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Abstract: Discretizing open systems of conservation laws while preserving the power-balance
at the discrete level can be achieved using a new Partitioned Finite Element Method (PFEM),
where an integration by parts is performed only on a subset of the variables in the weak
formulation. Moreover, since boundary control and observation appear naturally in this
formulation, the method is suitable both for simulation and control of infinite-dimensional port-
Hamiltonian systems. The method can be applied using FEM software, and comes along with
worked-out test cases on the 2D wave equation in different geometries and coordinate systems.
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1. INTRODUCTION

The port-Hamiltonian formalism has been proven to be
a powerful tool for the modeling and control of complex
multiphysics systems. In many cases, spatio-temporal dy-
namics must be considered and infinite-dimensional port-
Hamiltonian models are needed. Classical academic exam-
ples such as the transmission line, the shallow water or
the beam equations have been investigated in the port-
Hamiltonian framework (Duindam et al., 2009). Besides,
2D and 3D problems have been recently considered (Wu
et al., 2015; Vu et al., 2016; Trenchant et al., 2017). In
many of these examples, systems of two balance equations
are considered.

In order to simulate and design control laws, obtaining
a finite-dimensional approximation which preserves the
port-Hamiltonian structure of the original system can be
advantageous. It may serve as a design guide such as in
Control by Interconnection (CbI) or in Interconnection
and Damping Assignment Passivity Based Control (IDA-
PBC). Besides, preserving the underlying Dirac intercon-
nection structure results in energy conservation properties
and associated dynamical properties (e.g. stability, pas-
sivity, etc.).

In Golo et al. (2004), the authors proposed a mixed finite
element structure-preserving spatial discretization for 1D
hyperbolic systems of conservation laws, making use of the
distinct low-order basis functions to approximate respec-
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tively the energy and co-energy variables. More recently,
general geometric pseudo-spectral methods were proposed,
using high-order global polynomial (Moulla et al. (2012))
or Bessel (Vu et al. (2017)) basis functions. An exten-
sion for the piezoelectric beam was proposed by Cardoso-
Ribeiro et al. (2016). A finite volume structure-preserving
discretization method was also investigated in Kotyczka
(2016). Mixed finite element methods were also considered
in Farle et al. (2014a, 2013, 2014b) where one of the
equations is kept in strong form; numerical results were
presented for one-dimensional systems only. A numerical
study of a 2D vibro-acoustic system based on the mixed
finite element method was performed by Wu et al. (2015).
A 2D finite difference method with staggered grids was
used to find a structure preserving scheme by Trenchant
et al. (2017).

In these previous work, the central idea was to define
different discretization spaces for the energy and co-energy
variables such that the strong form of the equations was
exactly satisfied in these finite-dimensional spaces. Defin-
ing these spaces is straightforward for 1D, but seems to
be cumbersome for higher dimensions or higher order
methods (Hiemstra et al., 2014). The kernel of the exterior
derivatives in N -D dimensional domains is not anymore
trivial and the discretization of the trace operator on
boundaries with non trivial (i.e. rectangular) geometries
often leads to dimensionality problems. As suggested in
Kotyczka et al. (2018) the discretization of the weak for-
mulation of the considered port-Hamiltonian system may
be a practical solution to deal with these higher dimen-
sional problems. We propose in this paper to follow this
approach and to perform integration by parts on one of
the two balance equations. Then, the discretization in the



chosen basis for the the energy and co-energy variables
(and the associated test functions) leads directly to a full
rank representation for the finite dimensional Dirac in-
terconnection structure. Besides boundary conditions are
naturally handled, even in the case of higher order finite
element basis. Finally, differently from Farle et al. the
use of weak-form in both equations enables to work
with ready to use finite-element software to perform the
proposed discretization scheme, and consequently to con-
sider more involved problems and geometries. For instance,
computations in the present paper have been done using
the FreeFem++ software (Hecht, 2012).

This paper starts with the presentation of the wave equa-
tions in the partitioned weak form in Section 2. Sec-
ondly, we show that the discretized equations lead to a
finite-dimensional port-Hamiltonian system in Section 3.
Thirdly, the numerical scheme is applied to the simulation
of the wave equation taking into account boundary exci-
tation in Section 4. Finally in Section 5, we discuss how to
make use of the method in other coordinate systems, and
how to extend it to nonlinear (polynomial) systems, then
some conclusions are drawn.

2. PARTITIONED WEAK FORM FOR THE WAVE
EQUATION

In this section, we first recall how to write the strong
form of the wave equation as a port-Hamiltonian system
in § 2.1. Secondly, we propose a partitioned weak-form
representation for this system in § 2.2, which will be
discretized in the following section.

2.1 Wave equation as a system of conservation laws

The wave equation can be used to describe different
phenomena like liquid sloshing, elasticity, propagation of
electromagnetic waves in transmission lines, etc.

In vectorial form, the wave equation can be written as:

α̇p(xxx, t) = −diveeeqqq(xxx, t) ,

α̇ααq(xxx, t) = −∇∇∇ep(xxx, t) ,
(1)

where xxx ∈ Ω is the position vector, eeeqqq and ep are the co-
energy variables, obtained from the variational derivatives
of the system Hamiltonian with respect to the energy
variables αααq and αp, respectively.

In the case of the linear wave equation, the Hamiltonian
is given by:

H =
1

2

∫
Ω

(
α2
p + |αααq|2

)
dΩ , (2)

and the co-energy variables are computed as:

ep =
δH

δαp
= αp , eeeq =

δH

δαααq
= αααq . (3)

The wave equation written as (1) is also known as a system
of conservation laws. The spatial integral of the energy
variables represent conserved quantities (e.g., total volume
and linear momentum, in the shallow water equations, to-
tal charge and flux in the transmission line). Furthermore,
the co-energy variables also exhibits physically relevant
meaning (e.g., pressure and volumetric flow in the shallow
water equations, voltage and current in the transmission
line equations).

From the definition of the variational derivatives, The
time-derivative of the Hamiltonian can be computed as:

Ḣ =

∫
Ω

(
α̇ααq ·

δH

δαααq
+ α̇p

δH

δαp

)
dΩ , (4)

rewriting it in terms of the co-energy variables, we get:

Ḣ =

∫
Ω

(α̇ααq(xxx, t) · eeeqqq(xxx, t) + α̇p(xxx, t)ep(xxx, t)) dΩ , (5)

thus, from (1):

Ḣ =

∫
Ω

(−∇∇∇ep(xxx, t) · eeeqqq(xxx, t)− ep(xxx, t)diveeeqqq(xxx, t)) dΩ ,

=

∫
∂Ω

ep(xxx, t) (−nnn · eeeqqq(xxx, t)) ds ,

(6)

where the term nnn is the vector normal to the boundary
curve ∂Ω. Let us define the boundary input as:

u∂(s, t) := −nnn · eeeqqq(xxx(s), t)) s ∈ ∂Ω . (7)

Its power-conjugated boundary output is thus given by:

y∂(s, t) := ep(xxx(s), t) s ∈ ∂Ω , (8)

and the power-balance reads:

Ḣ =

∫
∂Ω

y∂(s, t)u∂(s, t) ds . (9)

2.2 Partitioned weak-form representation of the system of
conservation laws

Instead of using vector variables in (1), let us rewrite
the equations using its components: αp(xxx, t) = α1(x, y, t),

αααq(xxx, t) = [α2(x, y, t) α3(x, y, t)]
T

. The equations become:

α̇1(x, y, t) = − ∂

∂x
e2(x, y, t)− ∂

∂y
e3(x, y, t)

α̇2(x, y, t) = − ∂

∂x
e1(x, y, t)

α̇3(x, y, t) = − ∂

∂y
e1(x, y, t)

(10)

Let us take the arbitrary test functions v1(x, y), v2(x, y)
and v3(x, y), and rewrite the previous equation using the
following integral form:∫

Ω

v1α̇1 dxdy =−
∫

Ω

v1 (e2,x + e3,y) dxdy ,∫
Ω

v2α̇2 dxdy =−
∫

Ω

v2e1,x dxdy ,∫
Ω

v3α̇3 dxdy =−
∫

Ω

v3e1,y dxdy

(11)

integrating the first equation by parts, we get:∫
Ω

v1α̇1 dx dy =

∫
Ω

(v1,xe2 + v1,ye3) dxdy

−
∫
∂Ω

v1nnn ·
[
e2(x, y, t)
e3(x, y, t)

]
ds ,∫

Ω

v2α̇2 dxdy = −
∫

Ω

v2e1,x dx dy ,∫
Ω

v3α̇3 dxdy = −
∫

Ω

v3e1,y dxdy .

(12)

Note that the term −nnn ·
[
e2(x(s), y(s), t)
e3(x(s), y(s), t)

]
is the boundary

input, previously defined as u∂(s, t) in (7).



From (12), we note that the variables of index 1 (v1 and
e1) are derived once with respect to x and y, thus, they
must be of class H1(Ω). The variables of index 2 and 3
should be of class L2(Ω) and should also have boundary
values, thus belong to H1/2(Ω).

In the following section, we discretize the partioned weak-
form (12), and we show that the resulting system is a finite-
dimensional port-Hamiltonian system and thus preserves
the power-balance of the original system (9).

3. STRUCTURE PRESERVING FINITE ELEMENT
DISCRETIZATION

Let us approximate the energy variables α1(x, y, t) using
the following basis with N1 elements:

α1(x, y, t) ≈ αap1 (x, y, t) :=

N1∑
i=1

φi1(x, y)αi1(t)

= φφφ1(x, y)Tααα1(t)

(13)

The variables e1 and v1 are also approximated using
φφφ1(x, y).

Similarly, the other energy variables are approximated as:

α2(x, y, t) ≈ αap2 (x, y, t) :=

N2∑
i=1

φi2(x, y)αi2(t)

= φφφ2(x, y)Tααα2(t) ,

(14)

α3(x, y, t) ≈ αap3 (x, y, t) :=

N3∑
i=1

φi3(x, y)αi3(t)

= φφφ3(x, y)Tααα3(t) .

(15)

Furthermore, e2 and v2 are approximated using φφφ2(x, y),
e3 and v3 are approximated using φφφ3(x, y).

Finally, the boundary input can be discretized using any
one-dimensional set of basis functions, say ψψψ = [ψi]:

u∂(s, t) ≈ uap∂ (s, t) :=

N∂∑
i=1

ψi(s)ui∂(t) = ψψψ(s)Tuuu∂(t) . (16)

The finite-dimensional equations become:∫
Ω

φφφ1φφφ
T
1 dxdy︸ ︷︷ ︸
M1

α̇αα1 =

∫
Ω

φφφ1,xφφφ
T
2 dxdy︸ ︷︷ ︸

Dx

eee2

+

∫
Ω

φφφ1,yφφφ
T
3 dxdy︸ ︷︷ ︸

Dy

eee3

−
∫
∂Ω

φφφ1(x(s), y(s))ΨT (s) ds︸ ︷︷ ︸
B

uuu∂(t) ,

∫
Ω

φφφ2φφφ
T
2 dx dy︸ ︷︷ ︸
M2

α̇αα2 =−
∫

Ω

φφφ2φφφ
T
1,x dx dy︸ ︷︷ ︸
DT

x

eee1 ,

∫
Ω

φφφ3φφφ
T
3 dx dy︸ ︷︷ ︸
M3

α̇αα3 =−
∫

Ω

φφφ2φφφ
T
1,x dx dy︸ ︷︷ ︸
DT

y

eee1 .

(17)

The equations can be rewritten as:

M1α̇αα1 =Dxeee2 +Dyeee3 +Buuu∂(t) ,

M2α̇αα2 =−DT
x eee1 ,

M3α̇αα3 =−DT
y eee1 ,

(18)

whereM1,M2 andM3 are square matrices (of sizeN1×N1,
N2 × N2 and N3 × N3, respectively). Dx is an N1 × N2

matrix, Dy is an N1 × N3 matrix and B is an N1 × N∂
matrix.

The time derivative of the continous Hamiltonian (5) can
be rewritten using the coordinate variables as:

Ḣ =

∫
Ω

(α̇1e1 + α̇2e2 + α̇3e3) dxdy . (19)

Using the approximated variables:

Ḣ ≈ α̇ααT1 M1eee1 + α̇ααT2 M2eee2 + α̇ααT3 M3eee3 , (20)

Let us define new energy variables as:

α̃αα1 := M1ααα1 , α̃αα2 := M2ααα2 , α̃αα3 := M3ααα3 , (21)

such that (20) becomes:

Ḣ ≈ ˙̃αααT1 eee1 + ˙̃αααT2 eee2 + ˙̃αααT3 eee3 , (22)

We define the discretized Hamiltonian as:

Hd(α̃αα1, α̃αα2, α̃αα3) := H
[
α1(xxx, t) =

(
M−1

1 α̃αα1(t)
)T
φ1φ1φ1(xxx) ,

α2(xxx, t) =
(
M−1

2 α̃αα2(t)
)T
φ2φ2φ2(xxx) ,

α3(xxx, t) =
(
M−1

3 α̃αα3(t)
)T
φ3φ3φ3(xxx)

]
.

(23)

The time-derivative of this discretized Hamiltonian is
given by:

Ḣd = ˙̃αααT1
∂Hd

∂α̃αα1
+ ˙̃αααT2

∂Hd

∂α̃αα2
+ ˙̃αααT3

∂Hd

∂α̃αα3
. (24)

Since we want that both power balances (20) and (24)
coincide, the following constitutive relations must hold:

eee1 =
∂Hd

∂α̃αα1
, eee2 =

∂Hd

∂α̃αα2
, eee3 =

∂Hd

∂α̃αα3
. (25)

Rewriting the finite-dimensional equations (18), we get the
following finite-dimensional port-Hamiltonian system: ˙̃ααα1

˙̃ααα2
˙̃ααα3

 =

 0 Dx Dy

−DT
x 0 0

−DT
y 0 0

[eee1

eee2

eee3

]
+

[
B
0
0

]
uuu∂ ,

yyy∂ =BTeee1 ,

(26)

where yyy∂ is the conjugated output of the discretized
system.

From (24) and (26), the time derivative of the discretized
Hamiltonian is given by:

Ḣd = ˙̃αααT1 eee1 + ˙̃αααT2 eee2 + ˙̃αααT3 eee3 ,

=
(
eeeT2 D

T
x + eeeT3 D

T
y + uuuT∂B

)
eee1 − eeeT1 Dx eee2 − eeeT2 Dy eee3 ,

= yyyT∂ uuu∂ .
(27)

Note that uuuT∂ yyy∂ is the discrete analog of the continu-
ous power-balance equation (9). Furthermore, this power-
balance is exactly preserved in the finite dimensional ap-
proximation spaces. From the definition of the B ma-
trix (17), the definition of the approximated boundary



input uap∂ (s, t) := ψψψ(s)Tuuu∂(t) and approximated co-energy
variable eap1 (x(s), y(s), t) := φφφ1(x(s), y(s))Teee1(t), we get:

Ḣd = eeeT1

∫
∂Ω

φφφ1(x(s), y(s))ΨT (s) dsuuu∂ ,

=

∫
∂Ω

eap1 (x(s), y(s), t)uap∂ (s, t) ds .

(28)

Remark 1. Note that using classical finite-elements 1D
discretization basis for the boundary input, uuu∂(s, t) pro-
vides the values of the influx (−nnn · eeeqqq) at the boundary
nodes. For instance, in the case of shallow water equations,
these are the values of volumetric influx into the system.
The conjugated output yyy∂ is related with the curve integral
of e1(x(s), y(s), t) along the elements. The co-energy vari-
able e1(x(s), y(s), t) is the pressure, thus the discretized
outputs yyy∂ are related to the forces per unit length applied
along the external boundary.

Remark 2. With this choice of partition of variables, other
boundary inputs and outputs can easily be dealt with: it
is enough to define ũuu∂ := Σuuu∂ , and ỹyy∂ := Σyyy∂ for some
orthogonal matrix Σ of dimension N∂ × N∂ . Indeed, the
power balance (27) is preserved thanks to orthogonality,
and in (26), B is replaced by B ΣT for the control, and BT

is replaced by ΣBT for the collocated observation.

Remark 3. Different choices of variables are also possible
for the integration by parts. Instead of integrating the
first equation by parts in (12), we could integrate the two
other equations, which would also lead to another skew-
symmetric structure; the boundary inputs and outputs
would not be the same either.

Remark 4. In the sequel, in our finite element method, we
conveniently chose ψψψ(s) as φφφ1(x(s), y(s)) evaluated at the
boundary. Other choices could be investigated.

4. NUMERICAL EXPERIMENTS

In this section, several numerical experiments are pre-
sented with the goal of testing the proposed discretiza-
tion scheme. Firstly, a numerical convergence analysis is
presented in § 4.1. Different polynomial degrees for the
discretized variables and number of elements were con-
sidered. Secondly, in § 4.2 the scheme is proven useful
for simulating the system subjected to external boundary
excitation. Finally, in § 4.3 we discuss one of the main
advantages of this method (in comparison to other port-
Hamiltonian discretization methods): it can be directly
applied using available open source finite element software.

4.1 Convergence analysis

The power-preserving discretization method presented in
the previous section was implemented using quadrilateral
elements with polynomial basis functions for a square
domain. The following Hamiltonian was considered:

H =
1

2

∫
Ω

(
α2

1 + α2
2 + α2

3

)
dΩ , (29)

where Ω = [0, 1] × [0, 1]. After discretization, using (23),
the Hamiltonian reads:

Hd =
1

2

(
α̃ααT1 M

−1
1 α̃αα1 + α̃ααT2 M

−1
2 α̃αα2 + α̃ααT3 M

−1
3 α̃αα3

)
, (30)

A convergence analysis of the numerical method was done,
focusing on the spectrum of the discretized system. The

eigenvalues obtained from the numerical model were com-
pared to the exact eigenfrequencies of the linear wave equa-
tion with constant coefficients. The inputs of (26) (given
by the influx through the boundaries) were considered to
be zero, i.e.:

u∂(x, y, t) = 0 , [x, y] ∈ ∂Ω , (31)

or, in the finite-dimensional case, simply uuu∂ = 0.

Recall that the variables with index 1 (α1, e1, v1) must be
discretized with polynomials of order at least one (since
they are derived once in (12)). Fig. 1 shows the relative
error of the first modal frequency for three different choices
of polynomial approximations. P1P0P0 stands for first
order polynomial for the variable 1, and order zero for the
other two variables. P1P1P1 uses first-order polynomial
for the three variables. Finally, P1P2P2 uses first-order
polynomial for the first variable, and order two for the
other two variables.

10 1 10 2 10 3

Number of DOF

10 -3

10 -2

10 -1

10 0

10 1

10 2

E
rr

or
 o

f t
he

 fi
rs

t n
at

ur
al

 fr
eq

ue
nc

y 
(%

)

P1P0P0
P1P1P1
P1P2P2

Fig. 1. Convergence of the first natural frequency of the
2D wave equation.

Remark 5. A more logical test case would be to use
P2P1P1 polynomials (instead of P1P2P2, since the dif-
ferentiability requirement is higher on the first variable).
However, such a choice surprisingly did not lead to a
convergent numerical scheme. It is also somewhat surpris-
ing that using P1P1P1 leads to the best convergence rate
among the three test cases (instead of the higher-order
choice P1P2P2). The convergence of the proposed scheme
should be better investigated in further work.

4.2 Time domain simulations

Numerical time-domain simulations were performed using
the discretized system under boundary-port excitation.
The following boundary conditions were used:

u∂(x, y, t) =


sin(πt) ,[x, y] ∈ ∂Ωup ,

− sin(πt) ,[x, y] ∈ ∂Ωleft ,

0 ,[x, y] ∈ ∂Ωdown ∪ ∂Ωright .

t ≤ 1s,

(32)
and u∂(x, y, t) = 0, [x, y] ∈ ∂Ω, t > 1s. The boundary is
split in four sides: ∂Ω = ∂Ωup∪∂Ωleft∪∂Ωdown∪∂Ωright.
These conditions impose a harmonic influx on one side of
the boundary and the opposite condition at another side.
Snapshots of this simulation are presented in Fig. 2. The
simulations were performed using lsim, the MATLAB tool
for linear systems simulation.
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Fig. 2. Snapshots of simulation for a harmonic excitation
at two of the boundaries of the domain. The variable
α1 is shown.

Finally, the convergence of the time domain simulation
with boundary conditions given by (32) was verified. Fig.
3 shows the L2 norm of the error, taking into account the
state of the system after one second of simulation. The
numerical result obtained using 1600 elements was taken
as reference to compute the error. First-order convergence
is observed for a choice of P1P0P0 polynomials.
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Fig. 3. Convergence of the L2 error as a function of the
number of degrees of freedom of the discretization
scheme. The error is computed after 1 second of
simulation. Polynomials of order 1, 0 and 0 were
used as approximation functions for the variables
(P1P0P0). A first-order convergence is observed.

4.3 Using FEM software for more complex geometries

One of the main advantages of the method proposed in
this paper compared to previous work on power-preserving
discretization methods is that it proves compatible with
classic FEM software.

For instance, the 2D mesh presented in Fig. 4 is quickly
done using FreeFem++ (Hecht, 2012), and obtaining the
matrices of (26) only requires a few lines of code.

Fig. 4. Square mesh with a hole in FreeFem++.

As we did with our own codes in § 4.1, a convergence
analysis of the first mode was also performed for the square
domain using FreeFem++. The results for the error of the
first natural frequency are presented in Fig. 5 and follow
the same trend that we obtained with our code.
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Fig. 5. Convergence of the first natural frequency of
the 2D linear wave equation, discretization using
FreeFem++.

5. PERSPECTIVES AND CONCLUSIONS

Two extensions of the PFEM are proposed before conclud-
ing.

5.1 Extension to other coordinate systems

The method presented above was written in cartesian
coordinates. For other geometries, it can be easier to deal
with other curvilinear systems, like the polar coordinates.
In this latter case, the methodology to obtain the dis-
cretized equations remain the same: for example, in (26),
the same kind of algebraic structure is obtain for J , with
matrices Dρ and Dθ and their transpose. For the choice
of the basis functions, polynomials are suitable for the ρ
variable, but care must be taken to use periodic functions
for the θ variable: trigonometric polynomials will solve this
problem, as detailed in (Boyd, 2001, chap. 18).



5.2 Extension to nonlinear equations

In the previous section, we performed the discretization
of a linear wave equation with a quadratic Hamiltonian
(29). Nonlinear equations like the shallow water equations
(SWE), exhibit the same interconnection structure as (1)
with power balance (9). The difference lies in the fact that
the Hamiltonian is non-quadratic (and, for this reason, the
constitutive equations are nonlinear).

In the case of the 2D irrotational SWE, the Hamiltonian
can be written as:

H =
1

2

∫
Ω

(
1

ρ
α3

(
α2

1 + α2
2

)
+ ρgα2

3

)
dΩ . (33)

In the case of non-quadratic Hamiltonian, the derivation
of the discretized Hamiltonian is not as straightforward as
in the quadratic case (that is, obtaining (30) from (29)).
Nevertheless, it is possible to approximate the Hamiltonian
using integration by numerical quadrature. Indeed, since
the variables are approximated using polynomial basis
functions, and since the integrand of the Hamiltonian (33)
is also a polynomial, the discretized Hamiltonian can be
exactly computed by quadrature.

5.3 Conclusions

This paper presents the PFEM, a new method for
the power-preserving discretization of 2D wave equation.
Rewriting the wave equation in a weak-form where only
some of the equations are integrated by parts, a skew-
symmetric representation naturally arises with the bound-
ary control and observation. After discretization, a finite-
dimensional port-Hamiltonian system is obtained in a
straightforward way.

The PFEM method can be easily implemented using
available Finite Element software (for instance, opensource
software as FreeFem++ (Hecht, 2012)), since it suffices to
properly write the weak-form equations.

An even greater flexibility comes from the choice of the
boundary inputs and outputs, either by a conservative
change of boundary variables through an orthogonal ma-
trix, or by the choice of the partition of the variables in
the process of integration by parts.

The extension of the method to other coordinate systems,
and to nonlinear equations will be better explored in
further work, (Cardoso-Ribeiro et al., 2018).
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