the following tables
n : the number of tasks
h : the parameter setting the due date d to hp(J) (in the general case only)

#opt : number of instances optimally solved among the ten proposed by the benchmark
avg-T : the average running time in seconds over the optimally solved instances
min-T : the minimum running time in seconds over the optimally solved instances
max-T : the maximum running time in seconds over the optimally solved instances

gap : the average gap over the instances not solved to optimality, that is the relative gap between the
best lower and upper bounds

#nd : the average number of nodes over the instances (resp. not) solved to optimality

7.1 Formulations for the unrestrictive case

In this section the problem is solved using formulations (F1) and (F2), as well as the formulation (FLO)
proposed in [5] based on linear-ordering variables, for sake of comparison.

• Formulation (FLO)
Table 1 presents the results obtained with the formulation (FLO). Here we use default Cplex (without
Callback functions and with all possible features). This configuration will be denoted as Default configuration.
The time limit is set to 3600 seconds.
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n #opt
Optimally solved instances Not opt. solved instances

avg-T min-T max-T #nd gap #nd

10 10 9 5 23 11230 - -

15 5 1821 255 3002 2762970 10% 5315709

20 0 - - - - 144% 1268881

Table 1: Solving the unrestrictive case using (FLO)

• Formulation (F1)
Table 2 presents the results obtained with the formulation (F1). In addition to the integer variables δ, we
define x variables as integer variables to allows Cplex to add more cuts. We use every Cplex features which
are not disabled by the Callback functions used to implement the separation of inequalities (Q1) and (Q2).
This configuration will be denoted as Feature+ configuration. The time limit is set to 3600 seconds, except
for the 50-task instances, for which the time limit is set to 10000 seconds.

n #opt
Optimally solved instances Not opt. solved instances

avg-T min-T max-T #nd gap #nd

10 10 < 1 < 1 < 1 4 - -

20 10 5 4 5 105 - -

30 10 50 34 96 690 - -

40 10 477 226 706 3871 - -

50 9 4721 2626 9771 15375 2% 33450

Table 2: Solving the unrestrictive case using (F1)

• Formulation (F2)
Table 3 presents the results obtained with the formulation (F2). Here only δ variables are defined as integer
variables, and we turn off all Cplex features, since a preliminary test has shown that results are much better
doing this. For instance, for n = 50, the average running time is 1315 seconds with Cplex features, and
215 seconds without using them. Note that in this configuration, branching is necessarily only done on δ
variables.
The time limit is set to 3600 seconds, except for the 60-task instances, for which the time limit is set to 10000
seconds. With a time limit of 3600 seconds, only five over the ten 60-task instances are solved to optimality,
and the average gap over the five others is 6%.

n #opt
Optimally solved instances Not opt. solved instances

avg-T min-T max-T #nd gap #nd

10 10 4 3 5 10 - -

20 10 3 3 4 197 - -

30 10 5 3 7 1380 - -

40 10 22 11 43 8545 - -

50 10 215 69 466 53210 - -

60 10 4063 262 9543 455873 - -

Table 3: Solving the unrestrictive case using (F2)
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Solving 50-task instances takes in average 215 seconds using (F2), while formulation (F1) achieves to
solve 40-task instances within 8 minutes in average and formulation (FLO) does not allow to solve any 20-
task instance within one hour. To conclude, for the unrestrictive instances (F2) is the best formulation and
allows to solve quite efficiently up to 60-task instances. Moreover, the most efficient configuration for this
formulation is to turn off Cplex features.

7.2 Formulations for the general case

In this section the problem is solved using formulations (F3) and (FLO). The time limit is set to 3600 seconds
for both tables.

• Formulation (FLO)
Table 4 presents the results obtained with the formulation (FLO) using the Default configuration, for instances
with h∈{0.2, 0.4, 0.6, 0.8}. The results for h=1 are already presented in Table 1.

n h #opt
Optimally solved instances Not opt. solved instances

avg-T min-T max-T #nd gap #nd

10 0.2 10 14 6 23 30790 - -

0.4 10 18 5 19 36011 - -

0.6 10 10 4 18 12645 - -

0.8 10 8 4 17 10015 - -

15 0.2 0 - - - - 73% 3372585

0.4 0 - - - - 59% 3562377

0.6 5 2278 1422 3105 2722027 24% 4452452

0.8 5 1575 338 2281 2308746 9% 5438115

20 0.2 0 - - - - 437% 1162593

0.4 0 - - - - 245% 1278346

0.6 0 - - - - 159% 1324055

0.8 0 - - - - 145% 1302895

Table 4: Solving the general case using (FLO)

• Formulation (F3)
Table 5 presents the results obtained with the formulation (F3) using the Feature+ configuration.

We can observe that using (F3), instances with h= 0.2 are easier to solve than those with a larger h.
It could be explained by a lower number of candidate partitions (E,T ), since the time between 0 and d is
reduced. For the general case, formulation (F3) is better than (FLO). Indeed, solving up to 20-task instances
takes less than 3 minutes using (F3), while using (FLO) does not allow to solve all 15-task instances within
one hour.

Note that for the unrestrictive instances (with h= 1), formulation (F3) is less efficient than (F2), and
even than (F1). The following paragraph will exploit this remark.

• What is really an unrestrictive instance?
We have defined a due date as unrestrictive as soon as d >

∑
pj, since it is the common definition. But

according to Biskup and Feldmann [5], a due date must be said unrestrictive if solving the problem for an
arbitrary due date gives a solution for this due date.
This definition raises two issues. First, since for some instances there exist several optimal solutions whose
early tasks do not have the same total length, this definition depends on the algorithm, or even on the
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n h #opt
Optimally solved instances Not opt. solved instances

avg-T min-T max-T #nd gap #nd

10 0.2 10 < 1 < 1 < 1 107 - -

0.4 10 < 1 < 1 < 1 278 - -

0.6 10 1 < 1 2 289 - -

0.8 10 1 < 1 2 272 - -

1.0 10 2 < 1 10 253 - -

20 0.2 10 25 17 33 2919 - -

0.4 10 73 28 145 8360 - -

0.6 10 86 38 159 8957 - -

0.8 10 74 28 144 7662 - -

1.0 10 77 27 136 7851 - -

30 0.2 10 966 107 2142 35085 - -

0.4 3 1582 381 1514 62017 7% 83820

0.6 7 1750 392 3494 56221 15% 44827

0.8 5 1120 444 2929 46641 10% 74973

1.0 6 1383 517 3372 48450 10% 71672

Table 5: Solving the general case using (F3)

execution of the algorithm. Secondly, this definition requires an optimal solution to be found to say if the
instance is unrestrictive or not. Therefore the prior definition is more convenient. But this remark leads to
the following (F2)-(F3) procedure to solve a general instance:
1. Solving the instance without considering d using the formulation (F2)
2. Testing if the total duration of early tasks is smaller than the due date i.e.

∑
δj=1

pj6d.

If it is the case, then the solution obtained is optimal.
Otherwise solving the instance considering d using (F3)

In average, the total length of the early tasks in the optimal solutions is 60% of the total length. That means
that in this benchmark, instances with h > 0.6 (i.e. d > 0.6 p(J)) are mostly unrestrictive as defined by
Biskup and Feldmann [5]. For these instances, the (F2)-(F3) procedure can be relevant (but we do not
present corresponding numerical results).

7.3 Comparison of the linear relaxations in the unrestrictive case

Table 6 shows that the lower bound provided by the linear relaxation (F2-LP) of (F2) is far from the optimal
value (see the third column). Note that other experiments show that (F1) provides the same lower bound.
We try to strengthen this lower bound by adding Cplex cuts and/or the triangle inequalities introduced
in [17].

For n6 30, adding the Cplex cuts provides a better lower bound than adding the triangle inequalities,
and combining both of them does not provide a better lower bound. Conversely, for n > 40, adding the
triangle inequalities provides a much better lower bound than adding the Cplex cuts, and combining both
of them provides almost the same bound as adding only triangle inequalities, but reduces the running time.
For instance, for 60-task instances, adding triangle inequalities reduces the gap from 92.8% to 23.5%, and
combining them with the Cplex cuts reduces the running time from 746 seconds to 337 seconds.

These observations lead to look for other valid inequalities for the quadratic polytope defined and studied
by Padberg in [17], in order to strengthen our formulations. Indeed, as triangle inequalities, such inequalities
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(F2-LP) (F2-LP) (F2-LP) (F2-LP)
+Cplex Cuts +Triangle +Triangle

+Cplex Cuts

n time gap time gap time gap time gap

10 0.14 41.1% 2.72 0.00% 0.05 3.29% 1.61 0.00%

20 0.03 67.9% 3.19 0.00% 0.52 13.2% 2.11 10.3%

30 0.12 77.0% 4.86 3.72% 0.52 19.4% 11.7 18.1%

40 0.29 82.9% 9.86 26.7% 31.9 21.5% 48.3 20.9%

50 0.62 86.1% 26.6 42.1% 177 22.5% 145 22.4%

60 0.74 92.8% 375 44.9% 746 23.5% 337 23.5%

Table 6: Improvement of the lower bound by adding Cplex cuts and triangle inequalities

can improve the lower bounds given by the linear relaxation of (F2), but also (F1) and (F3), where δ and
x variables satisfy the same inequalities. These observations also drive to deal with the related algorithmic
aspects. Indeed, since directly adding such inequalities in the model increases significantly the computation
times, we should define how to manage these inequalities, for instance by providing a cutting-plane based
algorithm.

8 Conclusion

In this paper, we proposed three new formulations based on earliness/tardiness variables to solve the common
due date scheduling problem. Our formulations allow to solve unrestrictive instances with up to 50 tasks and
general instances up to 20 tasks within few minutes, while Sourd [23] presents a dedicated algorithm solving
general instances up to 1000 tasks in less than 15 minutes. Even if our results are far from those presented
in [23], our MIP formulations outperform the compact linear ordering variable based MIP proposed in [5].
Our aim for the present work was to provide a MIP formulation less dedicated than the methods used in [23],
in order to easily include additional constraints. A key part in our work is the theoretical study of the non
overlapping inequalities, in particular Lemmas 3 and 4 and the scheme of proof used for Theorems 12 and 13
(resp. 22 and 23), which should allow to extend our approach to other related scheduling problems.

Further works will focus on the earliness-tardiness scheduling problem with parallel machines, where each
machine imposes the same due date for all the tasks. Another issue is to address the single machine common
due date scheduling problem with machine unavailability constraints. For both problems formulations similar
to (F3) can be derived.

An interesting issue is to study the polyhedra associated to such formulations, to strengthen them using
facet defining inequalities, as triangle inequalities, which can be used in any formulation using δ and x
variables to describe a cut in a graph.
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